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Abstract

The paper presents a generalization of the Strength
Pareto Evolutionary Algorithm 2 (SPEA2) and its
application in selected well-known two- and three-
objective optimization benchmark problems. The
proposed solution is referred to as our SPEA3. The
generalization consists in the exchange of the envi-
ronmental selection procedure in SPEA2 for a new
original algorithm which aims to determine the fi-
nal non-dominated solutions with a high spread and
well-balanced distribution in the objective space.
During the evolutionary optimization process, the
non-dominated solutions are gradually incorporated
into the resulting set and placed in it in such a way
that the distances between them and their nearest
neighbors in the objective space are the greatest
possible. A comparative analysis with alternative
multi-objective optimization techniques shows that
our approach is superior with regard to the spread
and distribution of solutions while being still com-
petitive with regard to their accuracy.

Keywords: multi-objective optimization, evolu-
tionary computation, well spread and balanced dis-
tribution of non-dominated solutions

1. Introduction

The requirements for modern multi-objective opti-
mization algorithms (MOEA) [1] that are to be ap-
plied in a multi-criteria decision-making process fo-
cus on finding a set of the so-called non-dominated
solutions, which satisfy the following properties [2].
First, the accuracy of all solutions in the set, with
respect to the optimal solutions, must be as high as
possible. Then, a spread of the set (i.e., the distance
between the extreme solutions) must be as wide as
possible in order to achieve the solutions located on
the boundaries of the objective space. Furthermore,
the solutions must have a satisfactory distribution
in the set (i.e., the distances between the nearest
neighboring solutions in the objective space must
be as similar as possible) in order to provide well-
balanced levels of compromise between the values
of particular optimization objectives. Finally, the

obtained set must contain a balanced number of
solutions (neither too many nor too few) in order
to give a flexible choice of solutions for a decision
maker.

In this paper, a generalization of the Strength
Pareto Evolutionary Algorithm 2 (SPEA2) [3] ad-
dressing all of the above-mentioned requirements
and its application in selected well-known two- and
three-objective optimization benchmark problems
are presented. The proposed solution is referred to
as our SPEA3. The essence of generalization con-
sists in the exchange of the environmental selection
procedure in SPEA2 for a new original algorithm
which aims to determine the final non-dominated
solutions with a high spread and well-balanced dis-
tribution in the objective space. During the evolu-
tionary optimization, the non-dominated solutions
are gradually incorporated into the resulting set and
placed in it in such a way that the distances be-
tween them and their nearest neighbors in the ob-
jective space are the greatest possible. The pro-
posed algorithm still preserves the main advantages
of the SPEA2 approach, i.e., it generates the rel-
atively accurate final solutions and enables to de-
termine (independently from the size of a genetic
population) the number of those solutions accord-
ing to the needs.

A comparative analysis of our approach with
three well-known alternative multi-objective opti-
mization techniques is carried out to demonstrate
that our approach is superior with regard to the
spread and distribution of solutions while being still
competitive with regard to their accuracy.

2. Basic notions

An optimization of a multi-criteria decision-making
problem aiming to minimize n objective functions
fk(x) (k = 1, 2, . . . , n), where x = [x1, x2, . . . , xm]T
is a vector of m decision variables xi ∈ ℜ (i =
1, 2, . . . , m) is considered. Any vector x satis-
fying p inequality constraints gj(x) ≥ 0 (j =
1, 2, . . . , p) and r equality constraints hj(x) = 0
(j = 1, 2, . . . , r) of the problem represents its fea-
sible solution Ω. The set of all feasible solutions
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defines the search space Ω.
All feasible solutions, which are not dominated

(see Definition 2.1) by any other solution in the
search space are called Pareto-optimal. They form
the so-called Pareto-optimal set (or Pareto-optimal
front) FOP T ⊆ Ω. The task is to determine an ap-
proximation of the Pareto-optimal set in the form of
the set A with a limited number of non-dominated
solutions.

Definition 2.1. Solution S1 dominates the other
solution S2 (S1 ≻ S2), if and only if ∀k : fk(xS1) ≤
fk(xS2) and ∃k : fk(xS1) < fk(xS2), where fk(x)
are the objective functions (k = 1, 2, . . . , n) and xS1 ,
xS2 are vectors of m decision variables representing
S1 and S2, respectively.

