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Abstract

Aggregation theory often deals with measures of
central tendency of quantitative data. As some-
times a different kind of information fusion is
needed, an axiomatization of spread measures was
introduced recently. In this contribution we explore
the properties of WDpWAM and WDpOWA opera-
tors, which are defined as weighted Lp-distances to
weighted arithmetic mean and OWA operators, re-
spectively. In particular, we give forms of vectors
that maximize such fusion functions and thus pro-
vide a way to normalize the output value so that
the vector of maximal spread always leads to a fixed
outcome, e.g., 1 if all the input elements are in [0, 1].
This might be desirable when constructing measures
of experts’ opinions consistency or diversity in group
decision making problems.

Keywords: data fusion, aggregation, spread, devi-
ation, variance, OWA operators

1. Introduction

Let us recall the definition of an aggregation func-
tion, cf. [1, 2, 3, 4].

Definition 1. Let I = [a, b]. A : In → I is an
aggregation function if at least:

(a1) it is nondecreasing in each variable, i.e., for all
x,x′ ∈ In such that x ≤n x′, i.e., (∀i) xi ≤ x′i,
it holds A(x) ≤ A(x′),

and fulfills the boundary conditions:

(a2) infx∈In A(x) = inf I,
(a3) supx∈In A(x) = sup I.

In particular, internal aggregation functions, i.e.,
such that (∀x) A(x) ∈ [Min(x),Max(x)], are some-
times called averaging functions. The mentioned
characteristic properties reflect somehow the con-
cept of data synthesis: finding a value representative
to the whole vector. Recently, the class of measures
of absolute spread was introduced in [5]. A spread
measure V may accompany an internal aggregation
function A so that a numeric vector x is concisely de-
scribed as A(x)±V(x). For different approaches to
quantifying entropy or uncertainty of discrete prob-
ability mass functions see, e.g., [6, 7], cf. also the

notion of fuzziness of a fuzzy set [8, 9, 10], multi-
discances [11], a probability distribution’s scale pa-
rameter estimates discussed by [12], or dissimilarity
measures in case of n = 2 [13].

Recall that two vectors x,x′ ∈ In are said to be
comonotonic [2, Def. 2.123] if there exists a per-
mutation σ of [n] := {1, 2, . . . , n} such that

xσ(1) ≤ · · · ≤ xσ(n) and x′σ(1) ≤ · · · ≤ x
′
σ(n).

Hence, the permutation σ orders the components of
x and x′ simultaneously. Another way to say that
x and x′ are comonotonic is that

(xi − xj)(x′i − x′j) ≥ 0 for every i, j ∈ [n].

Interestingly, there exists an O(n logn)-time algo-
rithm for determining whether this property holds.
Note that if all the elements in x are unique, then
to determine if two vectors are comonotonic it is of
course sufficient to take the (unique) ordering per-
mutation σ of x and then verify if (x′σ(1), . . . , x

′
σ(n))

is appropriately sorted. On the other hand, if
there are tied observations in x, we seek for sub-
sequences of x such that (xσ(i), xσ(i+1), . . . , xσ(i+k))
with xσ(i) = xσ(i+k). Then we try to update σ so
that it also sorts the corresponding observations in
x′. An exemplary implementation of such an algo-
rithm is given in Fig. 1.

Let us introduce the following binary preordering
relation 4n on In, see [5]. Given x,x′ ∈ In, we
write x 4n x′ and say that x has not greater
absolute spread than x′, if and only if x and x′
are comonotonic and for all i, j ∈ [n] it holds:

|xi − xj | ≤ |x′i − x′j |.

It is easily seen that for all s ≥ 1 and x ∈ In such
that sx = (sx1, . . . , sxn) ∈ In we have x 4n sx.
What is more, for all t ∈ R for which t + x = (t +
x1, . . . , t + xn) ∈ In it holds t + x 4n x 4n t + x.
Additionally, for all c ∈ I, (n ∗ c) = (c, c, . . . , c) ∈ In
is a minimal element of (In,4n).

