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Abstract

This paper presents our clustering technique based
on generalized SOMs with evolving splitting-
merging tree-like structures and its application to
complex clustering problems including some bench-
mark data sets and, first of all, WWW-document
clustering. Our approach that works in a fully un-
supervised way (i.e., without the pre-defined cluster
number and using unlabelled data), automatically
detects the number of clusters and generates multi-
prototypes for them. The collection of 548 abstracts
of technical reports as well as its 476-element sub-
set, both available at WWW server of the Depart-
ment of Computer Science, University of Rochester,
USA (www.cs.rochester.edu/trs) are the subjects of
clustering. A comparative analysis with five alter-
native clustering techniques is also carried out. The
reported results prove that our approach is a pow-
erful tool (that outperforms several alternative ap-
proaches) for complex cluster-analysis tasks includ-
ing the problems of WWW-document clustering.

Keywords: WWW-document clustering, general-
ized SOMs with tree-like structures, cluster analy-
sis, unsupervised learning

1. Introduction

Significant advances in information and commu-
nication technologies and the dynamic growth of
World-Wide-Web resources make more and more
important the problems of helping users to effi-
ciently access relevant information and to organize
it in intelligible way. Among the most widely avail-
able WWW resources are text and hypertext doc-
uments. For this reason, WWW-text-document
processing techniques, including thematic WWW-
document clustering methods, play an important
role in mining the Web [1]. For a collection of
WWW documents, the task of document cluster-
ing, in general, is to group particular documents
together in such a way that the items within each
cluster are as "similar" as possible to each other and
as "dissimilar" as possible from those of the other
clusters.

This paper presents a clustering method that em-
ploys generalized self-organizing maps (SOMs) with
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evolving splitting-merging tree-like structures (cf.
[2]) and its application to clustering of selected col-
lections of WWW-documents. In general, original
SOMs [3] are used to visually display topological
structures of high dimensional data in lower (usually
two-dimensional) space rather than for clustering,
i.e., partitioning of these data into groups [4]. How-
ever, the proposed generalized SOMs with struc-
ture splitting and merging mechanism are equipped
with both data-dimensionality reduction and data-
segmentation abilities. It is worth emphasizing that
our approach works in a fully unsupervised way,
i.e., without a predefined number of clusters and
using unlabelled data. First, the clustering pro-
cess using the proposed generalized SOMs is pre-
sented and illustrated by means of two benchmark
data sets. Then, a Vector-Space-Model represen-
tation of WWW documents and some approaches
to its dimensionality reduction are outlined. In
turn, the application of our approach to clustering
of the collection of 548 abstracts of technical re-
ports available at the WWW site of the Department
of Computer Science, University of Rochester, USA
(www.cs.rochester.edu/trs) is presented. Finally, a
comparative analysis with several alternative text-
clustering techniques is also carried out (for this
purpose, a subset of 476 abstracts of the aforemen-
tioned original collection of abstracts is also consid-
ered).

2. Generalized SOMs with Evolving
Splitting-Merging Tree-Like Structures
for Data Clustering

Consider, first, the conventional SOM with one-
dimensional neighborhood (SOM with 1DN), i.e.,
the neuron chain. Assume that the network has
n inputs x1,z2,...,z, and consists of m neu-
rons; their outputs are yi,¥y2,...,Ym, where y; =
S wjizs, j o= 1,2,...,m and wj; are weights
connecting the ¢-th input of the network with the
output of the j-th neuron. Using vector notation

(z = (z1,29,...,7,)7, wj; = (w1, Wwj2, ..., wjn)T),
Y = ija:. The learning data consists of L input

vectors @; (I = 1,2,...,L). In the first stage of
any Winner-Takes-Most (WTM) learning algorithm
that can be used in the learning process of the con-



sidered network, the neuron j,, which wins in com-
petition of neurons when the learning vector x; is
presented to the network must be determined. As-
suming that the normalization of learning vectors is
performed, the winning neuron j, is selected in the
following way:

min

d . =
(xl,wjz) j=1,2,....m

d(zi, w;), (1)
where d(x;, w;,) is a distance measure between x;
and w;. Different measures are more or less suit-
able in different clustering tasks [5], [6]. As far as
text-document is concerned, most often a distance
measure d.,s based on the cosine similarity function
Seos (frequently used for determining the similarity
of text documents) is applied:
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where ||.||g is the Euclidean norm. In our experi-
ments presented in Section 4 and regarding WWW
document clustering, d..s will be used. However, in
many other applications (including two benchmark
data clustering presented at the end of this section),
the Euclidean distance measure dg:

(2)

(3)

is used. The WTM learning rule has the following
form:

w, (k4 1) = w; (k) + 0, ()N (. . F) (k) — w0, (k).

