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Abstract

This paper presents a new concept for the decom-
position of fuzzy numbers into a finite number of α-
cuts. Instead of subdividing the µ axis in an equi-
distant way, we suggest to subdivide the x axis equi-
distantly leading to a more efficient decomposition
of the µ axis. Considering the interpolation error as
a measure for the loss of information during the de-
composition, our concept leads to the minimal infor-
mation loss of the decomposed fuzzy numbers.
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1. Introduction

The question of this paper concerns how to decom-
pose fuzzy numbers into a finite number of α-cuts in
the most efficient way. Common approaches to nu-
merical fuzzy calculus [1] use an equidistant subdi-
vision of the µ axis into m intervals of equal length.
Unfortunately, for fuzzy numbers without compact
support, this procedure has some disadvantages [2]:
(1) A 0-cut has to be specially defined. (2) The de-
composition number is limited. Furthermore, during
the decomposition, no information about the deriva-
tives of the membership functions at the decomposi-
tion points is stored. For this reason, the fuzzy num-
bers can only be reconstructed by means of linear
spline interpolation. In case of triangular fuzzy num-
bers, no information is lost due to constant slopes,
and after the decomposition, the fuzzy numbers can
be completely reconstructed into the original ones.
In case of nonlinear fuzzy numbers, however, a loss
of information occurs, which is tending to zero for
m → ∞. The question that now arises is how this
loss of information can be minimized at a finite de-
composition number m.

2. Fuzzy numbers

Fuzzy numbers are a special class of fuzzy sets [3],
which can be defined as follows [4]:
A normal, convex fuzzy set x̃ over the real line R

is called fuzzy number if there is exactly one x̄ ∈ R
with µx̃(x̄) = 1 and the membership function is at
least piecewise continuous. The value x̄ is called the
modal or peak value of x̃.

2.1. Parametric representation

For an efficient representation of fuzzy numbers, it is
useful to introduce a parametric notation. One way
to do so is to use two reference functions, which can
be defined as follows [4]:

A function S : [0,∞) → [0, 1] with S = S(u) and
u = u(x) is called reference (or shape) function if it
satisfies the following conditions:

1. S(0) = 1,
2. S is monotonically decreasing in [0,∞), and
3. S(1) = 0 or limu→∞ S(u) = 0.

A fuzzy number x̃ is called LR fuzzy number if two
shape functions L (for the left branch) and R (for
the right branch) as well as two parameters δL, δR ∈
R+ exist such that

µx̃(x) =


L

(
x̄− x
δL

)
, x ≤ x̄, (1a)

R

(
x− x̄
δR

)
, x > x̄, (1b)

where x̄ denotes the modal value, δL the left-hand,
and δR the right-hand deviation of x̃.
In order to decompose LR fuzzy numbers into α-

cuts, they must have a compact support. This is the
case if S(1) = 0; otherwise, the membership func-
tion µx̃(x) has to be truncated at x̄− rδL and x̄+
rδR, respectively, with r ∈ R+. The 0-cut of x̃ is
then defined by

x(0) = [x̄− rδL, x̄+ rδR].

2.2. Types of fuzzy numbers

Theoretically, an infinite number of possible types
of fuzzy numbers can be defined. However, only few
of them are important for engineering applications
[2]. These typical fuzzy numbers shall be described
in the following.

2.2.1. Triangular fuzzy numbers

Due to its very simple, linear membership function,
the triangular fuzzy number (TFN) is the most fre-
quently used fuzzy number in engineering. In order
to define a TFN with the shape functions

L(u) = R(u) = S(u) = 1− u
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Figure 1: Triangular fuzzy number.

and the membership function

µx̃(x) =


1 + x− x̄

τL , x̄− τL ≤ x ≤ x̄,

1− x− x̄
τR , x̄ < x ≤ x̄+ τR,

(2)

we use the parametric notation [2]

x̃ = tfn(x̄, τL, τR),

where x̄ denotes the modal value, τL the left-hand,
and τR the right-hand spread of x̃, see Figure 1. If
τL = τR, the TFN is called symmetric. Its α-cuts
x(α) = [xL(α), xR(α)] result from the inverse func-
tions of Eqs. (2) with respect to x:

xL(α) = x̄− τL(1− α), 0 < α ≤ 1,
xR(α) = x̄+ τR(1− α), 0 < α ≤ 1.

