
Towards Evolving Parametric Fuzzy Classifiers
Using a Virtual Sample Generation Approach

Holger Hähnel1 Arne-Jens Hempel1 Gernot Herbst2

1Technische Universität Chemnitz, 09107 Chemnitz, Germany
2Siemens AG, Clemens-Winkler-Str. 3, 09116 Chemnitz, Germany

Abstract

Evolving classification models are designed to solve on-
line tasks with demands restricting computational power
and memory. The present paper proposes an evolving
version of an established fuzzy classification approach
based on fuzzy pattern classes. The approach incor-
porates a novel type of virtual sample generation. It
creates examples from given parametric model informa-
tion and thus inverts the classifier’s batch learning al-
gorithm. In an evolving environment, virtual examples
and real learning data are combined for on-line learning.
The main advantage of this approach is that the original
learning process retains its applicability while memory
demands are reduced significantly. Academic examples
demonstrate the feasibility.

Keywords: fuzzy classification, evolving classifier, vir-
tual sample generation

1. Introduction

During the last decade, the necessity for adaptive and
evolving models in artificial and computational intelli-
gence applications has been growing [1]. Especially
for hardware-based tasks in industrial environments, the
model builder is often confronted with the problems of
dynamic changes in the system to be modelled. De-
tecting and integrating these changes on-line into the
model while facing restrictions in computational power
and memory poses the challenge at hand. Hence, so-
called evolving intelligent systems (EIS) came into the
focus of recent research activities in many application
areas [2]. Notably in classification issues such as in con-
dition monitoring [3, 4], banknote authentication [5, 6],
and data streams with drift [7], adaptive and evolving
fuzzy approaches have been proven promising.
In the following [2] we distinguish between two con-

cepts which EIS can rely on. On the one hand, the model
parameters can be updated incrementally by adding
newly available data. In the context of a fuzzy classifier,
this may affect e. g. the parameters of the membership
functions and results in adaptive classifiers. The term
evolving also includes the second concept, referring to
models which are able to update their structure due to
new data as well as to changes in the model environment
[1]. Structural changes in classification tasks comprise
e. g. the reorganisation of fuzzy pattern trees [8], the
fusion, split, creation, and disappearance of classes.

In an adaptive context, the original learning data xold
are usually not available, mainly by reason of the mem-
ory demands formerly mentioned. We only have model
parameters pold learned from xold. Thus, classical meth-
ods perform a mapping (pold, xnew) 7→ pnew for updat-
ing the parameters on the basis of new data xnew. In
convenient cases, such mappings contain “exact” recur-
sive expressions, which result in the same parameters
that would have been achieved when learning the model
from scratch. For example, parameterisations that rely
on statistical moments of the learning data suit well for
this purpose. For more elaborate parameterisations, e. g.
the ones based upon an optimisation scheme, the update
mappings mostly end up in heuristics.

In order to avoid heuristics, our approach for an evolv-
ing fuzzy classifier goes beyond such conventional meth-
ods. Roughly speaking, we invert the classifier’s batch
learning process. That is to say we generate a set of
virtual examples xvs given only the knowledge of pold as
soon as an update is appropriate.1 Afterwards, the well-
established learning algorithm can advantageously be
utilised to compute pnew in terms of (xvs, xnew) 7→ pnew.

Virtual sample generation (VSG) was originally used
to incorporate prior information into a machine learning
task [9, 10]. It has been shown that VSG in this context
is equivalent to incorporating the prior knowledge as a
regulariser. Compared with this, the focus of the paper
at hand is on adaptive classifiers, which leads to a differ-
ent procedure. Besides an incremental model update it
also allows the inclusion of evolving phenomena such as
the fusion of classes. Moreover, our VSG method might
also be beneficial for the integration of prior information.
Due to their interpretability, the model parameters can be
rather easily determined based on expert specifications.
The VSG bymeans of the mapping pprior 7→ xvs,prior sub-
sequently provides virtual learning data, which serve as
prior information similar to [9]. In this article, however,
we will focus on incremental learning and adaption of
classifiers using chunks of new data.

