16th World Congress of the International Fuzzy Systems Association (IFSA)
9th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT)

Rough Classification in Incomplete Databases
by Correlation Clustering

Laszlé ASZALOS Tamas MIHALYDEAK

Faculty of Informatics, University of Debrecen, Hungary

Abstract

In the context of data mining, missing data can be
handled in several ways. The most common is the
artificial construction of missing data, but we can
predict it, or transform the whole database in a
fuzzy way. In this article we propose a different
approach: we extend our rough classification to in-
complete databases. This uses the correlation clus-
tering as a tool, which uses a tolerance relation of
the similarity between objects of a database. This
relation can be generated from the distance between
objects and can be sensitized based on missing data.
We demonstrate our method in the wine database.

Keywords: Incomplete database, classification,
correlation clustering, harmony search, rough clus-
tering

1. Introduction

In the information society the demand continuously
grows from the industry to process and use data
sets generated and recorded in every part of our
life. Therefore, more and more researchers work
on the field of Big Data, and offer different tools
from various scientific sources. Most of these tools
come from statistics, however the Data Mining is its
favourite common name nowadays. From this major
research area we are going to deal with clustering
and classification in this paper.

Clustering (cluster analysis) is commonly used
for unsupervised learning. Clustering is the task of
grouping a set of objects in such a way that objects
in the same group (called a cluster) are more similar
to each other than to those in other groups. Dur-
ing more than 80-year history of the cluster analysis
many clustering methods have been developed and
used successfully in different areas of the sciences
and real life. For example, clustering can help us
to discover the irregular items i.e. the traces of an
intrusion on the basis of computer systems, or a
poisoned eagle by using signals of GPS tracking de-
vices.

Classification is a supervised learning. Here,
given a training set, whose elements are classified
into different categories form the base of categorisa-
tion for other elements. There are many classifica-
tion methods, and their application penetrates our
lives, for example the labelling of e-mails (junk/not

© 2015. The authors - Published by Atlantis Press

667

junk). As we can see, in both clustering and clas-
sification, similarity and the dissimilarity play very
important roles.

In this paper we explore how clustering objects
could be achieved based on partial similarity, and
how can we use this for classification. To show
that this actually works in practice, we use the wine
database form the UCI repository [1].

The paper organized as follows. The scientific
background—correlation clustering, concept of dis-
tance, tolerance relation—described in Section 2. A
view of handling missing data is given in Section 3.
Parts of the classification presented in Section 4.
Simulation results are shown in Section 5. We dis-
cuss the limits of our methods, and suggest other
ones in Section 6. Finally the conclusions are drawn
in section 7.

2. Scientific background

The algorithm we have developed and implemented
has used a number of uncommon methods. In this
section these are shown schematically and are re-
ferred to the original sources.

2.1. Correlation clustering

Objects are described by their data, called a feature
vector. In the following to simplify the text we shall
identify objects with their feature vectors.

Most of the clustering methods use the fact that
a distance can be defined between objects. As fea-
ture vectors can contain real, integer and categori-
cal (yes/no, female/male, A/B/AB/O, values on a
Linkert scale) data, the latter ones are usually con-
verted to real values, and scaled somehow, so we get
n-dimensional vectors containing real values. Then,
based on the distance of vectors (or based on the
density of vectors relying on this distance) the clus-
ters of objects are created. To find out whether the
results are correct or not, some statistical analysis
or visual survey is needed. Of course, in case of
high dimensional feature vector, visual representa-
tions are difficult.