Definition 2.2. Solution S1 weakly dominates the
other solution S2 (S1 ≽ S2), if and only if ∀k :
fk(x1) ≤ fk(x2), where fk(x) (k = 1, 2, . . . , n) as
well as x1 and x2 are as in Definition 2.1.

In general, the quality of the obtained set A
(thus, the performance of an optimization algorithm
which determines the set A) can be evaluated with
respect to the Pareto-optimal set FOP T . How-
ever, in practical experiments, the Pareto-optimal
set is usually unknown or its designation is not
possible due to, e.g., infinite number of Pareto-
optimal solutions. Thus, the evaluation of A can
be performed using a reference set FREF , which
contains a finite number of Pareto-optimal solu-
tions (or solutions that are as close to them as
possible) obtained in an artificial way (e.g., using
an external optimization technique or by mathe-
matical analysis of the decision problem). Cer-
tain reference sets concerning well-known bench-
mark tests are available on the jMetal Web Site
(http://jmetal.sourceforge.net/problems.html).

A broad review of the performance indices can be
found in [2]. In this work, two most often applied
indices are used in order to evaluate the accuracy,
spread and distribution of the set A. The accuracy
measure is the generational distance (GD) [4]:

GD(A, F) = 1
|A|

 |A|∑
i=1

dq
AFi

1/q

, (1)

where |A| stands for the size of the set A, the set F
denotes FOP T or FREF , and dAFi is the distance
between solution Ai ∈ A and its nearest Pareto-
optimal solution in the set F :

dAFi = min
Fj∈F,

j=1,2,...,|F|

d(Ai, Fj). (2)

In general case, d(S1, S2) denotes the distance be-
tween solutions S1 and S2 in the objective space.
For q = 2, dAFi is based on the Euclidean norm:

d(S1, S2) =

√√√√ n∑
k=1

(fk(xS1) − fk(xS2))2
, (3)

where the vectors xS1 and xS2 represent the solu-
tions S1 and S2, respectively.

The spread and distribution of obtained solutions
in the set A are measured simultaneously using the
generalization of ∆ metric proposed in [1]:

∆(A, F) =
∑n

k=1 dEXk
+

∑|A|−1
i=1 (dNRi − d̄NR)∑n

k=1 dEXk
+ (|A| − 1)d̄NR

.

(4)
d̄NR is the average of dNRi (i = 1, 2, . . . , |A| − 1)

whilst dNRi is the distance between solution Ai ∈ A
and its nearest neighbor in the set A:

dNRi = min
Aj∈A,

j=1,2,...,|A|; i̸=j

d(Ai, Aj). (5)

In turn, dEXk
is the distance between the extreme

solutions AEXk
∈ A and FEXk

∈ F :

dEXk
= d(AEXk

, FEXk
), (6)

where AEXk
= arg max Aj∈A,

j=1,...,|A|
fk(xAj ) and analo-

gously for FEXk
.

3. The proposed SPEA3 approach

First, the SPEA2 algorithm (see Algorithm 1 be-
low), which is the starting point of our SPEA3 ap-
proach, is outlined.

Algorithm 1: SPEA2 (Main loop) [3]

Input: N (population size)
N̄ (archive size)
T (maximum number of generations)

Output: A (non-dominated set)
Step 1: Initialization: Generate an initial pop-

ulation P0 and create the empty archive
(external set) P̄0 = ø. Set t = 0.

Step 2: Fitness assignment: Calculate fitness
values of individuals in Pt and P̄t (cf.
Section 3.1 in [3]).

Step 3: Environmental selection: Copy all
non-dominated individuals in Pt and P̄t

to P̄t+1. If size of P̄t+1 exceeds N then
reduce P̄t+1 by means of the truncation
operator, otherwise if size of P̄t+1 is less
than N then fill P̄t+1 with dominated in-
dividuals in Pt and P̄t (cf. Section 3.2 in
[3]).

Step 4: Termination: If t ≥ T or another stop-
ping criterion is satisfied then set A to the
set of decision vectors represented by the
non-dominated individuals in P̄t+1. Stop.

