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Abstract

When summarizing the location of a random fuzzy
number, some more robust approaches than the
well-known Aumann-type mean have been pro-
posed in the literature. Among them, the -
wabl/ldev /rdev median extends the concept of me-
dian from the real-valued case. The characteri-
zation for fuzzy numbers and the distance the -
wabl/ldev/redev median is based on will be re-
called. This distance involves a weighting measure
to distinguish the relevance of the different a-levels
(). Since the ¢-wabl/ldev/rdev median depends
on such a weighting measure, a sensitivity analysis
on the real influence of this choice on the estimate
will be developed.
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1. Introduction

In the literature, several extensions of the median
notion to random fuzzy numbers (or RFN, the
also called ‘fuzzy random variables’ in Puri and
Ralescu’s sense, see [9]) can be found. In detail, [13]
and [14] use L' metrics that make use of representa-
tions of fuzzy numbers for which necessary and suf-
ficient conditions to characterize them are known,
so the median can be defined as the fuzzy number
minimizing the mean distance to all the values the
RFN takes. A third alternative, the one considered
in this paper, was introduced in [16] as a gener-
alization of the Hausdorff-type median for random
intervals (see [12]) following the same scheme.

In Section 2, the ¢-wabl/ldev/rdev characteriza-
tion for fuzzy numbers and the L!-type distance
between fuzzy numbers based on it will be recalled,
including a study of the role the involved weighting
measure in the metric plays. The g-wabl/ldev/rdev
median for an RFN will be explained in Section 3
and Section 4 will consist of the sensitivity analysis
of the influence of the weighting measure ¢ on the
estimate of the considered median. Finally, some
conclusions and open problems will be commented
in Section 5.
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2. The p-wabl/ldev/rdev characterization
for RFNs and the associated L' metric

Let F.(R) denote the class of fuzzy numbers with
bounded support. The ¢-wabl/ldev/rdev represen-
tation introduced in [15] takes into account an in-
dicator of the ‘center’ (wabl¥) along with two indi-
cators of the ‘shape’ quantifying the deviation with
respect to the center (ldev/rdev). The weighted av-
eraging based on levels, denoted by wabl?, was first
extended by [6] (see also [7]) from the concept in-
troduced by [18]. For any U € F.(R), it is defined
as the real number in the interior set int(ﬁo) such
that

wabl? (U) = mid U, deo(a),
[0,1]
where ¢ is a weighting measure on the measur-
able space ([0, 1], Bjo,1)) that can be formalized by
means of an absolutely continuous probability mea-
sure with positive mass function on (0, 1) and mid
represents the mid-point or centre

inf [7@ + sup (7@

5 .
The wabl?¥ coincides with the well-known general-
ized Steiner point (or centroid) of a fuzzy number
(see, for instance, [2, 3, 5]) by extending level-wise
the Steiner points for convex sets (see [11]).

It should be pointed out that no stochastic mean-
ing is actually associated with ¢, but it allows us to
weight the ‘degrees of compatibility’ given by the
a-levels.

The other two components of the -
wabl/ldev/rdev  representation are level-wise
indicators of the shape of a fuzzy number with
respect to the considered center:

1dev§(a) = wabl?(U) — inf U,, for all o € [0, 1],
rdevi'[}(a) = sup U, — wabl?(U), for all a € [0,1].
Definition 2.1 [15] Let ¢ be an absolutely contin-
uous probability measure associated with the mea-
surable space ([0, 1], Bg,1)) and having positive mass
function on (0,1). The @-wabl/ldev/rdev repre-
sentation of the fuzzy number U € Fe(R) is the

vector-valued function v2 = (v¥, vk vZ) 1 [0,1] —
U Uu

U
R? such that v s constantly equal to wabl?(U),

l _ ~ T — $
Uﬁ(a) = ldev(a) and Uﬁ(a) = rdevﬁ(a).

mid [7@ =

The advantage of this representation with respect
to the mid/spr one, in terms of the mid-point or



centre and the spread or radius of all the a-levels
of the fuzzy number (see e.g. [17]), is that neces-
sary and sufficient conditions characterizing fuzzy
numbers can be stated, what allows us to guarantee
that the solution found for the minimization prob-
lem defining the corresponding median is indeed a
fuzzy number.