(1)
where k is the iteration number, n;(k) is the learn-
ing coefficient, and N (4, ju, k) is the neighborhood
function of the j,-th winning neuron. Most often
the Gaussian-type neighborhood functions are used,
ie.

dp(z, wj) = ||z — wjl;

2 ..
dtpl(ﬂ’]::)

N(j ja k) = e 27® (5)

where A(k) is the neighborhood radius and
dipi(4, j2) - the topological distance between the j,-
th and j-th neurons. In the case of the conventional
SOM with 1DN, dypi(4,Jz) = |j — j=|- However,
when our mechanisms (presented below) for split-
ting and merging of the network structure are im-
plemented, the conventional SOM with 1DN evolves
toward a tree-like structure. As a result of that, the
neighborhood of a given neuron in such a tree-like
topology of our generalized SOMs is defined along
all the arcs emanating from that neuron as shown
in Fig. 1. Those arcs are the pieces of the conven-
tional SOM with 1DN. Therefore, dy (4, j2) = 1 for
all j-th neurons being direct neighbors of the j,-th
one as illustrated in Fig. 1. In turn, dyy(f, jz) = 2
for all j-th neurons being second along all paths
starting at the j,-th one (see Fig. 1), etc.
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Figure 1: Illustration of neighborhood of the j,-th
neuron [2]

The essence of the proposed generalization con-
sists in introducing, in the learning phase, three
mechanisms: (i) automatic adjustment of the num-
ber of neurons in the network by removing low-
active neurons and adding new neurons in areas of
high neuronal activity, starting from arbitrarily se-
lected small (e.g., equal to 2) number of neurons, (ii)
automatic disconnection of the tree-like structure
into subnetworks, and (iii) automatic reconnection
of some of the subnetworks preserving the no-loop
spanning-tree properties. Such a generalized SOM
is able to detect data clusters of various shapes and
densities by assigning a single disconnected subnet-
work to each cluster. Thus, the number of automat-
ically generated subnetworks is equal to the number
of clusters. Additionally, the collection of neurons
in a given subnetwork is a multi-prototype of the
corresponding cluster. Such prototypes can be di-
rectly used in clustering and classification tasks by
employing the well-known nearest multi-prototype
method [7], [8]. The proposed approach is a gener-
alization of our earlier solutions to automatic deter-
mination of the cluster numbers and cluster proto-
types in data sets [9], [10], [11], [12].

The implementation of the above-mentioned
mechanisms is carried out by the activation of four
operations after each learning epoch (provided that
the required conditions are fulfilled).

Operation 1 (the removal of single low-active neu-
rons): The neuron no. j, is removed from the net-
work (preserving the network continuity - see [2] for
details) if its activity - measured by the number of
its wins win;, - is below an assumed level Win,4r,
ie., winj, < WiNmin. WiNmy, is experimentally se-
lected parameter (usually, win,:, € {2,3,4}).

Operation 2 (the disconnection of the network
(subnetwork) into two subnetworks): The dis-
connection of two neighboring neurons j; and jo
takes place if the following condition is fulfilled:
d(wj,, w),) > degepdayr Where dour = 5501 d, is
the average distance between two neighboring neu-
rons for all pairs p, p = 1,2,..., P, of such neu-
rons (d, dqur, and d,, are either cosine or Euclidean
distance measures according to the area of appli-
cations). deees is experimentally selected param-
eter (a distance coefficient) governing the discon-
nection operation (usually, deoes € [3,4]). Possible



very short (single- or two-neuron) subnetworks are
removed from the system since they cannot be re-
connected by Operation 4 (see below).