The remainder of this article is organised as follows:
In Sect. 2, the underlying parametric model and learning
method are presented, followed by the virtual sample
generation approach and its application for an adaptive
classifier in Sect. 3. The results are illustrated with the
help of toy examples in Sect. 4.

1We will not discuss the conditions for some kind of “update ne-
cessity” in this paper. Nevertheless, it will become obvious that our
method shows its advantages in the presence of occasional update cy-
cles rather than in “any-time up-to-date” tasks [2].

16th World Congress of the International Fuzzy Systems Association (IFSA)
9th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT)

© 2015. The authors - Published by Atlantis Press 1111

2. The Classifier’s Foundation: Fuzzy Pattern
Classes

We already characterised our type of virtual sample gen-
eration as an inversion of the classifier’s batch-learning
process. Accordingly, we first give a brief description
of the basic model for the fuzzy classifier, which we
designate as fuzzy pattern class (FPC). Afterwards, the
learning process and its parameterisations are presented
in order to prepare the subsequent VSG description.

In our opinion, fuzzy classifiers based on FPCs fea-
ture a number of advantages in comparison to other ap-
proaches, such as Gaussian membership functions. They
constitute a compromise between a high data compres-
sion, interpretability, andflexibility and have been proven
beneficial for many practical applications in the fields
transportation science [11], medical diagnosis [12], time
series analysis [13], and others.

2.1. Definition and Properties

An FPC is defined on a so-called class space X̃, not on
the original feature space X ⊂ RM . More exactly, a
linear mapping t, with

x̃ = t(x) = T (x − r) , (1)

realises the transformation between X and X̃. T denotes
a rotation matrix with T−1 = T>, which depends on a
set of rotation angles ϕi, i = 1, . . . , M − 1 (see Fig. 1).
Hereby, one is able to model dependencies between the
different features. r is called the FPC’s representative
and acts as mean w. r. t. the data that describes the class.

x1

x2

r
ϕ1 x̃1

x̃2

Figure 1: Transformation of the feature space given by (1).

Within the class space, an FPC forms a side-specific
multivariate parametric fuzzy set given by the member-
ship function (MF)

µ̃(x̃) =
1

1 +
1
M

M∑
j=1

(
1

bj, l/r
− 1

)
·
�����

x̃ j

cj, l/r

�����

d j, l/r
. (2)

It can be understood as an aggregation of M univari-
ate MFs by a compensatory Hamacher operator. In
each dimension, an FPC is governed by the left and
right class borders cl/r ∈ R+ with their according border
memberships bl/r ∈ [0, 1] and the fuzziness parameters
dl/r ∈ [1,∞). The case dl/r → ∞ indicates a crispmodel.
Figure 2 illustrates the univariate case of (2).
Obviously, we can also define the MF on the original

feature space X by setting

µ(x) := µ̃(t(x)) = µ̃(T (x − r)) . (3)

−cl 0 cr

bl

br

1

x̃

µ̃(x̃) dr = 1
dr = 2

dr = 10

Figure 2: A univariate version of the MF in (2).

When compared with other classification methods
such as support vector machines or artificial neural net-
works, the interpretability of fuzzy approaches has often
been stressed. This holds notably for the parameters
of an FPC, which are highly comprehensible, e. g. for
machine operators and other laypersons.

An FPC can be found on different levels in fuzzy clas-
sifiers. First, the modelling of a class by (2) in connec-
tion with (1) might be sufficiently accurate. Due to the
MF’s high flexibility this applies to many problems with
convex object morphologies. Beyond that, FPCs can be
used as basic building blocks of so-called fuzzy classifier
trees in order to model more complex structures, partic-
ularly non-convex class shapes [8]. We will restrict the
subsequent considerations to the former case.