The following class of fusion functions is an object
of our main interest in this paper.

Definition 2. [5] A spread measure is a mapping
V : In → [0,∞] such that:

(v1) for each x 4n x′ it holds V(x) ≤ V(x′),
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(v2) for any c ∈ I it holds V(n ∗ c) = 0.

It may be shown that such descriptive statistics as
sample variance, standard deviation, interquartile
range, mean difference, median absolute deviation
and functions like those analyzed, e.g., in [14] are
spread measures.

Let us focus on a class of fusion functions that
consists of objects defined as a weighted Lp-distance
between a given vector and its weighted arithmetic
mean. Given p ∈ [1,∞) and a weighting vector w
((∀i)wi ≥ 0,

∑n
i=1 wi = 1), the WDpWAMw opera-

tor is defined as

WDpWAMw(x) =

 n∑
i=1

wi
∣∣xi − n∑

j=1
wjxj

∣∣p1/p

.

Moreover, if we substitute above each xi with the
i-th smallest value in x, x(i), we get a WDpOWAw
operator, cf. [15]:

WDpOWAw(x) =

 n∑
i=1

wi
∣∣x(i) −

n∑
j=1

wjx(j)
∣∣p1/p

.

Such a function is symmetric, i.e., it gives the same
output value for all the permutations of elements in
an input vector. Thus, it is particularly useful in
statistics and data mining.
The paper is organized in the following manner.

In the next Section we recall a characterization of
spread measures and note that each such measures
are closely related to aggregation functions acting
on iterated differences between elements of an in-
put vector. Next, we express the WD2WAMw and
WD1WAMw operators in this very way. In Section 3
we introduce normalized spread measures so that
the vectors of the greatest possible spread always
result in the same output value. Finally, we con-
clude the paper in Section 4.

2. Spread measures as functions vectors’
iterated differences

For any x ∈ In let diff(x) = (x(2) − x(1), . . . , x(n) −
x(n−1)) denote the iterated difference between
consecutive ordered components of a given vector.
We have the following result, which becomes par-
ticularly appealing when we compare (a1) and (a2)
with (v1′) and (v2′) below, respectively.

Theorem 3. [5] V : In → [0,∞] is a spread mea-
sure if and only if

(v1’) for each comonotonic x,x′ such that
diff(x) ≤n−1 diff(x′) we have V(x) ≤ V(x′),

(v2’) infx∈In V(x) = 0.

Let S[n] denote the set of all permutations of the
set [n]. Given σ ∈ S[n], let Inσ = {x ∈ In : xσ(1) ≤
· · · ≤ xσ(n)} denote the set of vectors in In such
that σ is its ordering permutation and let Dσ =

{diff(x) : x ∈ Inσ}. We have Dσ = {δ ∈ [0, b−a]n−1 :∑n−1
i=1 δi ≤ b− a} ⊆ [0, b− a]n−1.
What is more, denote by V|σ the restriction of V

to Inσ, i.e., V|σ(x) = V(x) for any x ∈ Inσ. We see
that any spread measure V : In → [0,∞] may be
generated by a family of functions {Ãσ : σ ∈ S[n]},
(∀σ ∈ S[n]) Ãσ : [0, b − a]n−1 → [0,∞] fulfills (a1)
and (a2), and for all x and each σ, σ′ with x ∈ Inσ
and x ∈ Inσ′ it holds Ãσ(x) = Ãσ′(x). In such a set-
ting, if x ∈ Inσ and δ = diff(x), then V(x) = Ãσ(δ).
In other words, we may define spread measures as
4n preserving mappings of xi or, at the same time,
nondecreasing functions (≤n−1-morphisms) of δi.
For instance, let us consider a fusion function de-

fined as a difference between two sample quantiles

QD(x) = Qα′(x)− Qα′′(x)
= (1− γ′)x(k′) + γ′x(k′+1)

− γ′′x(k′′) − (1− γ′′)x(k′′+1)

for some k′ > k′′ and γ′, γ′′ ∈ [0, 1] (see [16] for a
review of definitions of quantiles in different statis-
tical packages). After some simple transformations
we get

QD(δ) = γ′′δk′′ +
k′−1∑

i=k′′+1
δi + γ′δk′ .