Correlation clustering [2] has chosen a completely
different approach. Let T be a tolerance relation
(reflexive, symmetric, not necessarily transitive).
The task is to find a closest equivalence relation
R. Mathematically, for each partition (equivalence
relation) we can assign a cost value, which provides
the number of pair of objects (z,y), for which either



(z,y) € R or (z,y) € T, but not both is satisfied.
If we treat a partition as a function P : V — N
(where V is the set of feature vectors), which as-
signs its cluster’s identifier to each object, and a ¢
is a quasi-characteristic function of T, i.e.

if (z,y) €T

1
t(z,y) = {_1 if (v,y) ¢ T

then we can define this cost value of a partition
according to T" as

> dr@rwmt Y, (1=0p@).re);

t(z,y)=—1 t(z,y)=1

CT(P) =

where §; ; is the Kronecker’s delta. The formula of
the cost value remain the same if we use partial tol-
erance relation, where its quasi-characteristic func-
tion is the following:

1 if (z,y) €T

0 if T not defined for (x,y)

t(xvy) =

Unfortunately—as in  [2] it has  been
demonstrated—solving a correlation clustering
problem is NP-hard, and for example in case
of more than 15 objects is worth to use some
optimization methods to find a near optimal
solution.

The authors constructed a framework for opti-
mization methods, and implemented many methods
in it (see in [3]). The experiments on these imple-
mentations lead them to choose the Harmony search
and the Contraction.

2.2. Different concepts of distance

Although we want to use the similarity, in real life
the tolerance relation is rarely given, i.e. it needs
to be generated. The easiest way to generate it, is
from the distance. At first we show the different
kinds of distances we have used.

Let us start with the case when all elements
of the feature vector are real numbers, so objects
can be treated as points in an n-dimensional Eu-
clidean space. The Minkowski distance of x =
(z1,22,...,2,) and y = (Y1, Y2, - .-, Yn) is the value

of )
dp(x,y) = (Z |zi — yip> :
i=1

Some values for parameter p are very common in
practice: 1, 2 and co. The distances they generate
are called Manhattan distance, Euclidean distance
and Chebyshev distance, respectively. In the lat-
ter, the limit value can be expressed more easily:
doo(x,y) = max?_; |z; — y;|. To simplify the calcu-
lations, we redefine ds as follows:

n

da(x,y) :== Z(TZ — )%

i=1

668

i

Figure 1: Distances and similarity for p = 1 and
q = o0.

This simplification is not a big mistake here, be-
cause as it turns out from the following section, we
are not interested in the exact value of the distance
of points, just whether it is smaller or bigger than
a pre-given value. If we replace both sides with it’s
square root, we get back the original distance. But
with this simplification we can discuss the different
distances in a more uniform way.

2.3. Generated tolerance relation

Correlation clustering requires a tolerance relation,
so we have to generate similarities and differences
from distances. We believe that the situation is rela-
tively straightforward: if two objects are close, they
are similar, while if they are distant, they are differ-
ent. Therefore we need two threshold parameters:
d and D. If the distance of x and y is less than d,
we treat objects x and y similar (central dark grey
region on Fig. 1), but if their distance is greater
than D, then we treat them different (outer dark
grey region). Of course before using these parame-
ters, it is worth to normalize the database, e.g. to fit
the data to the standard normal distribution, such
that the order of the magnitude of the members of a
sum/maximum are the the same. As the discussion
will show, it is worth to permit the use of different
kinds of distances as Fig. 1 shows. Of course, in case
of fixed p and ¢ we have constraints for parameter
pair (d, D): it is not allowed that both dp(x,y) < d
and D < dg4(x,y) are satisfied for some x and y,
i.e. x and y cannot be similar and dissimilar at the
same time. (All the other combinations are allowed:
could be just similar, just be dissimilar, or nor sim-
ilar and dissimilar.)

This allows us to generate the tolerance relation
of objects based on their distance:

1 if dy(x,y) <d
-1 if D <dy(x,y)

0 otherwise

e (z,y) =

We left to the reader to prove that the relation of
this quasi-characteristic function is really tolerance
relation. (Its reflexivity is trivial, the symmetry fol-
lows from the definition of the distance.)