Proposition 2.1 [15] Given a fuzzy number U e
Fe(R) there exist a value m € R and two functions
*:]0,1] = R and r* : [0,1] — R satisfying that
i) I* and r* are
— left-continuous functions at any « € (0, 1],
— right-continuous at 0,
— and non-increasing on [0, 1],
with
i) —1*(1) < (1),
and such that for all o € [0,1],

U, = [m —1"(a),m + r*(a)].
Conversely, let m € R and let I* : [0,1] — R and
r*:[0,1] = R be functions satisfying Conditions i)
and ii). Then there exists a unique U € F.(R) such
that for all o € [0, 1]

Us = [m —1*(a),m +r*(a)] .
Furthermore, if there is an absolutely continuous
probability measure ¢ on ([0,1], By 1]) with positive
mass function on (0,1) and such that

iii) /[Ojl]ma)dso(a) [ r@dsta).

)

then, (m,l*,r*) is the p-wabl/ldev/rdev represen-
tation of U.

Noticing that the ¢-wabl/ldev/rdev representa-
tion coincides with the mid/spr one for symmetric
fuzzy number-valued data, irrespective of , it is ob-
vious that it is an extension of the mid/spr represen-
tation for interval-valued data. Therefore, this rep-
resentation is suitable for extending the Hausdorff-
type median (see [12]) to the fuzzy-valued case.
In order to recall how this generalization has been
done in the literature, the L! distance based on the
w-wabl/ldev/rdev representation and used in such
concept will be specified now.

Definition 2.2 [16] Given an absolutely continu-
ous probability measure @ on the measurable space
([0,1], Bjo,1)) with positive mass function on (0,1)
and a parameter 6 € (0, 1], the wabl/ldev/rdev-based
L' metric is the mapping 2§ : F(R) x Fo(R) —
[0, +00) such that for U,V € Fo(R):

25 (U, V) = |wabl?(U) — wabl? (V)]

+g /[0’1] |1dev§(a) - ldev%(aﬂ dp(a)

0 @ @
+2 /[071] |rdev5(a) - rdevv(a)| dp(a).
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Remark 2.1 When we are working on K.(R) and
0 is equal to 1, the wabl/ldev/rdev-based L' metric
coincides with the well-known Hausdorff metric:

dy (K, K') = |mid K — mid K’| + |spr K — spr K.

Another way to express the metric 7, is the fol-
lowing:

750.7)= [

[0,1]

W2 () — v (o)} dp(),

where | - | denotes the L' norm in R? given for
x = (21,22,23), y = (y1,42,y3) € R® by

. 9 9
|X—Y|9=|~’U1—y1|+§'|$2—y2|+§'|$3—y3|-

The fact that the mapping 2 is indeed a dis-
tance between fuzzy numbers is now stated and
proved.

Proposition 2.2 Let ¢ be an arbitrarily fixed
absolutely  continuous probability measure on
([0,1], Bjo,1)) with positive mass function on (0, 1),
and 0 € (0,1] be a weighting parameter. Then,

i) 95 is an L' metric on F.(R), both transla-

tional and rotational invariant.

i1) For a fized @, the function v¥ : F.(R) — Hy
= {L'-type 3-dimensional vector-valued func-
tions defined on [0,1]} satisfies that

— v¥ is an isometry from (Fc(R), 2}) into

H,

—v?(U + V) = v?U) + v?(V) for all
U,V € F.(R),

— v?(y-U) =~-v?(U) for all U € Fu(R)
and v > 0;

Thus, the v¥ function preserves the semilin-
earity of F.(R) and relates the fuzzy arithmetic
to the functional arithmetic, what implies that
Fe(R) can be isometrically embedded into a
convez cone of the Banach space (HF, || - Hg*)

with £ — gllZ"= [y 1F(@) - g(e)ls dp(a).
Proof i) Indeed, 2 satisfies

e the nonnegativity (or separation axiom); it is
trivial that (U, V) > 0 whatever the fuzzy
numbers U,V € F(RP) may be;

e the identity of indiscernibles (or coincidence
axiom); it is obvious that if U = 17, then
27U, V) = 0 because wabl?, ldev and
rdev characterize the fuzzy number. On the
other hand, a necessary condition for having
25 (U,V) =0 is that p7(U,V) = 0, where p7
denotes the following extension of the 1-norm
distance defined by [1]:

prO.7) =3 [

[0,1]

|inf U, — inf V,| dp(c)

1 - ~
+—/ | sup Uy, — sup Vu | do(a).
2 Jio



Therefore, a necessary condition for %, U,V)
to vanish is that pf(U,V) also vanishes
whence, because of p§ being a metric, U = V;

e the symmetry; it is trivial that we have
25U, V) = 27(V,U) whatever the fuzzy

numbers U,V € Fe(RP) may be;
e the subadditivity (or triangle inequality); if

U,V,W € F.(RP), then since |- | is a norm,

2¢(U, V) < [wabl?(U) — wabl? (W)