2.2. Batch Learning of Fuzzy Pattern Classes

First of all, let us look at a general multi-class prob-
lem, in which K denotes the number of classes. Within
the scope of our concept, we aim to learn member-
ship functions µk , for k = 1, . . . , K , from a given set
{(x1, y1), . . . , (xN , yN)} ⊂ RM × {1, . . . , K } of learn-
ing data. If a test datum x ∈ RM belongs to the k∗-th
class, the classification shall yield a high truth value
µk∗ (x) and low truth values µk (x) for k , k∗. Thus,
a way to classify x in a crisp sense would be to declare
k∗ = argmaxk µk (x). Another possibility is to take the
term membership literally by predefining a benchmark
µ̄ ∈ [0, 1] and assigning all classes k with µk (x) ≥ µ̄ to
the test datum. This results in a non-discriminatory clas-
sifier and is especially beneficial for transitional states,
e. g. in the field of condition monitoring.

For one-class classification tasks, the benchmark ap-
proach seems to be a good choice as well, since there
is only one truth value µ(x). This raises the question
whether unary and multi-class classification problems
can also be treated with the same learning algorithm. In
fact, FPCs offer the advantage that each class is learned
independently, which splits the above mentioned K-class
problem in K one-class tasks. Hence, we restrict the fol-
lowing presentation to one-class classification for data
XL = {x1, . . . , xN }. Furthermore, only aspects essential
for understanding the VSG are given. A more elaborate
description can be found in [14].

Learning of the representative. The representative r
of an FPC is given by the mean

r =
1
N

N∑
i=1

xi . (4)

1112

Learning of the rotation matrix. The rotation matrix
T of (1) is obtained via a principal component analysis
(PCA) of XL. By X̃L = { x̃i, i = 1, . . . , N, x̃i = t(xi)}
we denote the data transformed into the class space.
The parameters of the MF in (2) can be learned sepa-

rately for each dimension of the class space. For the sake
of clarity, we therefore omit the dimension index j in the
following and consider projections X̃P = { x̃1, . . . , x̃N } of
X̃L to any dimension.

Learning of the class borders. The class borders cl/r
are learned by

cl = − min
i=1, ...,N

(x̃i − ce) and (5)

cr = max
i=1, ...,N

(x̃i + ce) , (6)

where ce ≥ 0 is a task specific value (e. g. depending
on a sensor resolution or similar) denoted as elementary
fuzziness. Alternative parameterisations for cl/r based
on statistical properties of the data are given by [4].
Learning of the fuzziness parameters. The fuzziness

parameters can be learned in different ways. While [15]
proposes an approach based on the so-called mean dis-
tance alteration of adjacent objects, we prefer a statisti-
cally motivated method. To this end, we define the sets
of left- and right-sided objects

Ol = { x̃l, i }Nl
i=1 with 0 > x̃l, i ∈ X̃P, i = 1, . . . , Nl,

Or = { x̃r, i }Nr
i=1 with 0 ≤ x̃r, i ∈ X̃P, i = 1, . . . , Nr .

(7)

The one-sided sample excess kurtoses γl/r are calculated
from the union of the left-/right-sided objects and their
mirrored objects w. r. t. zero. Formally, this yields

γl/r =
Nl/r

∑Nl/r
i=1 x̃4l/r, i(∑Nl/r

i=1 x̃2l/r, i
)2 − 3 . (8)

Afterwards, the excess kurtoses are mapped to dl/r by

dl/r = 1 + 19−γl/r/1.2 . (9)

This parameterisation is compatible to the classical ver-
sion in [15] since d = 2 is associated with normally
distributed data and d = 20 with uniformly distributed
data. Moreover, we improve the learning algorithm,
mainly with regard to interpretability, without affecting
the characteristics of the MF.
With a view to the practicability of the virtual sample

generation, the border memberships bl/r are set to 0.5.
This constitutes no loss of generality due to the fact that
bl/r and cl/r depend on each other [14].

3. Virtual Sample Generation for Adaptive FPCs

As already mentioned above, the virtual sample gener-
ation (VSG) approach can be seen as an inversion of
the batch learning procedure presented in Sect. 2. The
main question is: How can we—given a parametric class
description—generate a set of virtual examples which,
when presented to the batch learning algorithm above,
results in a set of parameters similar to the result obtained

from learning the original data? One main idea of this
paper is to employ a parametric distribution function to
generate virtual examples, and map the parameters of the
MF to the parameters of the distribution.