We see that it is a nondecreasing function of each
δi and that for δ = ((n−1)∗0) we have QD(δ) = 0.
Hence, it is a spread measure. Among particular
instances of such functions we find the interquartile
range, IQR(x) = Q0.75(x) − Q0.25(x), and range,
Range(δ) =

∑n−1
i=1 δi.

In this section we are interested in redefining
WDpWAMw and WDpOWAw as functions of δ for
the two most commonly used cases, p = 1 and p = 2.

Fix σ ∈ Sn and let ζσi =
∑n
j=i+1 wσ(j), i ∈ [n −

1]. Note that ζσ ∈ [0, 1]n−1 is nonincreasing and
1 − ζσi =

∑i
j=1 wσ(j). Additionally, we have that∑n

i=1 wixi = xσ(1) +
∑n−1
i=1 δiζ

σ
i .

2.1. WD2WAM as a function of δ

Let us start with the case p = 2.
Proposition 4. For any weighting vector w,
WD2WAMw is a spread measure. Moreover, for any
δ ∈ Dσ it holds:

WD2WAMζ |σ(δ) =

√√√√n−1∑
i=1

n−1∑
k=1

ζσi∨k(1− ζσi∧k)δiδk.

Proof. By [5, Proposition 17], we have:

WD2WAMζ |σ(δ)2 = wσ(1)

(
n−1∑
i=1

δi ζ
σ
i

)2

+
n−1∑
i=1

wσ(i+1)

 i∑
j=1

δj −
n−1∑
j=1

δj ζ
σ
j

2

.
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As for any δ ∈ Dσ it holds
(∑i

j=1 δj

)2
=
∑i
j=1 δ

2
j +

2
∑i−1
j=1

∑i
k=j+1 δjδk =

∑i
j=1

∑i
k=1 δjδk, the func-

tion of our interest may be expressed as:

WD2WAMζ |σ(δ)2 =
n∑
i=1

wσ(i)

(
n−1∑
i=1

δi ζ
σ
i

)2

−2
(
n−1∑
i=1

δiζ
σ
i

)n−1∑
i=1

wσ(i+1)

i∑
j=1

δi


+
n−1∑
i=1

wσ(i+1)

 i∑
j=1

δi

2

=
(
n−1∑
i=1

δi ζ
σ
i

)2

−2
(
n−1∑
i=1

δiζ
σ
i

)(
n−1∑
i=1

δiζ
σ
i

)
+
n−1∑
i=1

n−1∑
k=1

δiδkζ
σ
i∨k

=
n−1∑
i=1

n−1∑
k=1

δiδkζ
σ
i ζ

σ
k − 2

n−1∑
i=1

n−1∑
k=1

δiδkζ
σ
i ζ

σ
k

+
n−1∑
i=1

n−1∑
k=1

δiδkζ
σ
i∨k =

n−1∑
i=1

n−1∑
k=1

δiδk (ζσi∨k − ζσi ζσk )

=
n−1∑
i=1

n−1∑
k=1

δiδkζ
σ
i∨k(1− ζσi∧k).

We see that WD2WAMζ |σ(δ) is a nondecreasing
function of δ and that for δ = ((n − 1) ∗ 0) we
have WD2WAMζ |σ(δ) = 0. Hence, it is a spread
measure.

In particular, the sample standard deviation
may be rewritten as:

SD(x) =

√√√√n−1∑
i=1

n−1∑
k=1

(i(n− k)) ∧ (k(n− i))
n(n− 1) δiδk,

which is a symmetric, property scaled (see Sec-
tion 3) WD2OWA spread measure.