+|wabl? (W) — wabl? (V)]

+g /[0’1] |1dev‘[ﬁj(a) - ldev%(aﬂ dp(a)

0
= ldevZ (a) — IdevZ
+5 /[071] | deVW(a) devv(a)|) dp(a)

Jrg /[071] |rdev5§(a) - rdev“%(aﬂ dp(a)

7
+= rdev? (o) — rdevZ ()| do(a),
3 [, v (@) — eV (o) dpfe)
i.e., we have that

P8, V) < D3U, W)+ Z5 (W, V).

it) Following the ideas in [10] on K.(R) and [§]
on F.(R), the support functions of elements in these
spaces allow us to embed isometrically each of these
spaces into a convex cone of a Banach space of func-
tions. O

The metric space (F+(R), Z;) is separable and it
can be proved thanks to the topologically equiva-
lence (in fact, strongly equivalence) of Z; and p%.

Proposition 2.3 Let 6 € (0,1] be a weight parame-
ter and let ¢ be an arbitrarily fized absolutely contin-
uous probability measure on ([0, 1], Bg 1)) with posi-
tive mass function in (0,1). The metric Dy is uni-
formly equivalent to the metric p§ on F.(R). More
precisely,

6-p{(U.V) < 25U V) < (2+36)- pf(U,V)
for all U,V € F.(R).

Proof Indeed, because of the properties for the
absolute value we can conclude for each « that

[vE(c) = vE(a)|j = [wabl? () — wabl? (V)]

P - ~ ~ ~
+5 |[wabl?(U) — inf U, — wabl?(V') + inf V, |
4 I7 o (7T % b1
+§ - |sup Uy — wabl?(U) — sup V,, + wabl?(V)].

Therefore, on one hand

[vE(c) = vE(a)|j = [wabl? () — wabl? (V)]
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g - |inf Uy — inf V| — g - |wabl? (U) — wabl? (V)|

4

g .| sup Uy — sup V| — g - |wabl?(U) — wabl? (V)]

4

= (1—0) - |wabl?(U) — wabl? (V)]

1~ " ~ =
+6. [5 -|inf U, — inf V| +5 | sup Uq —SUPVal}

1 ~ ~ 1 ~ ~
29[5 . |infUafiana|+§ . |supUasupVa|} ,

whence one derives the first inequality.
On the other hand, one can conclude for each «
that

[vE () — vE(a)]; < |wabl? (U) — wabl? (V)|

g |inf U, — inf V| + g - |wabl? (U) — wabl? (V)|

0 ~ ~ 0
5 |sup U, — sup V| + 3 |[wabl?(U) — wabl? (V)]

= (14 0) - [wabl?(U) — wabl? (V)|

1 ~ ~ 1 ~ ~
+6- [5 . |infUa—iana|+§ . |supUa—supVa|} ,

whence

|[wabl?(U) — wabl? (V)]

= ‘ / [mid U, — mid 174 dp(c)
[0,1]

< / |mid U, — mid 17a| dp(a)
[0,1]

< / dpt (U, Ua) dip(ar) = dS(T, V),
[0,1]

and due to the fact that d¥(U,V) < 2- p¢(U,V),
one can easily derive the second inequality. (|

3. The p-wabl/ldev/rdev median for an
RFN

The population and sample p-wabl/ldev/rdev me-
dians for random fuzzy numbers are defined as fol-
lows:

Definition 3.1 [16] Given a probability space
(Q, A, P), an absolutely continuous probability mea-
sure o on the measurable space ([0, 1], Bjo 1)) with
positive mass function on (0,1), § > 0 and an asso-
ciated RFN X : Q — F.(R), the population -
wabl/ldev/rdev median(s) of X is (are) the fuzzy
number(s)

1\~/["’(X) =arg min F (.@f(é\f',ﬁ)) ,
UeF.(R)

whenever these expectations exist.



Definition 3.2 [16] Given a probability space
(Q, A, P), an absolutely continuous probability mea-
sure p on the measurable space ([0, 1], Bjo 1)) with
positive mass function on (0,1), 8 > 0, an as-
sociated RFN X and a simple random sample
(X1,...,X,) obtained from X, the p-wabl/ldev/rdev
median(s) of X is(are) the fuzzy number-valued
statistic(s)

—

M# ()

! zn: (7 (%.0)).

=arg min —
i=1

n
UeF.(R) T

Indeed, the following result guarantees the exis-
tence of at least one such median and simplifies its
computation a lot.