Step 5: Mating selection: Perform binary tour-
nament selection with replacement on
P̄t+1 in order to fill the mating pool.
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Step 6: Variation: Apply recombination and
mutation operators to the mating pool and
set P̄t+1 to the resulting population. In-
crement generation counter (t = t+1) and
go to Step 2.

The SPEA2 (and thus also our SPEA3 approach)
uses an archive (an external set) of final solutions
whose size can be regulated depending on the needs
and adjusted, in a flexible way, to the requirements
of a decision maker. The proposed generalization
of SPEA2 consists in the exchange of its environ-
mental selection procedure - which is responsible for
selecting non-dominated solutions from the popula-
tion to the archive (see Step 3 in Algorithm 1) -
for a new original algorithm (Step 3, and Steps 3a-
e in Algorithm 2) which aims to determine the fi-
nal non-dominated solutions with a high spread and
well-balanced distribution in the objective space.

Algorithm 2: SPEA3 (Main loop)

Input: N (population size)
N̄ (archive size)
T (maximum number of generations)

Output: A (non-dominated set)

Step 1:

Step 2:

}
As in Algorithm 1 (SPEA2).

Step 3: Environmental selection: If P̄t is
empty then copy three randomly selected
individuals from Pt to P̄t+1 and go to
Step 4, otherwise follow the Steps 3a–e.

Step 3a: Make auxiliary archive Q̄t+1 by copy-
ing all non-dominated individuals in Pt,
which are also not weakly dominated by
at least one individual in P̄t.

Step 3b: Copy all individuals in P̄t to P̄t+1 and
if size of P̄t+1 does not exceed N̄ then
replenish P̄t+1 with auxiliary individuals
from Q̄t+1 using Sub-algorithm 2a.

Step 3c: Replace all individuals in P̄t+1 which are
dominated by at least one individual in
Q̄t+1 with their nearest neighbors belong-
ing to Q̄t+1. Every time when the nearest
neighbor replaces an individual in P̄t+1, it
must be immediately removed from Q̄t+1.

Step 3d: Minimize the distance differences between
individuals in archive P̄t+1 using Sub-
algorithm 2b.

Step 3e: Clear all dominated individuals in archive
P̄t+1 and go to Step 4.

Step 4:

Step 5:

Step 6:

 As in Algorithm 1 (SPEA2).

Two main activities of Algorithm 2 can be dis-
tinguished. The first activity (Sub-algorithm 2a)
replenishes the archive by gradually adding auxil-
iary solutions selected from the population (starting
with three randomly selected solutions and ending
when the archive contains the desired number of so-
lutions).

Sub-algorithm 2a (Replenishment of archive)

Input: N̄ (archive size)
P̄t+1 (the main archive)
Q̄t+1 (the auxiliary archive)

Output: P̄t+1 (the main archive)
Q̄t+1 (the auxiliary archive)

Step 1: Make new archive Z̄t+1 as a copy of P̄t+1.

Step 2: If Z̄t+1 is empty or size of P̄t+1 exceeds
N̄ then stop the algorithm.

Step 3: Determine individual Z̄i in Z̄t+1 with the
greatest distance to its nearest neighbor Z̄j

(i ̸= j; i, j ∈ {1, 2, . . . , |Z̄ t+1|}.)
Step 4: Select an auxiliary individual Q̄AUX in

Q̄t+1 for which an absolute value of the
difference between distances from Q̄AUX

to Z̄i and to Z̄j is the smallest.
Step 5: If the distance between Z̄i and Q̄AUX is

greater than the distance between Z̄i and
Z̄j then remove Z̄i from Z̄t+1 and go to
Step 2.

Step 6: If the distance between Z̄j and Q̄AUX is
greater than the distance between Z̄i and
Z̄j then remove Z̄j from Z̄t+1 and go to
Step 2.

Step 7: Move auxiliary individual Q̄AUX from
Q̄t+1 to P̄t+1. Clear Z̄t+1 (or alterna-
tively, remove only Z̄i and Z̄j from Z̄t+1,
in order to fill P̄t+1 with more auxiliary
individuals) and go to Step 2.