Among examples of new WD2OWA spread mea-
sures we may find, e.g.:

• a k-trimmed standard deviation, given by
a weighting vector w such that wi = 0 for
i ∈ {1, . . . , k, n− k + 1, . . . , n}, and wi = 1

n−2k
otherwise.
• a k-Winsorized standard deviation, given
by a weighting vector w such that wi = 0 for
i ∈ {1, . . . , k, n − k + 1, . . . , n}, wi = k+1

n for
i ∈ {k + 1, n− k}, and wi = 1

n otherwise.

Both fusion functions are more robust in case of out-
liers imputed into an input data set. If we would
like to use them as estimators of (population) stan-
dard deviation, they of course should be appropri-
ately scaled in order to fulfill, e.g., asymptotic un-
biasedness and/or consistency in particular statisti-
cal models. On the other hand, in a group decision
making scenario, the 1-trimmed standard deviation
might be used to measure the diversity of judges’

scores in ski jumping competitions organized by the
International Ski Federation, where each of 5 ex-
perts provide scores based on a jumper’s balance,
body position, and landing style. In such a case,
one lowest and highest score is neglected.

2.2. WD1WAM as a function of δ

Now we can turn our attention to the p = 1 case.

Proposition 5. For any weighting vector w,
WD1WAMw is a spread measure. Moreover, for any
δ ∈ Dσ it holds:

WD1WAMζ |σ(δ) = 2
n−1∨
k=1

n−1∑
i=1

ζσi∨k(1− ζσi∧k)δi.

Proof. Assuming that k = min{k′ ∈ [n − 1] :∑k′

i=1 δi ≥
∑n−1
i=1 δiζ

σ
i } by [5, Proposition 18], we

have that:

WD1WAMζ |σ(δ) =
n−1∑
i=1

(
(1− 2ζσk )ζσi

+ Ind(i < k)(2ζσk − ζσi ) + Ind(i ≥ k)ζσi
)
δi.

After few simple transformations we get that
WD1WAMζ |σ(δ) =

∑n−1
i=1 2ζσi∨k(1−ζσi∧k)δi. Assume

u(k′) :=
∑n−1
i=1 2ζσi∨k′(1 − ζσi∧k′)δi. We shall show

that
∨n−1
k′=1 u(k′) = u(k), i.e., that for any e ∈ Z

such that k + e ∈ [n− 1] we have u(k) ≥ u(k + e).

1. Let k′ = k + e, e ≥ 1. Then:

(u(k)− u(k + e))/2

=
(
n−1∑
i=1

ζσi δi +
k−1∑
i=1

(ζσk − ζσi )δi −
n−1∑
i=1

ζσi ζ
σ
k δi

)

−

(
n−1∑
i=1

ζσi δi +
k+e−1∑
i=1

(ζσk+e − ζσi )δi −
n−1∑
i=1

ζσi ζ
σ
k+eδi

)

=(ζσk − ζσk+e)
(
k−1∑
i=1

δi −
n−1∑
i=1

ζσi δi

)

−
k+e−1∑
i=k

(ζσk+e − ζσi )δi

=(ζσk − ζσk+e)
(

k∑
i=1

δi −
n−1∑
i=1

ζσi δi

)

+
k+e−1∑
i=k+1

(ζσi − ζσk+e)δi ≥ 0,

as ζσi ≥ ζσj for i ≤ j and
∑k
i=1 δi −

∑n−1
i=1 ζ

σ
i δi ≥ 0

by the definition of k.
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2. Let k′ = k − e, e ≥ 1. It holds:

(u(k)− u(k + e))/2

=(ζσk − ζσk−e)
(
k−e−1∑
i=1

δi −
n−1∑
i=1

ζσi δi

)

+
k−1∑
i=k−e

(ζσk − ζσi )δi

=(ζσk−e − ζσk )
(
n−1∑
i=1

ζσi δi −
k−1∑
i=1

δi

)

+
k−1∑
i=k−e

(ζσk−e − ζσi )δi ≥ 0.

