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Abstract

A novel way for addressing one-sided hypothesis
tests for the mean of unable to observe real ran-
dom variables from which we have information pro-
vided in terms of interval data is proposed. For this
purpose, a measure of similarity between intervals
is considered and the classical one-sided hypothesis
test to check whether the similarity between the ex-
pectation of a random interval and a subset of an
specific unbounded interval is high enough. Asymp-
totic and bootstrap techniques are applied in order
to study the limit distribution of the proposed test
statistic. Some simulations have been carried out in
order to show the empirical behavior of the test.

Keywords: One-sided hypothesis test, expected
value, interval data, hypothesis testing, bootstrap
approach

1. Introduction

Most activity in human cognition is related to stat-
ing and verifying hypotheses. Testing hypotheses is
also one of the primary purposes of statistical infer-
ence. In classical statistics, although we admit some
uncertainty caused by randomness, all elements of
the statistical model (i.e. data, hypotheses, test re-
quirements etc.) should be given precisely. In par-
ticular, data used in hypothesis testing are usually
considered as real numbers which seems to be quite
natural in many applications. Actually, such results
as weight, hight, strength, temperature, an so on are
reals.
However, in many situations we cannot observe

the experimental results precisely. It might be
caused by many reasons, like measurement prob-
lems, inaccurate devices and subjective assessments
that are more perceptions than actual measure-
ments. In such cases an expectation to obtain the
results in a form of precise real numbers is either un-
realistic or requires unjustified subjectivity. Thus,
here we deal with two kinds of uncertainty: besides
randomness we also sustain some epistemic uncer-
tainty connected with a data perception.

In situations like mentioned above, quite often
a reasonable and well-grounded solution is to con-
sider interval data. However, to handle such data
we need new mathematical models, different than

used in the classical statistics, both to describe ob-
servations and to perform statistical reasoning. In
this paper we suggest a novel approach to hypothe-
sis testing based on the interval data. Our approach
utilizes the concept of similarity well-established in
reasoning admitting different sources of uncertainty.
The problem will be addressed from a theoretical
point of view although its application to different
fields is to be tackled in the future.

The paper is organize as follows. In Section 2
we introduce a notation and basic concepts used for
modeling interval data. We recall there also an idea
of similarity based statistical test for random inter-
vals proposed in [12]. In Section 3 we discuss how
to generalize a classical one-sided hypothesis test-
ing problem about the population mean for inter-
val data. Our method utilizes a similarity measure
which is a particular case of the well-known Tversky
coefficient (see [15]). Next, in Section 4, we derive
a one-sided statistical test for the mean and inter-
val data. The properties of the suggested test are
examined in Section 5 through the simulation stud-
ies including the bootstrap approach. Finally, some
conclusions and remarks are given.

2. Preliminaries

2.1. Random intervals

A starting point of the majority of problems in clas-
sical statistics is a random sample V1, . . . , Vn, where
V1, . . . , Vn are usually independent and identically
distributed random variables from a distribution
under study. If (Ω,A, P ) denote a probability space
then each random variable Vi : Ω −→ R is a func-
tion which assigns to a random event a real number,
hence the outcome of the experiment is traditionally
a set of real values. Unfortunately, in many situa-
tions we cannot measure the results of the experi-
ment precisely and the only thing we could do is to
specify an interval for each outcome which contains
the true measurement.

Denote by Kc(R) the family of all non-empty
closed and bounded intervals in the real line R. The
formalizations required for the theoretical develop-
ments of this research are based on the parametriza-
tion (mid , spr ) of the intervals, i.e. A = [midA ±
sprA] for A ∈ Kc(R), where midA ∈ R is the mid-
point (or center) of the interval A, while sprA ≥ 0
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is the spread (or radius) of A. This characterization
has been shown to be a valuable tool for different
statistical purposes (see, e.g., [2, 5]).
The arithmetic between intervals taking into ac-

count the (mid , spr ) parametrization is settled as
follows:

A1 + λA2 = [ (midA1 + λmidA2)
±(sprA1 + |λ|sprA2)], (1)

where A1, A2 ∈ Kc(R) and λ ∈ R.
If the experiment outcomes are not reals but in-

tervals, we need another mathematical model than
a random variable to describe this random phe-
nomenon. Let (Ω,A, P ) denote, as before, a prob-
ability space. A random interval is a Borel mea-
surable mapping X : Ω −→ Kc(R) w.r.t. the well-
known Hausdorff metric on Kc(R) (see [10]). In ad-
dition, if midX, sprX ∈ L1(Ω,A, P ) the expected
value of a random interval X is defined in terms
of the Aumann expectation (see [1]) and it satis-
fies the equality E([midX± sprX]) = [E(midX)±
E(sprX)].