Operation 3 (the insertion of additional neurons
into the neighborhood of high-active neurons in or-
der to take over some of their activities). Case 3a:
A new neuron, labelled as (new), is inserted be-
tween two neighboring and high-active neurons j;
and js (i.e., their numbers of wins win;, and win;,
are above an assumed level wWing,q.: wing, , win;, >
WiNmae ). Wilmae 18 experimentally selected param-
eter (usually winmq., € {2,...,5} and winme, >
WiNin, Where win,, is defined in Operation 1).
The weight vector w,e,) of the new neuron is cal-

culated as follows: W(pew) = Yt Case 3b:
A new neuron (new) is inserted in the neighbor-
hood of high-active neuron j; surrounded by less-
active neighbors (i.e., win;, > Wiy, and win; <
WiNymqy for j such that dyy(4,51) = 1). The weigh
vector W(new) = [w(new)h W(new)2s - - - 7w(new)n]T is
calculated as follows: wW(new)i = wj (1 + &), i =
1,2,...,n, where ; is a random number from the
interval [—0.01,0.01] (see [2] for details).

Operation 4 (the reconnection of two selected
subnetworks): Two subnetworks S; and Sy are re-
connected by introducing topological connection be-

tween neurons j; and js (j1 € S1, j2 € S2) after ful-
daurg, +davrs,

filling condition d(wj,,w;,) < deocs
d(wj,, w;,) and deoey are the same as in Operation
2. daws1 and cl,wTS2 are calculated for subnetworks
S1 and So, respectively, in the same way as dgyr,
is calculated in Operation 2 for the considered net-
work.

Following Kohonen’s comments [3], the learning
parameters are selected mainly in an experimental
way. The learning coefficient n(k) and the neigh-
borhood radius A(k) should be some monotonically
decreasing functions of time (A(k) can also be con-
stant in time) [3]. Taking that into account, the
learning parameters in our experiments are defined
as follows: n;(k) = n(k) of (4) is linearly decreas-
ing over the learning horizon (which includes 1000
epochs) from 7-107% to 107%, A(k) = X of (5) is
equal to 2, the initial number of neurons in the net-
work is equal to 2, wWing,i, = 3, WiNmee = 5, and
deoer = 4. It is worth emphasing that the same
set of experimentally selected parameters that gov-
ern the structure splitting and merging mechanisms
(i.e., WiNmin, Wilmag, and deoes) gives exellent re-
sults in quite different (in terms of data dimension-
ality and the distance-measure definition) applica-
tions such as some benchmark data sets (see below
in this section) and document sets (see Section 4).
Thus, the sensitivity of our approach to the changes
of those parameters is low.

In order to illustrate the operation of our clus-
tering technique and to evaluate its performance,
the clustering of two benchmark data sets from the
so-called Fundamental Clustering Problem Suite
(FCPS) [13] will now be carried out. The first
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benchmark set, referred to as GolfBall data, con-
sists of points that are equidistant on the surface of
a sphere. Thus, no cluster structure exists in that
set or, equivalently, one big cluster covering all the
data can be considered. It is a hard-to-pass test for
many clustering algorithms, especially those gener-
ating a pre-defined number of cluster. The second
benchmark set (Chainlink data) contains two clus-
ters that are not separable by hyperplanes.

Figs. 2 and 3 illustrate the operation of our
clustering approach for both benchmark data sets.
Parts a) of both figures represent the data, parts
b), ¢), d), and e) show the evolution of the tree-like
structures of our generalized SOMs in data sets at
different stages of the learning process, and parts f)
and g) present the plots of the number of neurons
(f) and the number of subnetworks (equal to the
number of detected clusters)(g) vs. learning epoch
number. Our approach automatically increases the
number of neurons in particular networks (starting
from the initial numbers of two neurons) and de-
tects the correct numbers of data clusters in both
sets by disconnecting the tree-like structures of the
generalized SOMs into appropriate number of sub-
networks. In particular, it detects one big cluster
covering all the data in GolfBall set. It confirms
that no cluster structure exists in that data set.