Additionally, we see that WD1WAMζ |σ(δ) is a
nondecreasing function of δ and that for δ = ((n−
1) ∗ 0) we have WD1WAMζ |σ(δ) = 0. Therefore, it
is a spread measure.

For instance, Fisher’s [17] mean error,

ME(x) =
√

2π
2

n∑
i=1

1
n

∣∣∣∣∣∣xi − 1
n

n∑
j=1

xj

∣∣∣∣∣∣
=
√

2π
n−1∨
k=1

n−1∑
i=1

(n− (i ∨ k))(i ∧ k)
n2 δi

is a properly scaled (see below) WD1OWA spread
measure.

3. Normalized spread measures

A kind of “normalization” or scaling of a spread
measure’s output value is useful in many practi-
cal applications. For instance, when spread mea-
sures are utilized as point estimators of certain un-
derlying probability distribution’s characteristics, a
proper transformation may lead to estimators fulfill-
ing desirable properties. We know that, e.g., V(x) =
1
n

∑n
i=1(xi −

∑n
j=1 xj/n)2 is a biased estimator of

the population variance and that nV(x)/(n − 1) is
free of such a systematic error. Of course, if V is a
spread measure, then ϕ◦V is also a spread measure
for any nondecreasing ϕ : [0,∞]→ [0,∞] such that
ϕ(0) = 0.
In certain decision making problems, we may be

interested in assuring that a vector of the greatest
possible spread (as measured by a given V) leads to
V’s output value of (b− a) = sup I− inf I:

(v3) supx∈In V(x) = b− a.

Each spread measure may be normalized in order
to fulfill (v3). It is because we have what follows.

Lemma 6. Let V be a spread measure with
supx∈In V(x) = u. Then for each nondecreasing
function ϕ : [0, u]→ [0, (b− a)] such that ϕ(0) = 0,
ϕ(u) = b−a, it holds that ϕ◦V is a spread measure
fulfilling (v3).

A simple proof is omitted.
Clearly, each spread measure maximizes at some

δ such that
∑n−1
i=1 δi = b− a, i.e., at x with xi = a

and xj = b for some i 6= j. Thus, when determining
the upper bound for a spread measure, we are faced
with a constrained optimization problem.

For instance, a difference between two sample
quantiles QD(δ) = γ′′δk′′ +

∑k′−1
i=k′′+1 δi + γ′δk′ is

maximized at δ such that
∑k′−1
i=k′′+1 δi = (b−a). On

the other hand, a spread measure V(δ) =
∧n−1
i=1 δi

is maximized if (∀i)δi = (b − a)/(n − 1) and
V(δ) =

∨n−1
i=1 δi reaches its maximum for δ such

that δi = (b − a) for some i and δj = 0 for j 6= i,
i.e., for x ∈ {a, b}n. This results may lead us to
normalized versions of such spread measures that
fulfill (v3).

3.1. Normalized WD2WAM

We will show that supx∈In WD2WAMw(x) ∈ [0, (b−
a)/2], where the minimal possible value is obtained,
e.g., for w such that for some i we have wi = 1. On
the other hand, we get the greatest value, e.g., for
w such that w1 = wn = 0.5. Moreover, a vector
with elements in {a, b}n (i.e., consisting of extreme
values only) is of the greatest possible spread.

Theorem 7. For any weighting vector w it
holds arg supx∈In WD2WAMw(x) ∈ {a, b}n and
supx∈In WD2WAMw(x) = (b − a)

√
p(1− p), where

p = maxA⊆[n],
∑

i∈A
wi≤0.5

∑
i∈A wi.

Proof. For simplicity, assume that V(x) =
WD2WAMw(x)2. Our optimization task may be
written as:

Maximize V(x)
subject to a ≤ xi ≤ b, i = 1, . . . , n.