Thus, a random interval X might be seen as a
perception of an unknown usual random variable
V , called the original of X (see [9]). It is clear that
also fuzzy sets [16] can be used for describing such
a perception. However, in this work we will center
our attention in those situations in which either the
perception of the real random variable is an inter-
val or the observation of the random experiment is
any possible value of an interval. Of course, an in-
terval could be perceived also as a special fuzzy set
(i.e. a rectangular fuzzy number) where imprecision
appears not through the degree of membership but
the area of possible values. The extension of the
problem to the framework of fuzzy sets with partial
degrees of membership will be addressed in future
studies.
Since we have no direct access to the originals

and the only information about V is delivered by
X, the statistical reasoning on the parameters of the
underlying distribution would be also based on the
analysis of random intervals. In particular, further
on we will show how to construct statistical tests
for one-sided hypotheses on the parameters of the
distribution utilizing interval data modeled by the
random intervals.

2.2. Similarity measures

In this section we will show different similarity mea-
sures that can be considered when dealing with sets.

A. B. Ramos-Guajardo [12] proposed a statisti-
cal test for the interval data to verify a hypothesis
for the similarity between the expected value of a
random interval and a fixed interval formulated as
follows: {

H0 : SJ(E(X), A) ≥ d
H1 : SJ(E(X), A) < d,

(2)

where d ∈ [0, 1] is a fixed a priori chosen value and
SJ denotes the Jaccard similarity measure defined

by

SJ(A,B) = λ(A ∩B)
λ(A ∪B) , (3)

for any two intervals A,B ∈ Kc(R) and where λ(A)
stands for the Lebesgue measure of A.

It is clear that the more similar E(X) to A is,
the higher the value of d. Thus, it seems that the
Jaccard measure (3) appears quite useful in for-
mulating hypotheses for interval data which gen-
eralizes the classical two-sided hypothesis testing
problem about the mean with crisp real data, i.e.
H0 : mV = m0 vs. H1 : mV 6= m0, where mV de-
notes the mean of the sample distribution and m0 is
a fixed real value. Unfortunately, (3) cannot be use-
ful for the generalization of the one-sided hypothesis
testing problem because of its symmetry.

One can find in the literature many coefficients
used as similarity measures (see, e.g., [4] and refer-
ences given there). Most of them are symmetric, as
(3). However, Tversky in his seminal paper [15] no-
ticed that although similarity has been viewed tradi-
tionally as a typical symmetric relation, there exist
many examples of asymmetric similarities (some ex-
amples can be also found in [15]). Hence for such sit-
uations asymmetric coefficients are needed to quan-
tify the amount of similarity of the objects under
study. In this very paper he also suggested a gen-
eral idea of the similarity measure given by

Sα,β(A,B) = f(A ∩B)
f(A ∩B) + αf(ArB)+βf(B rA) , (4)

where α, β ≥ 0 are some fixed constants and f(A)
is a measure of a set A. One may easily notice
that for any two intervals A,B ∈ Kc(R) by taking
α = β = 1 and assuming that f ≡ λ we get the
Jaccard measure (3). If α 6= β then (4) is no longer
symmetric.

3. Interval data and one-sided hypotheses

Let us focus our attention on the generalization of
the classical one-sided test for the mean, i.e. either
H ′0 : mV ≤ m1 vs. H ′1 : mV > m1, or H ′′0 : mV ≥
m2 vs. H ′′1 : mV < m2, where mV denotes, as
before, the mean of the sample distribution while
m1,m2 are fixed real values. It is obvious that so
defined H ′0 is equivalent to H ′0 : mV ∈ (−∞,m1],
while H ′′0 is equivalent to H ′′0 : mV ∈ [m2,+∞).
Thus, in both cases the null hypothesis claims that
the true mean belongs to the infinite interval. Or,
in other words, one may perceive H ′0 as a statement
that the true mean mV is equal to some real value
m less than or equal to m1. Analogously, H ′′0 may
be considered as a statement that the true mean
mV is equal to some real value m greater than or
equal to m2.
All these intuitions given above indicate the way

of the generalization required for the interval data.
Namely, having interval data instead of H ′0 : mV ∈
(−∞,m1] we will consider the problem whether the
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interval expected value E(X) is similar to any in-
terval B ⊂ L = (−∞,m1]. Or, in other words, our
goal may be perceived as a testing problem whether
the similarity between E(X) and