3. An Outline of WWW-Document Vector
Space Model

The Vector Space Model (VSM) [1], [14], [15], [16] of
the collection of L WWW documents consists of L
vectors & = (21, T2, ..., T1n) 7, 1 =1,2,..., L that
describe particular documents. The component x;;
(i = 1,2,...,n) of x; represents a relationship be-
tween the i-th key word or term and the [-th docu-
ment from the collection. There are various schemes
for measuring that relationship (often referred to
as term weighting). Among them three approaches
are the most popular: a) binary term weighting:
x;; = 1 when the i-th term occurs in the [-th doc-
ument and x;; = 0 otherwise, b) term frequency
weighting (or, tf-weighting, for short): x; = tfy
where ¢ f;; is equal to the number of occurrences of
the i-th term in the I-th document, and c) term fre-
quency - inverse document frequency weighting (or,
tf-idf-weighting, for short): z;; = tfi;log (L/df;),
where tf;; is the term frequency as in tf-weighting,
df; denotes the number of documents in which the
i-th term appears, and L is the total number of
documents in the collection. In our experiments
tf-weighting will be used. Once the way of deter-
mining x;; is selected, the Vector Space Model can
be formulated in a matrix form:

VSMuxr)y = Xmxr) = [®ili=1,2,....0 = ©)

= [(151179612, cee axln)T]l:LZ,...,L

where the (nxL) index represents VSM’s dimen-
sionality.
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Figure 2: GolfBall data set (a) and the evolution of our generalized SOM’s structure in it in learning epochs:
b) no. 5, ¢) no. 10, d) no. 50, and e) no. 1000 (end of learning), as well as plots of the number of neurons (f)
and the number of subnetworks (clusters) (g) vs. epoch number
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Figure 3: Chainlink data set (a) and the evolution of our generalized SOM’s structure in it in learning epochs:
b) no. 5, ¢) no. 10, d) no. 50, and e) no. 1000 (end of learning), as well as plots of the number of neurons (f)
and the number of subnetworks (clusters) (g) vs. epoch number

The reduction of the VSM dimensionality is an
important problem from the point of view of prac-
tical usage of VSMs. Two main categories of VSM-
dimensionality-reduction techniques are considered
[17]: a) feature selection methods and b) feature
transformation methods. Feature selection consists
in sorting terms and then eliminating some of them
on the basis of some numerical measures computed
from the considered collection of documents. Such a
process is preceded by filtering, stemming, and stop-
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word removal preprocessing operations that also
contribute to VSM-dimensionality reduction.

The filtering (and tokenization) operation re-
moves special characters, such as %, #, $, etc., from
the original text as well as identifies word- and sen-
tence boundaries in it. As a result of that, initial
VSMp,,.xr) is obtained, where n;,; is the number
of different words isolated from all documents.

The stemming operation replaces all the words in
initial model by their respective stems (a stem is



Table 1: The dimensionality reduction of the initial VSMs for CSTR-548 and CSTR-476 collections of ab-

stracts
VSM Dimensionality of VSM for abstract collection:
CSTR-548 \ CSTR-476
VSMy,,..x L) (ninix L) = (7438%x548) (ninix L) = (6752x476)
[47382] [41072]
VSMn,,... <L) (nstem X L) = (4896 x548) (nstem X L) = (4438 %x476)
[44201] [38307]
VSMn,, . xL) (notprx L) = (4574x548) (notprx L) = (4119x476)
[30644] [26525]
VSMn;,, x L) CSTR-548"Small" CSTR-548"Large" CSTR-476"Small" CSTR-476"Large"
(qt'r‘es = 20) (qtres = 2) (qt'r‘es = 20) (qtres = 2)
(nfme) = (nfme) = (nfme) = (nfme) =
(405x548) (2396x548) (342x476) (2217x476)
[18096] [28466] [14805] [24623]

a portion of a word left after removing its suffixes
and prefixes). As a result of that, VSM, .. «r) is
obtained, where Ngem < Mini.

The stop-word removal operation (i.e., removing
words from a so-called stop list) eliminates from the
model words that on their own do not have iden-
tifiable meanings and therefore are of little use in
various text processing tasks. As a result of that,
VSMn,,, xr) is obtained, where nsip < nstem.