By rewriting the constraints in terms of the
Karush-Kuhn-Thucker (KKT) theorem we obtain
2n inequality constraints of the form:

gi(x) = xi − b ≤ 0,
gi+n(x) = a− xi ≤ 0,

for i = 1, . . . , n. Note that ∂gi(x)/∂xk = 1 if i = k
and 0 otherwise and ∂gn+i(x)/∂xk = −1 if i = k
and 0 otherwise. Moreover,

∂

∂xk
V(x) = 2wk

(
xk −

n∑
i=1

wixi

)
.

Hessian matrix H(V), hi,j = ∂2V(x)/∂xi∂xj is such
that hi,i = 2wi(1 − wi) ≥ 0 and hi,j = −2wiwj ≤
0, i 6= j. We see that it is symmetric diagonally
dominant as for any i we have |hi,i| = 2wi(1−wi) ≥∑
j 6=i |hi,j | = 2wi

∑
j 6=i wj = 2wi(1−wi). Thus, it is

positive semi-definite, and we have that V is convex.
By the KKT theorem, if x∗ is a local maxi-

mum of V satisfying the linear (affine) constraints

213



gi(x∗) ≤ 0, gn+i(x∗) ≤ 0, i = 1, . . . , n, then there
exist µ1, . . . , µ2n ≥ 0 such that:

∇V(x∗) =
n∑
i=1

(µi∇gi(x∗) + µn+i∇gn+i(x∗))

and for i = 1, . . . , n

µigi(x∗) = 0, µn+ign+i(x∗) = 0.

Thus,


2w1 (x∗1 −

∑n
i=1 wix

∗
i ) = µ1 − µn+1

2w2 (x∗2 −
∑n
i=1 wix

∗
i ) = µ2 − µn+2

...
...

...
2wn (x∗n −

∑n
i=1 wix

∗
i ) = µn − µn+n

with



µ1(x∗1 − b) = 0
...

...
...

µn(x∗n − b) = 0
µn+1(a− x∗i ) = 0

...
...

...
µn+n(a− x∗m) = 0

µ1 ≥ 0
...

...
...

µn ≥ 0

If x∗i = a, then µi = 0 and µn+i =
∑n
j=1 wjx

∗
j −

a ≥ 0. If x∗i = b, then µn+i = 0 and µi = b −∑n
j=1 wjx

∗
j ≥ 0. If x∗i 6∈ {a, b}, then µi = µn+i = 0

and necessarily x∗i =
∑n
j=1 wjx

∗
j . Thus, x∗ max-

imizes V w.r.t. our constraints if it is such that
x∗i ∈ {a, b,

∑n
j=1 wjx

∗
j}.

As V is translation invariant, from now on – with
no loss in generality – we may assume that I =
[0, (b−a)]. Take any index sets A,B ⊆ [n], A∩B =
∅. Let x be such that xi = 0 for i ∈ A, xi = (b− a)
for i ∈ B and xi = x̄ otherwise, where

x̄ =
n∑
i=1

wixi

=
∑
i∈A

0wi +
∑
i∈B

(b− a)wi +
∑

i∈A∪B

x̄wi

= (b− a)
∑
i∈B wi∑

i∈A wi +
∑
i∈B wi

.

Moreover,

V(x) =
∑
i∈A

wi

(
(b− a)

∑
i∈B wi∑

i∈A wi +
∑
i∈B wi

)2

+
∑
i∈B

wi

(
(b− a)− (b− a)

∑
i∈B wi∑

i∈A wi +
∑
i∈B wi

)2

= (b− a)2(∑
i∈A wi +

∑
i∈B wi

)2

×

(∑
i∈A

wi

)(∑
i∈B

wi

)2

+
(∑
i∈B

wi

)(∑
i∈A

wi

)2


= (b− a)2(∑
i∈A wi +

∑
i∈B wi

)2

×

(∑
i∈A

wi

)(∑
i∈B

wi

)(∑
i∈B

wi +
∑
i∈A

wi

)

=(b− a)2
(∑

i∈A wi
) (∑

i∈B wi
)∑

i∈A wi +
∑
i∈B wi

.