3. Distance of incomplete objects

3.1. Coping with missing data

In practice, several methods are known to comple-
ment the missing data [4]. For clustering, the aver-
age of values in the same dimension could replace
the missing data in a continuous case, and the most
common value in a categorical case. We do not need
to take into consideration all the objects, we can re-
strict our investigation to a small neighbourhood of
the actual object, or to its category at classification.
We accept that this works well for practical tasks,
but we considered this complementation as fraud.

In our opinion if the data is missing, it needs to
be stored in its original form somewhere, and the
user has to cope with it.

In the previous section we wrote that two objects
are similar if they are close to each other and they
are dissimilar if they are far away from each other.
In the case of distances d; and dy if the value of
|z; — y;| is not known for some j because x; or y;
is missing, then

e it is trivial, that if 3, |v; — y:[P > D, then
il —wilP = dp(x,y) > D, ie. x and y are
surely dissimilar

o if 37, lzi—vilP < d, then any of d,(x,y) < d,
dy(x,y) = d and d,(x,y) > d can be fulfilled.

We can handle the missing data in three ways:

Optimistic. We do not care about missing values:
if you do not see/know something, then it does
not even exists for you. It seems a crazy idea
at Euclidean space with the standard distance,
but this is not the situation in all cases. If we
don’t know that our flight is cancelled, we go
to the airport.

The fact, that we ignore data, has some conse-
quences, e.g. even a dissimilarity can be judged
as similarity, therefore we have less and big-
ger clusters at clustering. We note, that later
we will handle the distance d,, in an optimistic
way: we have no better estimation on the maxi-
mal member of a set, that the maximal member
among the known ones.

Pessimistic. We assume that the missing values
are the most important ones. In the case of
Euclidean space, we are sure, that the missing
distance is big enough to sum up to D, so sim-
ilarity cannot occur. This means that we can
judge similarity as dissimilarity, hence we have
more and smaller clusters at clustering.

Realistic. We can try to extrapolate the exact dis-
tance from the known values. In our example
we replace the missing distance with an average
distance, so calculate instead of the realizable
difference (3, ; [#; — y;|P) with an imaginary
one (%7 22,4 [wi — yi|” where n is the size of
the feature vector). If 2537, . |7 —yilP < d,

669

we can treat x and y as similar, but if D <
27 2oy [T — yilP, then we can treat them as
dissimilar. It is obvious, that by using this ex-
trapolation, and replaced any kind of tag with
an average one, a dissimilarity can be treated as
similarity, and even a similarity can be treated
as dissimilarity.

The pessimistic attitude is not acceptable at clus-
tering: as there are no similar objects, the result
consist of singletons or sets of unrelated objects.

3.2. Characteristic function of the similarity

In the previous subsection we suggested a realistic
method to hide a shortage of one data item. In
our implementation we generalized this idea: if &
differences from n were known in the sum of the
Minkowski distance at p = 1 or 2, then we multiply
it with n/k to get the interpolated sum, which is
used at comparisons.

It is well known that the extrapolation could
bring significant errors into the calculations. For
this reason, the results obtained by extrapolation
should be used with criticism. In the previous sec-
tion we defined a quasi-characteristic function based
on distance: t9}(x,y) — {—1,0,1}. As parameters
p, q, d and D are fixed we omit for the sake of sim-
plicity. In our case intermediate values may appear
due to missing data, so we use a more general char-
acteristic function t'(x,y) — [—1,1].

Let us denote S the sum of k known tags from
Minkowski distance. In the case of d., S denotes
the maximum of known differences. We define this
new characteristic function as follows:

e If k =n, then t/(x,y) = t(x,y).

e If D < S, then objects t'(x,y) = —1, because
the objects are certainly dissimilar.

o If S <D< ¥ xS, thent'(x,y) = —k/n in the
case of distances d; and ds.

e If S < d then ¢'(x,y) = k/n in the case of
distance do.

o If S x ¥ <d then t'(x,y) = k/n in the case of
distances d; and ds.

e Otherwise we cannot

t(x,y)=0

say anything, so

The function ' is used at contraction steps in
Figure 6 to solve a correlation clustering problem
as to construct a partition.