⋃
B⊂LB is high

enough.
The discussed problem is typical to situation

when A is a subject of the comparison and B is the
referent. In such case one naturally focuses rather
on the subject of the comparison and hence the fea-
tures of the subject are weighted more heavily than
the features of the referent. Tversky notices that in
this case consequently “similarity is reduced more
by the distinctive features of the subject than by
the distinctive features of the referent” (see [15]).
This implies that the adequate version of the simi-
larity measure (4) should have α > β.

Having in mind all those remarks let us consider
as a similarity measure the Tversky coefficient (4)
with α = 1 and β = 0. This way we obtain

S∗(A,B) = S1,0(A,B) = λ(A ∩B)
λ(A) . (5)

It is worth noticing that such similarity measure was
considered by Bush and Mosteller [3]. In addition,
the similarity measure in (5) can be also viewed as
a kind of inclusion degree of A in B (see [8, 13]).
Some hypothesis tests for checking the inclusion

degree of the expectation of an interval in a pre-
viously pre-fixed interval have been developed in
[11]. Specifically, the two sided-test for the expected
value of a random interval is a particular case of
the test in [11] when the inclusion degree equals 1.
Thus, the corresponding one-side tests can be easily
addressed taking into account an analogous proce-
dure as we will show below.

Now, going back to the one-sided test for the
mean based on the interval data and taking into
account that our problem can be seen as a testing
problem whether the similarity between E(X) and⋃
B⊂LB is high enough, we can utilize the similar-

ity measure in (5) to formulate our testing problem
as follows.
Let (Ω,A, P ) be a probability space, X : Ω →

Kc(R) denote a random interval so that sprE(X) >
0 and L = (−∞,m1] be an interval bounded by an
a priori fixed real number m1. Then for any given
d ∈ [0, 1] the aim it to test{

H ′0 : maxB⊂L S∗(E(X), B) ≥ d;
H ′1 : maxB⊂L S∗(E(X), B) < d.

(6)

However, one may easily notice that to compute
maxB⊂L S∗(E(X), B) it is enough to examine the
relation between E(X) = [midE(X) ± sprE(X)]
and m1. Actually, if midE(X) + sprE(X) ≤ m1
then for any interval B ⊂ L such that E(X) ⊆
B we get S∗(E(X), B) = 1 which means that
E(X) is surely similar to some B ⊂ L. On the
other hand, if m1 < midE(X) − sprE(X) then
there is no interval B ⊂ L such that E(X) ∩
B 6= ∅ so we get maxB⊂L S∗(E(X), B) = 0 and

one may conclude that E(X) surely is not simi-
lar to any B ⊂ L. Finally, when midE(X) −
sprE(X) < m1 ≤ midE(X) + sprE(X) we obtain
0 < maxB⊂L S∗(E(X), B) < 1 which indicates a
partial similarity.

Moreover, let us notice that λ(E(X)) = 2sprE(X)
and the Lebesgue measure of A∩B can be expressed
(cf. [14]) as follows:

λ(E(X) ∩B) = (7)

= max
{

0,min{2sprE(X), 2sprB,

sprE(X) + sprB − |midE(X)−midB|}
}

Hence, to maximize S∗(E(X), B) we have to max-
imize λ(E(X) ∩ B) for any B ⊂ L. By the consid-
erations given above it can be shown that

max
B⊂L

λ(E(X), B) = (8)

= max
{

0,min{2sprE(X),
m1 −midE(X) + sprE(X)}

}
.

Hence, by (9) our hypothesis testing problem can
be equivalently expressed as

H ′0 : midE(X) + (2d− 1)sprE(X) ≤ m1 (9)

vs.