It is easily seen that if A is fixed, then V maximizes
for B = A. Thus, x∗ ∈ {a, b}n. In such a case we
have V(x∗) = (b − a)2(

∑
i∈A wi)(1 −

∑
i∈A wi) ≤

(b− a)2/4, and the proof is complete.

Thus, in order to compute supx∈In WD2OWA(x),
we shall seek for A ⊆ [n] that maximizes f(A) =∑
i∈A wi subject to f(A) ≤ 0.5. This may be

expressed as a binary programming task of find-
ing p = max(b1,...,bn)∈{0,1}n

∑n
i=1 biwi such that∑n

i=1 biwi ≤ 0.5.
On the other hand, from the proof of the

above theorem it holds that in case of a
WD2OWA operator, one simply seeks for p =
maxk,∑

i∈[k]
wi≤0.5

∑
i∈[k] wi, which can simply be

computed in O(n) time.

Basing on the above result, we may introduce the
normalized WD2WAMw operator with w such that
(∀i)wi < 1:

NWD2WAMw(x) =

√∑n
i=1 wi

(
xi −

∑n
j=1 wjxj

)2

(b− a)
√
p(1− p)

,

where p = maxA⊆[n],
∑

i∈A
wi≤0.5

∑
i∈A wi. Also

NWD2OWAw may be defined in a similar manner.
Both of them of course fulfill (v3). They also are ho-
mogeneous of degree 1 (scale equivariant), see [2,
Def. 2.86]), i.e., they meet:

(v4) (∀x ∈ In) (∀s > 0) if sx ∈ In, then V(sx) =
sV(x),

and they are

(v5) continuous in each variable.

For instance, the sample variance is maximized,
e.g., at (bn2 c∗b, d

n
2 e∗a). Thus, its normalized version
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is given by:

NVar(x) = η
2

b− a

√√√√√ n∑
i=1

1
n

xi − n∑
j=1

1
n
xj

2

,

where η = 1 for even n and η =
√

n2

(n−1)(n+1) oth-
erwise.

3.2. Normalized WD1WAM

Let us show that supx∈In WD1WAMw(x) ∈ [0, (b −
a)/2], and that a vector of the greatest possible
spread is in {a, b}n.

Theorem 8. For any weighting vector w we
have arg supx∈In WD1WAMw(x) ∈ {a, b}n and
supx∈In WD1WAMw(x) = 2(b − a)p(1 − p), where
p = maxA⊆[n],

∑
i∈A

wi≤0.5
∑
i∈A wi.

Proof. Fix σ ∈ S[n]. Recall that we have
WD1WAMζ |σ(δ) = 2

∨n−1
k=1

∑n−1
i=1 ζ

σ
i∨k(1 − ζσi∧k)δi.

For fixed k′ ∈ [n− 1] we have:

arg max
i∈[n−1]

ζσi∨k′(1− ζσi∧k′)

=arg max
i∈[n−1]

i∧k′∑
j=1

wσ(j)

 n∑
j=(i∨k′)+1

wσ(j)

 = k′.

Note again that a maximal value of
WD1WAMw|σ(δ) is obtained for δ such that∑n−1
i=1 δi = (b− a). Thus, we have:

sup
x∈In

WD1WAMζ |σ(δ) = 2
n−1∨
k=1

ζσk (1− ζσk )(b− a)

and we get that arg supx∈In WD1WAMw|σ(x) ∈
{a, b}n.
Therefore, by considering each permutation

σ ∈ S[n], we can conclude that it holds
supx∈In WD1WAMw(x) = 2(b − a)p(1 − p), where
p = maxA⊆[n],

∑
i∈A

wi≤0.5
∑
i∈A wi.