The second activity (Sub-algorithm 2b) gradu-
ally relocates the archived solutions in the objec-
tive space in such a way that the distances between
them and their nearest neighbors are the greatest
possible.

Sub-algorithm 2b (Minimization of distance
differences between individuals in archive)

Input: P̄t+1 (the main archive)
Q̄t+1 (the auxiliary archive)

Output: P̄t+1 (the main archive)
Q̄t+1 (the auxiliary archive)

Step 1: If size of P̄t+1 does not exceed 1 or Q̄t+1
is empty then stop the algorithm, other-
wise set individual counter i = 1.
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Step 2: Select i-th individual P̄i in archive P̄t+1.
Make new archive Z̄t+1 as a copy of Q̄t+1.

Step 3: If Z̄t+1 is empty then go to Step 8.

Step 4: Among members of Z̄t+1 determine indi-
vidual Z̄NN which is the nearest neighbor
of P̄i.

Step 5: Among members of P̄t+1 determine indi-
vidual P̄j which is the nearest neighbor of
Z̄NN , such that i ̸= j.

Step 6: If the distance between Z̄NN and P̄j is
greater than the distance between P̄i and
P̄j then replace P̄i with Z̄NN in P̄t+1.

Step 7: Remove Z̄NN from Z̄t+1 and go to Step 3.
Step 8: Increment individual counter (i = i + 1).

If i exceeds the size of P̄t+1 then stop the
algorithm, otherwise go to Step 2.

It is important, that all distances between any
solutions in the objective space are calculated using
the metric (3) and the rescaled (into the range [0, 1])
objective functions f̄k(xS), i.e.:

f̄k(xS) = fk(xS) − fMINk

fMAXk
− fMINk

, (7)

where fMINk
and fMAXk

are the extreme values
of the k-th objective function found from among
evaluations of all solutions in the archive.

4. Experimental results

To show the operation of the proposed technique, 12
benchmark tests (see Table 1) representing different
levels of complexity of decision problems are used.
The first nine benchmarks (i.e., SCH, FON, KUR,
ConstrEx, and a collection of ZDTs tests) are two-
objective and the remaining ones (DTLZ1, DTLZ2,
and DTLZ3 ) are three-objective problems.

The SCH benchmark is a basic test that should
not provide any difficulties for the optimization
techniques. The extreme solutions in the FON test
are difficult to reach due to the irrational values
of the objective functions of the boundary opti-
mal solutions. The KUR test has a discontinuous
Pareto-optimal front. The benchmark ConstrEx is
a constrained test with unbalanced ranges of values
of the objective functions. The ZDT and DTLZ
benchmark collections represent optimization prob-
lems with complex, multimodal objective functions.

For the purpose of comparative analysis, the
above benchmark tests are also used to test three
well-known alternative multi-objective optimization
techniques, i.e., the aforementioned SPEA2 [3],
the Nondominated Sorting Genetic Algorithm II
(NSGA-II) [5], and its modification ε-NSGA-II [6].

All experiments have been performed using ge-
netic algorithms with populations of 200 binary-
coded individuals (32-bit-strings) and the probabil-
ities of crossover and mutation operations equal to

0.7 and 0.5, respectively. The archive size is equal
to 50. The number of generations in all experiments
is equal to 10000.

Figs. 1–4 show the exemplary final approxima-
tions of Pareto-optimal fronts of three selected two-
objective problems, listed in Table 1. Analogously,
Figs. 5 and 6 relate to the three-objective problems.
The results are obtained with the use of our SPEA3
approach (part a) of Figs. 1–6) and the alternative
techniques (parts b) and c) of Figs. 1–6).

It can clearly be seen that our approach deter-
mines the final solutions with the best spread and
distribution in comparison to the remaining tech-
niques, in all cases of the considered benchmark
tests. For example, in the case of SCH and DTLZ2
tests, the solutions from the final sets of ε-NSGA-
II approach are arranged, in a more compact way,
in the middle of the objective space and rarer in
the extreme areas. In turn, in the case of ConstrEx
test, the solutions of both approaches SPEA2 and
ε-NSGA-II are distributed rarer in the lower part of
the objective space than at the top.