One may ask what is the purpose of using frac-
tions instead of the three values 1, 0 and —1. We
remark, that using fractions is not a new idea [5, 6],
this kind of generalisation of the original idea of cor-
relation clustering is very natural. The structure of
the cost function and its calculation are similar to



the original case:

(:/(P) = Z ﬂ(ﬂ’;,y) X (1 — (SP(I),p(y))
t(x,y)>0
- Y H(@,y) X p@).ru)
t’(x,y)<0

4. Clustering and classification

4.1. Contraction

We can treat the similarity and dissimilarity of
object as forces, where the similar objects attract
each other, while dissimilar objects are repulse each
other. We can extend this kind of forces to clusters,
too. Let A and B be two clusters, and let

> tHxy).

x€A,yeB

F(A,B) =

If F(A, B) > 0, then two clusters attract each other;
if we construct the partition P’ in this case by merg-
ing A and B in partition P, then ¢(P’) < ¢(P), i.e.
we get a better partition.

Our contraction method—which is a greedy
algorithm—merges clusters, where the benefit of
merging is the greatest [3]. It easy to check that
F(A,B)+ F(C,B) = F(AUC, B), so we need to
sum forces at a contraction step.

Similarly we can define a force F’ based on func-
tion ¢/, which is an extension of the original force
concept. In the following we present this gener-
alized contraction method in action. The rectan-
gles on the following figures denote the clusters, and
the weighted edges the (non-neutral) forces between
them. At beginning we start from singleton clusters,
hence F'({x},{y}) = t'(x,y), for objects x and y
as Figure 2 shows.

Figure 2: Intitial partition

Initially—as the original distances are from
[-1,1]—the pair of singleton clusters merge to-
gether are those for which value 1 was assigned, i.e.
the similar objects are fully known. Let us take the
objects on Figure 2. Here x, y and z are completely
known and similar pairs of objects, so any two of
them could be joined. Let us assume that x and y
merged as Figure 3 shows.

The attraction between clusters {x,y} and {z},
became 2, as we needed to sum f'(x,z) and f'(y,z).
Since this value is the biggest in the figure, these
clusters merged as Figure 4 shows.

Usually if there are objects (almost) fully known,
similar to each other, then at beginning they con-
struct small factions. Next if the algorithm depletes

670

Figure 4: Result of the second contraction

such strong attractions, then it continues with the
other objects with smaller attractions. In Figure 4
there is the object u which is similar only to object
x, and the object v which is partially similar—has
missing data—to objects y and z. But the cluster
{x,y,z} attracts object v more strongly than ob-
ject u, hence by the next merging we get clusters
on Figure 5. The repulsion between objects v and
u neutralizes the attraction between objects x and
u, hence there is no reason to merge the remaining
two clusters.

0

X Z

Figure 5: Result of the last contraction

4.2. Harmony search

In the previous subsection we have shown how we
can get a near optimal correlation clustering by con-
traction method. The cost value of partition helps
us to select the closest partition to a given tolerance
relation. But our aim to classify objects. There-
fore we check the resulted clusters, how they are re-
lated to the classes of the classification. (We note,
that the contraction method knows nothing about
classification of objects, it knows only the function
t'.) For this we determine the dominant class type
of each cluster, and count the objects of minority
types. The sum of these numbers give a different
type cost value as a function of threshold parame-
ters. This cost value measures deviation of the par-
tition from the homogeneity. Our task is to optimize
this function to get the best threshold parameters,
and for this optimization we use harmony search.

Like many other optimization methods, harmony
search is also derived from modelling a process from
a real-life [7]. This method has many advantages
including that the continuity of the cost function
it is not necessary, and the parameters of the cost
function may be discrete or continuous.