H ′1 : midE(X) + (2d− 1)sprE(X) > m1. (10)

It is clear that to generalize the hypothesis H ′′0 :
mV ∈ [m2,+∞) for the interval data we will check
whether the interval expected value E(X) is similar
to any interval B ⊂ U = [m2,+∞). Therefore, fol-
lowing steps analogous to the left-sided null hypoth-
esis testing problem, our right-sided testing problem
can be described as follows: let (Ω,A, P ) be a prob-
ability space, X : Ω → Kc(R) denote a random
interval so that sprE(X) > 0 and U = [m2,+∞) be
an interval bounded by an a priori fixed real num-
ber m2. Then for any given d ∈ [0, 1] the aim it to
test

H ′′0 : max
B⊂U

S∗(E(X), B) ≤ d (11)

vs.
H ′′1 : max

B⊂U
S∗(E(X), B) > d, (12)

which can be equivalently expressed as

H ′′0 : midE(X)− (2d− 1)sprE(X) ≥ m2 (13)

vs.

H ′′1 : midE(X)− (2d− 1)sprE(X) < m2. (14)

4. One-sided testing based on interval data

4.1. Theoretical results

The testing procedure to be developed in this sec-
tion concerns the test with hypotheses (9) and (10).
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It should be remarked that test with hypotheses
(13) and (14) can be addressed analogously.
Let {Xi}ni=1 be a set of random intervals inde-

pendent and identically distributed as X. Then, to
solve the test composed by the hypotheses given in
(9) and (10) the following test statistic is defined:

Tn =
√
n
(
midXn + (2d− 1)sprXn −m1

)
, (15)

where midXn and sprXn are the corresponding
classical sample means midXn and sprXn, respec-
tively.
In order to avoid trivial situations it is necessary

to guarantee that the variances of midX and sprX
are finite, that the variance of sprX is positive and
that σ2

midX, sprX 6= σ2
midXσ

2
sprX , where σ2

midX, sprX
stands for the covariance of midX and sprX.
Let Z = (z1, z2)T ≡ N2

(
~0,Σ

)
be a bivariate nor-

mal distribution being Σ the covariance matrix for
the random vector (midX, sprX). The asymptotic
distribution of Tn is provided as follows.

Lemma 1 If {Xi}ni=1 are n random intervals inde-
pendent and equally distributed as X defined on the
probability space (Ω,A, P ), and satisfying the con-
ditions indicated above, then:

a) Whenever d = 1 and midE(X) + sprE(X) =
supE(X) = m1, it is fulfilled that

Tn
L−→ z1 + z2. (16)

b) Whenever d ∈ (0, 1) and midE(X) + (2d −
1)sprE(X) = m1, it is fulfilled that

Tn
L−→ z1 + (2d− 1)z2. (17)

c) Whenever d = 0 and midE(X) − sprE(X) =
inf E(X) = m1, it is fulfilled that

Tn
L−→ z1 − z2. (18)

Proof. The statistic Tn, firstly defined in (15), can
be equivalently written as

Tn =
√
n
((

midXn + (2d− 1)sprXn

−midE(X)− (2d− 1)sprXn

)
+
(
midE(X) + (2d− 1)sprXn −m1

)
.

a) If d = 1 and supE(X) = m1, then midE(X) +
sprE(X) − m1 = 0 and the other term of Tn
converges in law to z1 + z2 as n → ∞ by the
CLT for real variables.

b) If d ∈ (0, 1) and midE(X)+(2d−1)sprE(X) =
supE(X) = m1, then midE(X) + (2d −
1)sprE(X) + supE(X)−m1 = 0 and the other
term of Tn converges in law to z1 + (2d− 1)z2
as n→∞ by the CLT.

c) If d = 1 and inf E(X) = m1, then midE(X) −
sprE(X) − m1 = 0 and the other term of Tn
converges in law to z1 − z2 as n → ∞ by the
CLT. �

It is straightforward that other situations under
H0 different than the ones specified in Lemma 1
implies that midE(X)+(2d−1)sprE(X) < m1 and
the divergence of the statistic Tn to −∞.
The consistency of the test is established in The-

orem 1.

Theorem 1 Let α ∈ [0, 1] and k1−α be the (1−α)-
quantile of the asymptotic distribution of T ′n. If H0
in (9) is true, then it is satisfied that

lim sup
n→∞

P (T ′n > k1−α) ≤ α (19)

and the equality is achieved whenever conditions in
a), b) and c) in Lemma 1 are fulfilled. In addition,
if H0 is not fulfilled then

lim
n→∞

P (T ′n > k1−α) = 1.

Therefore, the test which rejects H0 in (9) at the
significance level α whenever T ′n > k1−α is asymp-
totically correct and consistent.