A comparative analysis of our approach with the
alternative techniques confirms the above findings.
Table 2 contains the averaged results of 10-fold val-
idations of each of the possible pairs of the consid-
ered benchmark tests and algorithms. In terms of
determining the solutions with a high spread and
well-balanced distribution, our approach is superior
for 11 of 12 benchmark tests. In the case of the KUR
problem only, our approach is worse than ε-NSGA-
II and SPEA2. This may be due to the fact that
our technique determines the solutions that are uni-
formly distributed within a single section along the
discontinuous Pareto-optimal front. Concerning the
accuracy of obtained solutions, our approach wins
in 4 cases of the tests (i.e., FON, ZDT2, ZDT4, and
ZDT6 ) whilst in the remaining 8 cases the results
are comparable.

5. Conclusions

The generalization of the Strength Pareto Evo-
lutionary Algorithm 2 (SPEA2) - referred to as
SPEA3 - consisting in the exchange of the envi-
ronmental selection procedure in SPEA2 for a new
original algorithm which aims to determine the fi-
nal non-dominated solutions with a high spread and
well-balanced distribution in the objective space has
been proposed.

The performance of our SPEA3 approach has
been tested with the use of 12 well-known two- and
three-objective optimization benchmark problems.
The experimental results show that our approach
generates better - in terms of the spread and distri-
bution - non-dominated solutions than alternative
techniques (SPEA2, NSGA-II, ε-NSGA-II), while
remaining competitive in terms of the accuracy of
those solutions.
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Table 1: Formulation of the benchmark problems

Benchmark m n Objective functions Search space Optimal
solutions

SCH 1 2 f1(x) = x2

f2(x) = (x − 2)2
x ∈ [−103, 103] x ∈ [0, 2]

FON 3 2 f1(x) = 1 − exp(−
∑3

i=1(xi − 1√
3 )2)

f2(x) = 1 − exp(−
∑3

i=1(xi + 1√
3 )2)

xi ∈ [−4, 4],
i = 1, 2, 3

x1 = x2 = x3
∈ [− 1√

3 , 1√
3 ]

KUR 3 2 f1(x) =
∑m−1

i=1 (−10 exp(−0.2
√

x2
i + x2

i+1))
f2(x) =

∑m
i=1(|xi|0.8 + 5 sin(x3

i ))
xi ∈ [−5, 5],

i = 1, 2, . . . , m
(refer [1])

ConstrEx 2 2 f1(x) = x1, with constraints: 9x1 − x2 ≥ 1,
f2(x) = 1+x2

x1
, 9x1 + x2 ≥ 6

x1 ∈ [0.1, 1]
x2 ∈ [0, 5]

ZDT1 30 2 f1(x) = x1

f2(x) = g(x)[1 −
√

f1(x)
g(x) ], where

g(x) = 1 + 9(
∑m

i=2 xi)/(m − 1)

xi ∈ [0, 1]
i = 1, 2, . . . , m

x1 ∈ [0, 1]
xi = 0,

i = 2, 3, . . . , m

ZDT2 30 2 f1(x) = x1
f2(x) = g(x)[1 − (f1(x)/g(x))2], where
g(x) = 1 + 9(

∑m
i=2 xi)/(m − 1)

xi ∈ [0, 1]
i = 1, 2, . . . , m

x1 ∈ [0, 1]
xi = 0,

i = 2, 3, . . . , m
ZDT3 30 2 f1(x) = x1

f2(x) = g(x)(1 −
√

f1(x)
g(x) − f1(x)

g(x) sin(10πf1(x))),
where g(x) = 1 + 9(

∑m
i=2 xi)/(m − 1)

xi ∈ [0, 1]
i = 1, 2, . . . , m

x1 ∈ [0, 1]
xi = 0,

i = 2, 3, . . . , m

ZDT4 10 2 f1(x) = x1

f2(x) = g(x)[1 −
√

f1(x)
g(x) ], where

g(x) = 1 + 10(m − 1) +
∑m

i=2(x2
i − 10 cos(4πxi))

x1 ∈ [0, 1]
xi ∈ [−1, 5]

i = 2, 3, . . . , m

x1 ∈ [0, 1]
xi = 0,

i = 2, 3, . . . , m

ZDT6 10 2 f1(x) = 1 − exp(−4x1) sin6(6πx1)
f2(x) = g(x)[1 − (f1(x)/g(x))2], where
g(x) = 1 + 9[(