= d,D tolerance rel.
armony contraction
search
cost value
first phase
best d, D training set
second phase
N d,D tolerance rel.
roug. contraction
clustering
partition
¢base sets

classification new data

Figure 6: The process of the classification

The whole method is based on a harmony mem-
ory, which initially is randomly filled. Then, it exe-
cutes the given cycle a prescribed number of times.
In the core of the cycle the value of each parame-
ter in feature vector is a generated new one or se-
lected from the memory randomly. In the latter
case, the chosen value is changed to a small, random
amount. Then the parameters are tested: calculat-
ing the value of the cost function. If they are better
than the worst of the stored ones, they are replaced.
At the end, it selects the parameters belonging to
the best cost value.

4.3. Classification’s workflow

The workflow of our classification process is shown
in Figure 6. The first phase is to determine the val-
ues of the two threshold parameters, as we described
in the previous subsection. For this the harmony
search tries a number of pair of values, calculates
the deviation from the homogeneity for them, and
select the best ones. These best threshold parame-
ters are the outcome of the first phase.

The second phase uses these values, generates the
function ¢/, and runs the contraction method on this
function several times. As the method is random-
ized, we can get several different results (partitions)
with different cost values. The process selects the
best partitions (with minimal ¢/(P) values). Next it
generates the intersections of this partitions. In one
intersection the objects can be treated as insepara-
ble elements, hence the whole structure of intersec-
tions can be treated as the base sets in the sense of
rough set theory [8]. If two objects are always in a
common cluster, then they really should be similar
to each other. Typically, their classes are the same.
Or if not, then we may question the correctness of
the training data. To correct such arguable cases we
classify the intersections (the base sets in the sense
of rough set theory [8]). This can be done in several
ways, in our experiments we have chosen the domi-
nance principle, this is same as the English electoral

671

system: the winner takes all. In the case of a tie,
we assigned to the set the other label, which could
be reasonable in medical applications. But in some
special cases at tie the random choice of the class
of the set or using fuzzy values is acceptable in our
opinion.

We are almost ready, only the classification step is
left. Since the classification usually includes a small
training set and many objects to classify, it is helpful
if the classification of one object has no high com-
plexity. For this let us extend the tolerance relation
to the new object, then summarize the attractions
by base sets. At this summing the attractive and
repulsive forces could neutralize each other (like at
Figure 5). Finally the class of the most attractive
base set will be assigned to the element.

5. Discussion

In the database we have chosen to test our method
three classes are separable [9], and some methods
perfectly separate these classes. We do not intend
to compete with these results, we run our classifica-
tion method on the original data to get a basis for
comparison.

The following figures show the result of running
our method using different kinds of distances. To
speed up the counting process, we have made some
tests to restrict the random values from R to a fi-
nite interval, and used this limit at harmony search.
This pre-calculation greatly helped, the result of the
harmony search gave clusters that were more or less
homogeneous. In the 45-item random sample usu-
ally 5—6 items are classified incorrectly. The worst
level of the error was 9 and the best was 2.

90 [~ -
BSW

80 &

precision (%)

75 7

65 1 L | | 1 | 1 1

missing data
Figure 7: Manhattan-Manhattan distance’

Next our method generated the base sets with
the best threshold parameters, and classified using
the dominant class of its elements. The original
database has no missing data. However, we are in-
terested in the effectiveness of our method on incom-
plete data. Therefore we modified our algorithm to
delete one piece of data step-by-step, and repeated

INotation: + — —0%, x — —10%, * — —20%, O — —30%,
- —40%



90 - b

M

75W

70 1 1 1 1 L 1 1 1

precision (%)

missing data

Figure 8: Manhattan-Euclidean distance

precision (%)

missing data

Figure 9: Manhattan-Chebyshev distance

the classification of the new object. At each step,
we examined whether classifying an object coincides
with its real class, or not. On the scale y the pre-
cision is shown. We continued this process until 4
pieces of data remained from the 13, i.e. finally we
deleted 70 percent of the data of the object. On the
figures the scale x denotes the number of pieces of
data deleted.