Theorem 3.1 [16] Given a probability space
(Q, A, P), an absolutely continuous probability
measure @ on the measurable space ([0, 1], Bjo 1)
with positive mass function on (0,1) and an asso-
ciated RFN X, for any a € [0,1], the fuzzy number

M?(X) € Fo(R) such that

(MW(X))Q = [Me(wabl? (X)) — Me(ldev§ (o)) ,

Me (Wabl“"(X)) + Me (rdevﬁ (a))}

(where in case Me(wabl? (X)), Me(ldev% () or
Me(rdevi (a)) are non-unique, the most usual con-
vention for real-valued medians of choosing the mid-
point of the interval of medians is considered) is a
population p-wabl/ldev/rdev median of X.

As it can be noticed, neither the population -
wabl/ldev /rdev median nor its sample version de-
pend on the parameter 6.

The ¢-wabl/ldev/rdev median of a random fuzzy
number fulfills most of the basic properties of the
median of a random variable, like the equivariance
under ‘linear’ transformations, the symmetry about
a real number when the random fuzzy number is
symmetric and the strong consistency of the sample
version under some sufficient conditions (for more
details, see [16]). With respect to the robustness
of this proposal, the finite sample breakdown point
of the sample p-wabl/ldev/rdev median was calcu-
lated. Taking into account that this measure rep-
resents the minimum proportion of observations we
have to contaminate in the sample in order to make
the estimate increase arbitrarily and that its value
for this median has been proved to be &+ - |2t |,
where |-] denotes the floor function, the new ap-
proach has been shown to be more robust than
the Aumann-type mean (whose finite sample break-
down point is 1/n) for samples of size at least 2.

4. The influence of ¢ on the
p-wabl/ldev/rdev median

The simulations to study the influence of ¢ on the
p-wabl/ldev/rdev median have been based on the
scheme in [14] (Case 1), only considering trapezoidal
fuzzy numbers:
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Step 1. A sample of n = 100 trapezoidal fuzzy numbers
has been simulated in such a way that

e to generate the trapezoidal fuzzy data, we
have considered four real-valued random vari-
ables as follows: X; = midX;, X2 = sprii,
X3 = inf X1 —inf Xy, X4 = sup Xp —sup X1.
Therefore, we are dealing with the trape-
zoidal fuzzy numbers Tra(X; — X2 — X3,

X1 —Xo, X1+ Xo, Xi + Xo+ X4)

e the case in which random variables X; are in-
dependent has been considered. More specif-
ically, we assume that X; ~ N(0,1) and
X2, X35, X4 ~ X3

We have considered as weighting measure the

Beta distribution ¢ = B(p, q), where both pa-

rameters p and ¢ range in {.5,1,2,3,5}. For

each considered weighting measure, the esti-
mates of the sample ¢-wabl/ldev/rdev median
have been computed.

In Figure 1, it can be seen how the estimates of
the sample p-wabl/ldev/rdev for each fixed value
of p vary with respect to the value of ¢q. The
main conclusion looking at these plots is that nei-
ther the location nor the shape of the sample -
wabl/ldev/rdev are very influenced by the chosen
Beta distribution, but they are scarcely affected.

Notice that, for any fixed p, increasing the value
of ¢ is equivalent to assigning more importance,
when computing the wabl?, to the smaller a-levels.
Since only trapezoidal fuzzy numbers are involved,
we could have a look at the corresponding formulas.
After simplification:

Step 2.

X4—X3 ¢

=midX » .
2 p+q

p+q

wabl?(X) = X, +

That is to say, when computing the wablB®9) of
one of these observations for a fixed p, the higher
the ¢, the smaller the wablZ(®:9) (recall that mid X,
of a trapezoidal fuzzy number is a linear function of
«). With respect to the deviations in shape:

+LX47

ldev¥ = X, 4+ (1 —a—
“ 2(p+q)

q
2(p + q)) =

q q
S R P
2p+¢) ° 2(p+q)) "

i.e., the higher the ¢, the higher the influence X, and
X3 have on ldev%(a) and rdev% (a), respectively
(and therefore, the smaller the influence X3 and X4
have on ldev¥ (a) and rdev% ().

However, when computing the medians of the
real-valued random variables wabl?, ldev?. (a) and
rdev? (), any possible change could happen, like it
is checked in Figure 1.