Feature selection methods usually operate on
term quality ¢;, ¢ = 1,2,...,nsyp defined for each
term occurring in the latest VSM. Terms charac-
terized by ¢; < Gres, where @ires is a pre-defined
threshold value are removed from the model. In
our experiments, the document-frequency-based is
used to determine ¢;, i.e., ¢; = df;, where df; is the
number of documents in which the i-th term occurs.
As a result of that, final V.SM(,,, 1) is obtained,
where ngin < Nstpr-

4. Application to WWW-Document
Clustering and Comparative Analysis

The performance of our generalized SOMs will now
be verified in the real-life WWW-document clus-
tering problem, i.e., the clustering of the collec-
tion of 548 abstracts of technical reports available
at WWW server of the Department of Computer
Science, University of Rochester, USA (www.cs.
rochester.edu/trs); henceforward, the collection will
be referred to as CSTR-548 (CSTR stands for Com-
puter Science Technical Reports). The number of
classes (equal to 4: AI (Natural Language Process-
ing), RV (Robotics-Vision), Systems, and Theory)
and the class assignments are known in the consid-
ered document set. Therefore, a direct verification
of the obtained results is possible. However, the
knowledge on the class number and the class assign-
ments by no means will be used by our clustering
algorithm (it works in a fully unsupervised way).
In order to extend a comparative analysis, also a
subset of 476 abstracts (referred to as CSTR-476) of
the aforementioned original collection CSTR-548 is
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considered. Collection CSTR-476 contains the ab-
stracts of technical reports that were published until
the end of 2002, whereas CSTR-548 covers the ab-
stracts published until June 2005. The clustering of
CSTR-476 by means of some alternative techniques
is presented in [18].

The results of the dimensionality reduction of the
initial V.SMs are collected in Table 1 using the nota-
tion introduced in Section 3 (additionally, in square
brackets, the overall numbers of occurrences of all
terms in all documents of a given collection are pre-
sented). Two final numerical models (identified in
Table 1 as "Small" and "Large" sets) are generated
for CSTR-548 and CSTR-476. For this purpose, two
values of threshold parameter ¢;..s are considered:
Qres = 20 - to get models of more reduced dimen-
sionalities ("Small'-type sets) and gires = 2 - to get
models of higher dimensionalities but also of higher
accuracies ("Large'-type sets). It is worth noticing
that g¢res = 2 results in removing from the model
all the terms that occur in only one document of
the collection; therefore, they do not contribute to
the clustering process.

Figs. 4 and 5 illustrate the progress of the learn-
ing and, thus, the clustering process for both numer-
ical models of CSTR-548 abstract collection. Both
systems adjust the overall numbers of neurons in
their networks (Figs. 4a and 5a) and the number
of disconnected subnetworks (equal to the number
of detected clusters; Figs. 4b and 5b). Finaly, four
clusters are found in both sets.

Since the class number and the class asignments
in the original collection of abstracts are known,
a direct verification of the obtained results is also
possible as shown in Table 2. It can be seen,
in general, that Systems and Theory groups are
much different from each other and different from
Al and VR groups. In turn, Al and VR are
relatively similar to each other, however, accord-
ing to more accurate model (CSTR-548 "Large")
many more Al-abstracts are misclassified as VRs
than vice versa, etc. Moreover, in Table 3 the re-
sults of comparative analysis with three alterna-
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Figure 4: Plots of the number of neurons (a) and the number of subnetworks (b) vs.
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Figure 5: Plots of the number of neurons (a) and the number of subnetworks (b) vs.

CSTR-548"Large"
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Table 2: Clustering results for CSTR-548"Small" (a) and CSTR-548"Large" (b)

Number of decisions for subnetwork Number Number Percentage

Class label labelled: of correct of wrong of correct

AI | RV [ Systems | Theory decisions | decisions | decisions
a) Al 82 11 18 1 82 30 73.21%
RV 26 51 10 2 51 38 57.30%
Systems 0 3 194 0 194 3 98.48%
Theory 2 2 14 132 132 18 88.00%

ALL 110 67 236 135 459 89 83.76%

b) Al 61 47 3 1 61 51 54.46%
RV 6 82 1 0 82 7 92.13%

Systems 0 1 195 1 195 2 98.98%

Theory 1 4 5 140 140 10 93.33%

ALL 68 134 204 142 478 70 87.23%

tive approaches: the EM (Expectation Maximiza-
tion) method, the FFTA (Farthest First Traver-
sal Algorithm), and the well-known k-means al-
gorithm, applied to both considered data sets are
presented. The WEKA (Waikato Environment for
Knowledge Analysis) application that implements
the EM, FFTA, and k-means algorithms has been
used for that purpose. The WEKA application as
well as details on the clustering techniques can be
found on WWW site of the University of Waikato,
New Zealand (www.cs.waikato.ac.nz/ml/weka).