Then 10 percent of the data has been deleted
from the training set, and the whole method was
repeated: the remaining training set was clustered
and other objects were classified. Then 10 percent of
the initial data was again omitted from the training
set, and the method repeated. This was continued
until 40 percent of the data of the training set were
missing. In the worst case 40 percent of the data
of the training set, and 70 percent of the data of
the object to classify were missing, but the result of
our experiment was at least 35 percent in each case.
The second worst result in this extreme case was 59
percent, while the best one was 73 percent.

The results presented on figures are collected in
Table 1. The numbers denotes percentages here,
they show intervals of successful rates of classifica-
tion in the cases from the minimal to no missing
information.

We deleted data randomly from the training set
and from the other objects. This helps a lot. Fig-
ure 16 shows the difference. On the left from the

672

90 T T T T T T T T

SSW
SOM

75%
70M
65:\./.\./._./'\./'/—.

60 1 L 1 1 L I 1 1

precision (%)

missing data

Figure 10: Euclidean-Manhattan distance

920 T T

SSW
BOM

70 - 3

precision (%)

65 1 | 1 1 1 1 | 1

missing data

Figure 11: Euclidean-Euclidean distance

same rows and from the same columns are missing
the pixels, while on the right this is totally random.
We can recognize the standard picture of image pro-
cessing from the latter one.

In the case if we have two incomparable objects,
but they are both similar to other objects, there is
a high probability that they are similar. The cor-
relation clustering put them into the same cluster.
Similarly if some incomparable objects are similar
to two dissimilar objects, there is a little chance,
that they are similar, then the correlation clustering
probably put each of them into the similar object’s
cluster, hence separate them. Moreover the corre-
lation clustering have an error correcting property,
it can put two “similar” objects into different clus-
ters, if their relation to other object query this rela-
tion. By our idea this incomparable nature makes
the correlation clustering a conductive tool at cop-
ing missing data.

Table 1: Precision of the classification

‘ q=1 q=2 q = 00
p=1 70.1-87.7 73.0-84.8 59.4-90.7
p=2 66.2-87.5 66.4-86.5 61.7-87.6
p=o0 | 72.6-88.6 68.8-85.4 35.7-78.3



precision (%)

missing data

Figure 12: Euclidean-Chebyshev distance

90 T

precision (%)

70 L 1 1 1 L 1 1 1

missing data

Figure 13: Chebyshev-Manhattan distance

6. Further work

6.1. Categorical data

As we have seen before, it is possible that for some
parameters (d, D) objects x and y are similar, and
for some other parameters (d’, D") the same objects
are dissimilar. The situation is quite different if we
use categorical data. It is clear that the not is not
similar to yes, the male is not similar to the female,
or the different blood types are not similar. However
in case of a nine-level Linkert scale the items next
to each other (or even items in the distance of two)
will be considered somewhat similar.

We believe that in case of databases with cat-
egorical data a human decision cannot be ignored.
Determining similarity /dissimilarity is the user’s re-
sponsibility. A user can be very accurate for de-
termining similarities and dissimilarities for a cat-
egorical data. But what happens if they need to
compare vectors consisting of about fifty categori-
cal data? Assuming that one can solve problems
coordinate-wise, we need to count similarities and
dissimilarities in each dimensions. If the number of
similarities is bigger than a parameter (let say v),
the two vectors can be treated as similar, and if the
number of dissimilarities is bigger than an other pa-
rameter (let say vy), the vectors are treated as dis-
similar. This kind of counting is not a new thing.
It is common practice in law: sometimes the jury

673

80 -

701/'\'\-/4\./-\,\.\:

missing data

T

precision (%)

Figure 14: Chebyshev-Euclidean distance

precision (%)

missing data

Figure 15: Chebyshev-Chebyshev distance

is directed to reach an unanimous verdict, other-
wise some level of majority is needed. (The failure
of agreement may lead to retrial, i.e. the partiality
appears here, too.) We can extend this case eas-
ily: calculate the distance once for all real valued
parameters, or separately for each dimension, and
sum with the result of categorical data to get the
final result.