∑m
i=2 xi)/(m − 1)]0.25

xi ∈ [0, 1]
i = 1, 2, . . . , m

x1 ∈ [0, 1]
xi = 0,

i = 2, 3, . . . , m
DTLZ1 12 3 f1(x) = 0.5x1x2(1 + g(x))

f2(x) = 0.5x1(1 − x2)(1 + g(x))
f3(x) = 0.5(1 − x1)(1 + g(x)), where
g(x) = 100[10+

∑m
i=2((xi−0.5)2−cos(20π(xi−0.5)))]

xi ∈ [0, 1]
i = 1, 2, . . . , m

x1, x2 ∈ [0, 1]
xi = 0.5,

i = 3, 4, . . . , m

DTLZ2 12 3 f1(x) = (1 + g(x)) cos(x1π/2) cos(x2π/2)
f2(x) = (1 + g(x)) cos(x1π/2) sin(x2π/2)
f3(x) = (1 + g(x)) sin(x1π/2), where
g(x) =

∑m
i=2(xi − 0.5)2

xi ∈ [0, 1]
i = 1, 2, . . . , m

x1, x2 ∈ [0, 1]
xi = 0.5,

i = 3, 4, . . . , m

DTLZ3 12 3 f1(x) = (1 + g(x)) cos(x1π/2) cos(x2π/2)
f2(x) = (1 + g(x)) cos(x1π/2) sin(x2π/2)
f3(x) = (1 + g(x)) sin(x1π/2), where
g(x) = 100[10+

∑m
i=2((xi−0.5)2−cos(20π(xi−0.5)))]

xi ∈ [0, 1]
i = 1, 2, . . . , m

x1, x2 ∈ [0, 1]
xi = 0.5,

i = 3, 4, . . . , m
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Figure 1: Final approximations of the Pareto-optimal solution sets for our SPEA3 (a), SPEA2 (b), and
ε-NSGA-II (c) algorithms (SCH benchmark problem)
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Figure 2: Final approximations of the Pareto-optimal solution sets for our SPEA3 (a), SPEA2 (b), and
ε-NSGA-II (c) algorithms (KUR benchmark problem)
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Figure 3: Final approximations of the Pareto-optimal solution sets for our SPEA3 (a), SPEA2 (b), and
ε-NSGA-II (c) algorithms (ConstrEx benchmark problem)
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Figure 4: Final approximations of the Pareto-optimal solution sets for our SPEA3 (a), SPEA2 (b), ε-NSGA-II
(c) algorithms (ZDT3 benchmark problem)

a) b) c)

Figure 5: Final approximations of the Pareto-optimal solution sets for our SPEA3 (a), SPEA2 (b), ε-NSGA-II
(c) algorithms (DTLZ1 benchmark problem)
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Figure 6: Final approximations of the Pareto-optimal solution sets for our SPEA3 (a), SPEA2 (b), ε-NSGA-II
(c) algorithms (DTLZ2 benchmark problem)
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Table 2: A comparative analysis of our approach with alternative techniques

Benchmark Algorithm Generational distance (GD) Spread and distribution measure (∆)
Average Std. deviation Average Std. deviation