We may introduce a normalized version of
WD1WAMw for w such that (∀i)wi < 1 like:

NWD1WAMw(x) =

∑n
i=1 wi

∣∣∣xi −∑n
j=1 wjxj

∣∣∣
2p(1− p)(b− a) ,

where p = maxA⊆[n],
∑

i∈A
wi≤0.5

∑
i∈A wi. Like be-

fore, also NWD1OWAw operators may be defined.
Therefore, e.g., a scaled mean error that fulfills

the (v3) property may be defined as:

NME(x) = η
2

b− a

n∑
i=1

1
n

∣∣∣∣∣∣xi − 1
n

n∑
j=1

xj

∣∣∣∣∣∣ ,
where η = 1 for even n and η = n2

(n−1)(n+1) other-
wise.
Note that all the spread measures studied in this

subsection are homogeneous of degree 1.

# include <Rcpp.h>
# include <algorithm >
using namespace Rcpp;
// [[ Rcpp :: plugins (" cpp11 ")]]

struct Comparer {
const double* v;
Comparer(const double* _v) { v = _v; }
bool operator ()( const int& i,

const int& j) {
/* returns true if the first argument

is less than (i.e., is ordered
before ) the second . */

return (v[i] < v[j]);
}

};

// [[ Rcpp :: export ]]
bool is_comonotonic(NumericVector x,

NumericVector y) {
int n = x.size ();
if (y.size() != n) stop("nx␣!=␣ny");

// recall that array elements in C++
// are numbered from 0
// let s = (0 ,1 ,... ,n -1)
std::vector <int > s(n);
for (int i=0; i<n; ++i) s[i] = i;

Comparer lt_x(REAL(x));
std::sort(s.begin(), s.end(), lt_x);
// now s is an ordering permutation of x

Comparer lt_y(REAL(y));
int i1 = 0;
while (i1 < n) { /* now search for the

longest subsequence consisting
of equal x’s */

int i2 = i1+1;
while (i2 < n && x[s[i1]] == x[s[i2]])

++i2;
// sort the subsequence if necessary :
if (i2 -i1 > 1)

std::sort(s.begin ()+i1,
s.begin ()+i2 , lt_y);

/* if y[s[i1 -1]] >y[s[i1 ]] then x and y
are not comonotonic : */

if (i1 > 0 && y[s[i1 -1]] > y[s[i1]])
return false;

i1 = i2;
}

/* as a by - product ,
(s[0]+1 , s[1]+1 , ... , s[n -1]+1) is a
permutation that orders both x and y */

return true;
}

Figure 1: A C++ (using Rcpp [19] classes) imple-
mentation of an O(n logn) algorithm to determine
if two vectors of length n are comonotonic.

4. Conclusions

Measures of absolute spread are useful tools ac-
companying averaging aggregation functions in data
analysis, data mining, and descriptive statistics.
They may be used to describe a univariate data set
concisely as A(x) ± V(x). In such a case we most
often rely on symmetric fusion functions defined on
the space of vectors with elements in I = [−∞,∞].
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In these types of applications, for example, some
spread measures may also be used to determine the
degree of outlyingness of data points: in [18], the
sample median and median absolute deviation is
utilized.
On the other hand, in decision making prob-

lems, where we restrict ourselves to the case of, e.g.,
I = [0, 1], nonsymmetric spread measures may be ef-
fectual. In this paper we introduced normalized ver-
sions of two important classes of such fusion func-
tions so that their greatest possible value is equal
to sup I− inf I. Such spread measures may provide
an information on experts’ opinions diversity.
An interesting direction for future research con-

cerns the class of measures of relative spread, where
the aggregation result is dependent on the order of
magnitude of some averaging function A. This is the
case of, e.g., the Gini coefficient, G(x) = MD(x)/2x̄,
or the coefficient of variation, CV(x) =

√
Var(x)/x̄.
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