Proof. Denote midE(X) + (2d−1)sprE(X)−m1 by
A(d). Given k ∈ R we will prove that

P (Tn > k) = P (Tn > k |A(d) ≥ 0) ≤
P (Tn > k |A(d) = 0) . (20)

We define TXn =
√
n Â(d), where Â(d) =

midXn + (2d− 1)sprXn−m1. Suppose that X sat-
isfies that A(d) < 0. Given the random interval
Y = X +B where

B =
[
−m1 + midE(X) + (2d− 1)sprE(X),

m1 −midE(X)− (2d− 1)sprE(X)
]
,

we have that midXn + (2d− 1)sprXn −m1 = 0.
Clearly, TYn > TXn for all ω ∈ Ω, which implies

that P (TYn > k) ≥ P (TXn > k) and the inequality
(20) is fulfilled.

Lemma 1 implies that P (Tn > k1−α |A(d)) n→∞−→
α, so taking into account the inequality (20), the
desired result (19) is concluded.

Finally, if H0 is not fulfilled then it is immediate
to deduce that Tn diverges to ∞ as n tends to ∞.
Thus, limn→∞ P (Tn > k1−α) = 1 and the test is
also consistent. �

As it is not immediate to handle the asymptotic
distribution of Tn in practice, bootstrap techniques
are applied since they have been shown to be a very
useful tool to get a better approximation to the sam-
pling distribution [6, 7]. Specifically, we propose the
use of a residual bootstrap approach.

Firs of all, let X be a random interval such that
sprE(X) > 0 and let {Xi}ni=1 be a simple random
sample from X. If {X∗i }ni=1 is a bootstrap sample
drawn from {Xi}ni=1, the corresponding bootstrap
statistic is defined as

T bootn =
√
n
(

midX∗n + (2d− 1)sprX∗n
−midXn − (2d− 1)sprXn

)
,

(21)
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Lemma 2 shows the asymptotic distribution of
T bootn .

Lemma 2 Suppose that X is an RI satisfying that
the variances of midX and sprX are finite, the
variance of sprX is positive and σ2

midX, sprX 6=
σ2

midXσ
2
sprX .

a) Whenever d = 1 and midE(X) + sprE(X) =
supE(X) = m1, it is fulfilled that

T bootn
L−→ z1 + z2 a.s.− [P ]. (22)

b) Whenever d ∈ (0, 1) and midE(X) + (2d −
1)sprE(X) = m1, it is fulfilled that

T bootn
L−→ z1 + (2d− 1)z2 a.s.− [P ]. (23)

c) Whenever d = 0 and midE(X) − sprE(X) =
inf E(X) = m1, it is fulfilled that

T bootn
L−→ z1 − z2 a.s.− [P ]. (24)

Besides, theorem below shows the correctness of
the bootstrap test.

Theorem 2 Let α ∈ [0, 1] and let k∗1−α be the (1−
α)-quantile of the distribution of T bootn . If H0 in (9)
is fulfilled and Tn is defined as in 15, then

lim sup
n→∞

P
(
Tn > k∗1−α

)
≤ α a.s.− [P ],

and the equality is achieved whenever conditions in
a), b) and c) in Lemma 1 are fulfilled. As a conse-
quence, the test rejecting H0 in (9) when T>n k

∗
1−α

is asymptotically correct.

If H0 is fulfilled but conditions in a), b) and c) are
not fulfilled, T bootn converges to certain limit distri-
butions different from the ones of Lemma 1 and the
bootstrap procedure can be proved to be consistent,
that is, that the power tends to 1 under H1 in (10).

As it is done in the classical framework, the Monte
Carlo method is employed to approximate the dis-
tribution of T bootn .

4.2. Algorithm for the bootstrap test

Step 1. For {Xi}ni=1 compute the value of the
statistic Tn defined in (15).

Step 2. Obtain a bootstrap sample {X∗i }
n
i=1 from

{Xi}ni=1 and compute the value of the boot-
strap statistic T bootn defined in (21).

Step 3. Repeat Step 2 a large number B of times
to get a set E of B values of the bootstrap
statistics.

Step 4. Compute the bootstrap p-value as the pro-
portion of values in E which are greater than
or equal to Tn.

5. Simulation studies

In order to check the behavior of the theoretical
approach proposed in Section 4, some models are
analyzed by means of simulation studies. Suppose
that we have a real random variable that cannot
be perceived but from which we know that its true
mean mX belongs to the interval (−∞,m1]. Thus,
two models are simulated so that a sample of mid-
points is generated having the same mean as mX

as well as the corresponding spreads that can be
independent or dependent of the mid-points (first
case refers to Model 1 and the second one refers to
Model 2). Finally, we obtain a sample of intervals
that can be considered as disturbances of the true
but not observable real data. These two models are
defined as follows:

• Model 1:midX≡N (2, 5) and sprX≡U(1, 5).