2.2.2. Gaussian fuzzy numbers

Another widely-used fuzzy number in engineering is
the Gaussian fuzzy number (GFN), which is based
on the normal distribution from probability theory.
In order to define a GFN with the shape functions

L(u) = R(u) = S(u) = exp(−u2/2)

and the membership function

µx̃(x) =


exp
[
−1

2

(
x− x̄
σL

)2]
, x ≤ x̄,

exp
[
−1

2

(
x− x̄
σR

)2]
, x > x̄,

we use the parametric notation [2]

x̃ = gfn(x̄, σL, σR),

where x̄ denotes the modal value, σL the left-hand,
and σR the right-hand standard deviation of x̃, see
Figure 2. If σL = σR, the GFN is called symmetric.
Its α-cuts x(α) = [xL(α), xR(α)] result in

xL(α) = x̄− σL
√
−2 ln(α), 0 < α ≤ 1,

xR(α) = x̄+ σR
√
−2 ln(α), 0 < α ≤ 1.
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Figure 2: (Quasi-)Gaussian fuzzy number.

2.2.3. Quasi-Gaussian fuzzy numbers

Since GFNs do not have a compact support, it is
useful to truncate their membership function at x̄−
3σL and x̄+ 3σR, respectively. In order to define a
quasi-Gaussian fuzzy number (QGFN) [2] with the
shape functions

L(u) = R(u) = S(u) = exp(−u2/2)

and the membership function

µx̃(x) =


exp
[
−1

2

(
x− x̄
σL

)2]
, x̄− 3σL ≤ x ≤ x̄,

exp
[
−1

2

(
x− x̄
σR

)2]
, x̄ < x ≤ x̄+ 3σR,

we use the parametric notation

x̃ = qgfn(x̄, σL, σR),

where again x̄ denotes the modal value, σL the left-
hand, and σR the right-hand standard deviation of
x̃, see Figure 2. If σL = σR, the QGFN is called
symmetric. Its α-cuts x(α) = [xL(α), xR(α)] are

xL(α) = x̄− σL
√
−2 ln(α), exp(−9/2) ≤ α ≤ 1,

xR(α) = x̄+ σR
√
−2 ln(α), exp(−9/2) ≤ α ≤ 1.

2.3. Decomposition of fuzzy numbers

According to the decomposition theorem [5], every
fuzzy set Ã can be uniquely represented by the
union of its α-cuts:

Ã =
⋃
α

αA(α). (3)

For practical applications, however, the infinite
number of α-cuts in Eq. (3) has to be reduced to a
finite number. This is usually done by subdividing
the interval [0, 1] of the µ axis into m intervals of
equal length. The discrete values αj of the (m+ 1)
levels of membership are then given by [2]

αj = j

m
, j = 0, . . . ,m. (4)

The parameter m in Eq. (4) is usually referred to as
the decomposition number.
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Figure 3: Decomposition of a fuzzy number x̃ into
α-cuts.

Applying the decomposition theorem to a finite
number of α-cuts, a fuzzy number x̃ can be ex-
pressed by the following set of (m+ 1) intervals:

X = {x(α0), . . . , x(αm)}

with x(αj) = [xL(αj), xR(αj)], j = 0, . . . ,m, and
x(α0) = supp(x̃)∪ {x̄− rδL, x̄+ rδR}, see Figure 3.

3. New decomposition concept

Let

∆ = {x0, . . . , xn | x̄−rδL = x0 < · · · < xn = x̄+rδR}

be a partition of the interval I = [x̄− rδL, x̄+ rδR]
and

S∆ = {s ∈ CI | s[xi−1,xi] ∈ Π1, i = 1, . . . , n}

the set of linear splines on I to this partition, where
CI denotes the set of continuous functions on I,
s[xi−1,xi] the linear spline on [xi−1, xi], and Π1 the
set of polynomials with degree one. Then, the fol-
lowing error estimate holds [6]:

‖(µx̃ − s)(x)‖∞ ≤
h2

8 ‖µ
′′
x̃(x)‖∞

with
h = max

i=1,...,n
{xi − xi−1}. (5)

In this context, we define the interpolation error
e as

e := ‖(µx̃ − s)(x)‖∞
‖µ′′x̃(x)‖∞

≤ h2

8 .