As already mentioned, in order to extend the
comparative-analysis aspects of this paper, addi-
tionally, the clustering of CSTR-476 subset of orig-
inal abstract collection CSTR-548 is carried out -
see Figs. 6 and 7 as well as Table 4. Two numerical
models of CSTR-476, i.e., "Small" and "Large" data
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Table 3: Results of comparative analysis for CSTR-
548 numerical models

Clustering Percentage of correct decisions
method | CSTR-548"Small" \ CSTR-548"Large"
Our 83.76% 87.23%
EM 62.23% 51.09%
FFTA 37.77% 36.68%
k-means 65.33% 36.68%

set (see Table 1) are subject to clustering. As shown
in Table 5, this time the operation of our cluster-
ing technique is compared with five alternative ap-
proaches, including additionally the EB (Entropy-
Based clustering) method and hierarchical cluster-
ing technique available from CLUTO software pack-
age (www-users.cs.umn.edu/~karypis/cluto). The
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Table 4: Clustering results for CSTR-476"Small" (a) and CSTR-476"Large" (b)

Number of decisions for subnetwork Number Number Percentage

Class label labelled: of correct of wrong of correct

AI | RV [ Systems | Theory decisions | decisions | decisions
a) Al 43 50 5 3 43 58 42.57%
RV 2 65 1 3 65 6 91.55%
Systems 4 5 168 1 168 10 94.38%
Theory 0 4 11 111 111 15 88.10%

ALL 49 124 185 118 387 89 81.30%
b) Al 59 35 6 1 59 42 58.42%
RV 0 65 4 2 65 6 91.55%
Systems 2 10 166 0 166 12 93.26%
Theory 0 8 4 114 114 12 90.48%

ALL 61 118 180 117 404 72 84.87%

results of applying EB and CLUTO-based cluster-
ing techniques to CSTR-476 abstract collection are
reported in [18] and repeated in Part II of Table 5.
The results presented in Tables 3 and 5 prove that
our approach significantly outperforms the consid-
ered alternative clustering techniques.

5. Conclusions

In this paper our clustering technique based on the
generalized SOMs with evolving splitting-merging
tree-like structures is presented and applied to
complex clustering problems including WWW-
document clustering. Our approach that works in a
fully unsupervised way (i.e., without the pre-defined
cluster number and using unlabelled data), auto-
matically detects the number of clusters (equal to
the number of disconnected subnetworks) and gen-
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erates multi-prototypes for them (represented by
neurons in particular subnetworks). It is achieved
by the implementation of automatic adjustment of
the number of neurons in the network and the dis-
connection and reconnection mechanisms of the net-
work tree-like structures during the learning pro-
cess.

Two benchmark data sets coming the Fundamen-
tal Clustering Problem Suite [13] and the collection
of 548 abstracts of technical reports as well as its
476-element subset, both available at WWW server
of the Department of Computer Science, University
of Rochester, USA (www.cs.rochester.edu/trs) were
the subjects of clustering.

The results reported in this paper prove that our
approach is a powerful tool for complex cluster-
analysis tasks including high-dimensional problems



Table 5: Results of comparative analysis for CSTR-

476 numerical models

Part I:
Clustering Percentage of correct decisions
method |CSTR-476"Small" | CSTR-476"Large"
Our 81.30% 84.87%
EM 69.96% 50.00%
FFTA 37.82% 38.03%
k-means 69.75% 38.45%
Part II:
Clustering CSTR-476 abstract collection
method | Dimensionality of | Percentage of
VSM correct decisions
EB not available ~73.9%
CLUTO not available ~68.8%

of WWW-document clustering and provides much
better results that many alternative techniques in
this field.
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