While a human can decide on similarity of cate-
gorical data, this does not works for a continuous
one. It can occur, that for parameter d the value of
0.97 is too small, but 1.02 is too big. These parame-
ters cannot be set by experience—even the training
set is always different—so some kind of (possibly
automatic) feedback is necessary. In [10] we used
an optimization method (simulated annealing) to
determine the best values for parameters d and D.

It looks useful to apply our approach to database
contains categorical data.

6.2. Limit of the methods

In this article we combined some less known meth-
ods and some we invented by ourselves. These
methods ought to be examined exhaustively, to find
the limits of their applicability.

The contraction method is based on a very sim-
ple idea, but its effective implementation is a chal-
lenge. However during the solution of classification
problems, correlation clustering has to be performed



Figure 16: Missing data from a photo

quite often, hence the efficiency and speed of the
method is vital. We plan to compare it with other
methods on the basis of speed and performance.

Our method—to classify incomplete database—
has only been tested on one database; although the
results are encouraging. It might be worth to exam-
ine what kind of results this method gives in the case
when the classes are not separable. On the other
hand it would be worthwhile to test the method on
a database that is already incomplete, to check that
the results of this method are similar to the results
of the simulation.

7. Conclusion

The most important lesson of our experiments with
the wine database is that the classification of incom-
plete databases can be performed, and with much
better efficiency than our preconception. We do not
need to fool ourselves and falsify our databases, but
take into account the missing data, and with appro-
priate caution and carefully selected algorithms we
can achieve more reliable results.

References

[1] S. Aeberhard, D. Coomans, and O. de Vel.
Comparison of Classifiers in High Dimensional
Settings. Technical Report 92-02, Dept. of
Computer Science and Dept. of Mathematics
and Statistics, James Cook University of North
Queensland, 1992.

Nikhil Bansal, Avrim Blum,
Chawla.  Correlation clustering.
Learning, 56(1-3):89-113, 2004.
Laszl6 Aszal6s and Maria Bakd.  Advanced
search methods (in Hungarian). http://morse.
inf.unideb.hu/~aszalos/diak/fka, 2012.

Kiri Wagstaff. Clustering with missing values:
No imputation required. Springer, 2004.

Erik D Demaine and Nicole Immorlica. Corre-
lation clustering with partial information. In
Approximation, Randomization, and Combi-
natorial Optimization.. Algorithms and Tech-
niques, pages 1-13. Springer, 2003.

Francesco Bonchi, Aristides Gionis, and Antti
Ukkonen. Overlapping correlation clustering.
In Data Mining (ICDM), 2011 IEEE 11th In-
ternational Conference on, pages 51-60. IEEE,
2011.

and Shuchi
Machine

674

[7] Zong Woo Geem, Joong Hoon Kim, and
GV Loganathan. A new heuristic optimiza-
tion algorithm: harmony search. Simulation,
76(2):60-68, 2001.

Laszlé Aszalos and Tamas Mihalydedk. Rough
clustering generated by correlation clustering.
In Rough Sets, Fuzzy Sets, Data Mining, and
Granular Computing, pages 315-324. Springer
Berlin Heidelberg, 2013.

S Aeberhard, D Coomans, and O De Vel. The
classification performance of rda. Dept. of
Computer Science and Dept. of Mathematics
and Statistics, James Cook University of North
Queensland, Tech. Rep, pages 92-01, 1992.
Laszl6 Aszalos and Tamés Mihalydedk. Rough
classification based on correlation clustering. In
Rough Sets and Knowledge Technology, pages
399-410. Springer, 2014.

[10]