• Model 2: midX ≡ N (2, 5) and sprX ≡
midX + U(0, 2).

The aim is to solve the following test for the two
models above:{

H0 : midE(X) + (2d− 1)sprE(X) ≤ m1;
H1 : midE(X) + (2d− 1)sprE(X) > m1.

Three different situations will be analyzed for
each model depending on the similarity measure
considered, mainly, d = 1, d ∈ (0, 1) and d = 0.
For this three situations, three different values of
m1 will be taken into account: For case d = 1,
m1 = 5; for case d ∈ (0, 1), m1 = 1; and for case
d = 0, m1 = −1.

The bootstrap approach in Section 4 has been
implemented, providing for 10000 simulations with
1000 bootstrap replications at the usual significance
levels ρ (.01, .05 and .1) for different sample sizes.
Results are gathered in Tables 1, 2, 3, 4, 5 and 6.

Model 1, d = 1
n�100 · ρ 1 5 10

10 3.02 7.52 13.02
30 1.78 6.08 11.54
50 1.18 5.28 10.56
100 1.11 5.21 10.34
200 1.04 5.06 10.08

Table 1: Empirical size of the bootstrap test, Model
1, d = 1

Tables 1, 2, 3, 4, 5 and 6 display that the em-
pirical sample sizes are in all the cases quite close
to the nominal significance levels for sample sizes
greater than or equal to n = 50. In addition, there
are no considerable differences between the indepen-
dent (Model 1) and dependent (Model 2) situations.
However, it would be interesting to address a deeper
sensitive analysis as future work in order to check
if there are remarkable influences, for instance, on
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Model 1, d = 1/3
n�100 · ρ 1 5 10

10 3.08 7.38 11.86
30 1.42 6.18 11.04
50 1.24 6.02 10.26
100 1.12 4.88 10.18
200 1 4.90 10.06

Table 2: Empirical size of the bootstrap test, Model
1, d = 1/3

Model 1, d = 0
n�100 · ρ 1 5 10

10 3.26 6.90 13.08
30 1.66 5.94 10.84
50 1.42 5.58 10.18
100 1.28 5.16 10.14
200 1.08 5.06 10.08

Table 3: Empirical size of the bootstrap test, Model
1, d = 0

Model 2, d = 1
n�100 · ρ 1 5 10

10 2.84 7.46 12.28
30 1.80 5.90 11.16
50 1.28 5.40 10.36
100 1.12 5.22 10.20
200 1.12 4.92 10.08

Table 4: Empirical size of the bootstrap test, Model
2, d = 1

Model 2, d = 1/3
n�100 · ρ 1 5 10

10 2.88 8.18 13.06
30 1.70 6.20 11.04
50 1.32 5.58 10.62
100 1.25 5.10 10.16
200 1.14 4.96 9.84

Table 5: Empirical size of the bootstrap test, Model
2, d = 1/3

Model 2, d = 0
n�100 · ρ 1 5 10

10 4.56 8.08 11.96
30 1.70 5.90 10.86
50 1.54 5.30 10.58
100 1.28 4.86 10.30
200 1 5.02 9.86

Table 6: Empirical size of the bootstrap test, Model
2, d = 0

the choice of the distributions involved in the sim-
ulations.

6. Conclusions

The classical one-sided hypothesis testing for the
mean of real random variables which values cannot
be observed as real values but intervals in which the
true value is included in has been proposed in this
contribution. Thus, the problem has been trans-
lated as a similarity test between the expectation of
a random interval and a specific interval. The limit
distribution of a suggested test statistic has been
analyzed by means of both asymptotic and boot-
strap approaches. Later, some simulations have
been achieved to show that the bootstrap approach
is suitable for moderate sample sizes.

In the future, a deep study of the influence of
the variables chosen for the simulations should be
carried out as well as a deep study regarding the
power of the proposed test. In addition, it would
be interesting to consider other similarity measures
proposed in the literature and to extend the results
provided in this work to the fuzzy framework. Some
applications of the methodology suggested in this
paper will be also tackled as well as the extension
of the problem to the fuzzy sets framework.
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