SCH Our SPEA3 1.3451E-3 6.1730E-5 3.9995E-2 1.2251E-2
SPEA2 1.3380E-3 9.6155E-5 1.2570E-1 1.4079E-2

NSGA-II 9.5733E-4 5.3899E-5 6.1462E-1 4.9235E-2
ε-NSGA-II 1.5788E-3 1.2666E-4 5.0620E-1 2.3372E-2

FON Our SPEA3 1.6315E-4 8.0883E-6 4.7014E-2 2.5965E-2
SPEA2 5.3844E-4 6.3862E-5 1.3280E-1 1.9523E-2

NSGA-II 2.8681E-4 2.6579E-5 5.4080E-1 8.6407E-2
ε-NSGA-II 2.5421E-4 2.9344E-5 2.0861E-1 2.0671E-2

KUR Our SPEA3 1.6140E-3 2.4740E-4 3.2292E-1 1.1618E-2
SPEA2 2.7918E-3 7.7937E-4 2.7377E-1 3.5689E-2

NSGA-II 1.5983E-3 1.5252E-4 6.4593E-1 5.2421E-2
ε-NSGA-II 2.1452E-3 2.6530E-4 2.6397E-1 2.3781E-2

ConstrX Our SPEA3 8.8700E-4 7.4204E-5 1.9946E-1 6.7897E-2
SPEA2 1.3014E-3 3.2880E-4 3.8227E-1 3.8517E-2

NSGA-II 6.9490E-4 5.1226E-5 7.3202E-1 4.7862E-2
ε-NSGA-II 1.2806E-3 1.4710E-4 4.2724E-1 2.3001E-2

ZDT1 Our SPEA3 9.7817E-5 1.6439E-5 3.7962E-2 1.4228E-2
SPEA2 2.8046E-4 9.2255E-5 1.3921E-1 1.8059E-2

NSGA-II 1.5796E-4 3.1465E-5 5.6746E-1 3.9048E-2
ε-NSGA-II 9.3581E-5 2.1614E-5 2.3392E-1 2.0649E-2

ZDT2 Our SPEA3 6.4035E-5 5.2462E-6 5.4382E-2 2.5916E-2
SPEA2 1.8068E-4 7.7749E-5 1.3284E-1 2.0264E-2

NSGA-II 9.6239E-5 2.2283E-5 5.9903E-1 5.0398E-2
ε-NSGA-II 1.4531E-4 4.9443E-5 2.3692E-1 1.5422E-2

ZDT3 Our SPEA3 2.8630E-4 1.7898E-5 2.1027E-1 8.3822E-2
SPEA2 3.3490E-4 7.9273E-5 1.6986E-1 2.9307E-2

NSGA-II 1.8209E-4 1.2206E-5 5.8034E-1 5.7662E-2
ε-NSGA-II 3.7932E-4 5.6220E-5 3.7572E-1 3.8395E-2

ZDT4 Our SPEA3 1.0192E-4 1.2383E-5 3.3304E-2 1.8313E-2
SPEA2 1.0220E-4 1.6815E-5 1.3927E-1 2.4597E-2

NSGA-II 5.1427E-3 3.3500E-3 8.0741E-1 1.5762E-1
ε-NSGA-II 9.9188E-5 2.8830E-5 2.3583E-1 1.9457E-2

ZDT6 Our SPEA3 4.8811E-5 2.0380E-6 5.9647E-2 1.5067E-2
SPEA2 4.9800E-5 3.2696E-6 1.1795E-1 2.0862E-2

NSGA-II 3.6686E-3 2.8063E-3 8.0267E-1 1.1830E-1
ε-NSGA-II 5.1863E-5 5.4961E-6 1.3321E-1 1.9420E-2

DTLZ1 Our SPEA3 3.47E-4 1.361E-4 2.446E-2 7.774E-2
SPEA2 1.81E-1 3.605E-1 4.302E-1 6.79E-1

NSGA-II 2.515E-2 2.017E-2 7.455E-1 1.153E-1
ε-NSGA-II 1.804E-4 6.053E-5 2.722E-1 1.675E-1

DTLZ2 Our SPEA3 4.679E-3 2.031E-4 1.117E-1 6.527E-2
SPEA2 1.521E-2 3.205E-3 1.33E-1 1.281E-2

NSGA-II 5.144E-3 1.767E-3 5.729E-1 5.746E-2
ε-NSGA-II 3.031E-4 1.451E-5 2.48E-1 6.733E-3

DTLZ3 Our SPEA3 1.141E-1 2.0380E-2 2.614E-2 1.506E-3
SPEA2 1.715E+0 3.262E+0 5.952E-1 5.949E-1

NSGA-II 3.012E-1 2.5E-1 1.2E+0 3.909E-1
ε-NSGA-II 3.222E-3 2.322E-3 4.563E-1 1.481E-1
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