According to Eq. (5), the interpolation error is
minimal if the partition ∆ is equidistant. Consid-
ering the interpolation error as a measure for the
loss of information during the decomposition, an
equidistant partition leads to the minimal informa-
tion loss of the decomposed fuzzy numbers. There-
fore, we suggest to decompose the x axis equidis-
tantly with

∆xL = hi = xi − xi−1 = rδL

m
, i = 1, . . . , n,

for the left and

∆xR = hi = xi − xi−1 = rδR

m
, i = 1, . . . , n,

for the right branch of an LR fuzzy number.
Consequently, substituting

x = x̄− rδL + j
rδL

m
, j = 0, . . . ,m,

into Eq. (1a) leads to

αL
j = L

[
r
(

1− j

m

)]
, j = 0, . . . ,m,

and

x = x̄+ rδR − j rδ
R

m
, j = 0, . . . ,m,

into Eq. (1b) to

αR
j = R

[
r
(

1− j

m

)]
, j = 0, . . . ,m,

which is independent of x̄, δL, and δR!
Since for the typical fuzzy numbers from Section

2.2,
L(u) = R(u) = S(u),

we suggest to decompose these fuzzy numbers at

αj = S

[
r
(

1− j

m

)]
, j = 0, . . . ,m. (6)

In particular, for TFNs with r = 1, we get

αj = j

m
, j = 0, . . . ,m,

and for QGFNs with r = 3,

αj = exp
[
− 9

2

(
1− j

m

)2
]
, j = 0, . . . ,m. (7)

Hence, the classical decomposition concept from Eq.
(4) is only a special case of the general decomposi-
tion scheme according to Eq. (6) for TFNs.

Since for nonlinear fuzzy numbers an equidistant
decomposition of the µ axis results in a non-equi-
distant decomposition of the x axis, the estimate of
the interpolation error for a symmetric QGFN ac-
cording to the classical and the new decomposition
concept shall be compared in the following.

For a symmetric QGFN with σL = σR = σ, the
estimate of the interpolation error according to the
classical decomposition concept can be expressed by

ecl

σ2 ≤
1
8

(
3−

√
2 ln(m)

)2
. (8)

On the other hand, the estimate of the interpola-
tion error for the new decomposition scheme is

enew

σ2 ≤
9
8

1
m2 . (9)

The plots of Eqs. (8) and (9) in the typical range
m ∈ {3, . . . , 10} for practical applications are illus-
trated in Figure 4. There, we can see that with the
new decomposition concept, the interpolation error
can be significantly reduced compared to the classi-
cal decomposition scheme.
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Figure 4: Comparison of the estimate of the inter-
polation error for a QGFN according to the classical
and the new decomposition concept.

4. Engineering application

In order to illustrate the proposed decomposition
concept in a more practical context, we consider a
rather simple but typical example from engineering
mechanics consisting of a two-component massless
rod under tensile load [2]. The left component of
the rod (stiffness c1) is clamped to a wall, whereas
the right component (stiffness c2) is subjected to a
tensile force F . The (static) displacement u of the
tip of the rod is determined by

u =
(

1
c1

+ 1
c2

)
F.

The first component is assumed to be made of
steel and the second component of aluminum with
the following nominal stiffness values:

c1 = 4.0 · 104 N/mm,
c2 = 1.035 · 104 N/mm.

In reality, however, exact stiffness values for both
rod components can usually not be provided due
to variations in the manufacturing process. In order
to include these uncertainties into the computation,
the stiffness parameters c1 and c2 shall be modeled
as symmetric QGFNs with the nominal values as
modal values. The standard deviations of c̃1 and c̃2
are assumed to be 5 % of their modal values.

The α-cuts u(αj) = [uL(αj), uR(αj)] of ũ can be
computed from [7]

uL(αj) = u
(
cR1 (αj), cR2 (αj)

)
,

uR(αj) = u
(
cL1 (αj), cL2 (αj)

)
.

(10)

The plots of Eqs. (10) for the classical and the
new decomposition concept for m = 4 as well as the
exact solution are illustrated in Figure 5. There, we
can see that for medium membership values, both
concepts lead to a very good approximation of the
exact solution, whereas for high membership values,

0.1 0.11 0.12 0.13 0.14 0.15
0

0.25

0.5

0.75

1
exact
new
classical

u [mm]

µũ(u)

Figure 5: Fuzzy displacement ũ of the tip of the rod
for the classical and the new decomposition concept
compared to the exact solution.

the approximation is very poor. In the lower range
of the membership values, however, the new decom-
position concept provides a better approximation of
the exact solution compared to the classical one.

5. Conclusions

We introduced a new concept for the decomposition
of fuzzy numbers into a finite number of α-cuts.
Considering the interpolation error as a measure for
the loss of information during the decomposition,
our concept leads to the minimal information loss
of the decomposed fuzzy numbers. Furthermore, for
fuzzy numbers without a compact support, no 0-cut
has to be specifically defined, and the decomposition
number is no longer limited.

Since in practical applications mostly TFNs and
QGFNs are used [2], we suggest to use the decom-
position concept according to Eq. (7) instead of the
classical decomposition scheme according to Eq. (4).
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