We will now consider as a real-life example the

following.
Ezxample We have adapted several questions from
the TIMSS-PIRLS survey (international assess-
ments of mathematics and science and reading at
the fourth and eighth grades, whose responses have
to be chosen among those in a Likert scale with 4

rdev®? = Xo+
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Figure 1: Estimates of the ¢-wabl/ldev/rdev median when p is fixed in {.5,1,2,3,5} (each plot from left to
right and from top to bottom) and for different values of q
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MS3
inf Ag ‘ sup Ag ‘ sup A inf Aq
5.2 6 7 7
0 0 0 2.95
6 6.425 7.35 7.875
0 0 0.775 1.225
0 0 2.15 2.15
10 10 10 10
7.9 7.95 8.7 8.7
9 9 9.4 10
9 10 10 10
4.975 4.975 5.325 5.4
7.6 7.6 8.35 8.65
2 2 4 4
0 0 0 0.45
9.975 10 10 10
0 0 1.575 1.575
2.225 2.225 3.125 3.125
1.9 1.95 3 3.15
4.875 5.05 5.45 5.625
6.15 6.15 6.75 6.75
3.45 3.45 4.425 4.425
2.5 3.2 3.3 4.45
3 3.6 4.2 5.05
3 3 3 3
0 0.6 1.25 1.65
0 0.5 0.5 1
2.5 3 3.6 3.6
3 3.2 3.6 4.2
10 10 10 10
10 10 10 10
6.975 6.975 7.925 7.925
0 0 2.575 2.575
6 6.45 7.4 8
2.35 2.8 3.25 3.5
3.15 3.4 3.6 4
0 0.625 2.725 2.75
0 0 1 2
4.925 5.025 5.95 6.3
10 10 10 10
0 0.825 2.425 2.425
0 0.325 1.475 1.475
5.15 5.35 6.15 6.15
8.55 8.85 9.625 10
0 0 0 0.725
0 0 0 0
10 10 10 10
7 7.4 8.2 8.4
4.05 4.05 4.7 4.775
10 10 10 10
0 0.85 1.5 1.825
1.6 1.825 2.425 3.075
3.125 3.275 3.7 4.05
9.9 9.9 10 10
0 0 1.125 1.125
6 6 7 8
1 1.8 2.35 3.1
0 0.075 1 1.35
0 0 0 0
0 0.4 0.95 1.75
10 10 10 10
8.8 8.8 9.5 9.575
4.6 6.15 6.15 6.85
3.6 3.925 4.575 4.575
3.875 3.875 5.6 5.6
0 0.25 1.025 1.025
10 10 10 10
0.3 0.45 1.15 1.5
5.5 6.1 6.9 7.4
6.325 6.925 7.175 7.65

Table 1: Fuzzy rating scale-based responses given by 4th
grade students in Colegio San Ignacio (Oviedo, Spain)

points, namely, DISAGREE A LOT, DIS-
AGREE A LITTLE, AGREE A LITTLE and
AGREE A LOT. See see http://timss.bc.edu/

timss2011/downloads/T11_StuQ_4.pdf) in order to
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get answers in the fuzzy rating scale introduced by
[4], which allows to combine a free-response format
with a fuzzy valuation.
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Figure 2: Estimates of the p-wabl/ldev/rdev me-
dian when p is fixed in {.5,1,2,3,5} (each plot from
left to right and from top to bottom) and for differ-
ent values of q in the Fxample



The questionnaire has been conducted on the
fourth grade students of the Colegio San Ignacio
in Oviedo-Asturias (Spain), being formulated with
a double-type response (namely, Likert scale and
fuzzy rating scale-based). Data from one these
adapted questions will be considered to show how
the ¢-wabl/ldev/rdev median is not too influenced
by the choice of the weighting measure ¢ = B(p, q).
The considered question from the survey has been
MSS8. Mathematics is harder for me than any other
subject and the collected data is shown in Table 1.

The results are shown in Figure 2. Again, the use
of different parameters when considering the Beta
distribution as weighting measure ¢ scarcely affects
the results, what makes this proposal, together with
its high finite sample breakdown point, a robust al-
ternative to the Aumann-type mean and scarcely
dependent on the choice of ¢.

5. Concluding remarks

The recently introduced p-wabl/ldev/rdev median
for random fuzzy numbers (see [16]) has been re-
called, as well as the distance this notion is based
on. Two properties of such metric have been proved
in this manuscript. The aim of studying in a pre-
liminary way the influence the choice of the weight-
ing measure ¢ has on the computation of the ¢-
wabl/ldev /rdev median has been carried out by gen-
erating a random sample like in the literature (see
[14] and by considering an applied example.

However, this study is clearly preliminary and
more detailed simulations should be performed. Al-
though trapezoidal fuzzy numbers are very common
when dealing with real life examples because of be-
ing easier-to-handle, other shapes could be taken
into account, as well as many others weighting mea-
sures that are left as open problems.
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