In the following, this approachwill be presented at first
in a general manner (Sect. 3.1), followed by a concrete
implementation using a beta distribution for the sample
generation (Sect. 3.2). Ideas for the application of the
VSGwithin an adaptive classificationworkflow are given
in Sect. 3.3.

3.1. General Procedure for the VSG

In Sect. 2 it became clear that learning the d param-
eter (“fuzziness” of the membership function) can be
related to the excess kurtosis of the learning data distri-
bution. For the problem of virtual sample generation,
we can take advantage of this fact by using a distribution
function with a parameterisable kurtosis. When given
a certain value of d, this enables us to generate objects
of a distribution with a kurtosis similar to the kurtosis
of the original learning data. Matching the remaining
parameters of the membership function can be obtained
by translation, rotation and scaling.

Since the batch learning algorithm fromSect. 2.2 treats
all dimensions of the learning data separately as unidi-
mensional problems, the sample generation task will be
split into unidimensional problems as well. One aim of
this section is therefore to provide a unidimensional de-
terministic procedure to generate a virtual sample based
on a set of parameters of the MF presented in Sect. 2.
Learning this generated data set is to result in a MF that
matches the original parameters as close as possible.

In general, we consider a family of symmetric cumu-
lative distribution functions (CDFs) Fα , which represent
random variables Ũα by

u = Fα (ũ) = P(Ũα ≤ ũ) . (10)

The distribution parameter α shall be related to the ex-
cess kurtosis γ by a mapping α = f (γ). However, the
expectation shall be independent of α, i. e. EŨα = m.
We denote the corresponding inverse CDF for fixed α as

G(u) = inf{ũ ∈ R : Fα (ũ) ≥ u, 0 ≤ u ≤ 1} . (11)

Our method using the inverse CDF G can be consid-
ered as a deterministic version of the inverse transfor-
mation method, known from the field of pseudo-random
number sampling [16]. Followed by scaling and transla-
tion, it generates virtual examples in the class space (and
therefore in the original feature space). This procedure,
which will be divided in several steps in this section,
can be visualised as given in Fig. 3. From an abstract
perspective, its core can be understood by the scheme

u
G−−−−→

step V
ũ

t̃−−−−−→
step VI

x̃vs
t−1−−−−−−→

step VII
xvs . (12)

Starting from a deterministic uniform samplewith val-
ues u, the inverse CDF is used to create values ũ in a
normalised space, which can be translated and scaled to

1113

obtain examples x̃vs in the class space. Finally, these are
retransformed into the original feature space as depicted
in Fig. 1, yielding the desired virtual examples xvs.

ũ

u

0.5

1

1

Fαl/r (ũ)

x̃vs,r,i = t̃r(ũri)x̃vs,l,i = t̃l(ũli)

ul1

ul,Nl

0

ur1

ur,Nr

xr − cl r + crr

class

feature

x̃0

xvs,l,1 xvs,l,Nl xvs,r,Nr

−cl cr

= =

space

space

Figure 3: Illustration of the virtual sample generation
process for the univariate case, starting from a synthetic
uniform distribution and finally resulting in virtual ex-
amples in the feature space.

For each dimension of the FPC and both the left- and
right-hand side of the MF, the algorithm comprises the
following steps to generate a virtual sample of size N :

Step I: Recalling the relation between dl/r and γl/r in
(9), the given parameter values dl/r can be used to com-
pute the excess kurtoses γl/r, and thus the distribution
parameter values αl/r by means of

αl/r = f
(
γl/r(dl/r)

)
. (13)

Step II: In subsequent steps, wewill need the left-sided
and right-sided conditional expection of the randomvari-
ables Ũαl and Ũαr , respectively, given by

ml = E
(
Ũαl | Ũαl < m

)
and mr = E

(
Ũαr | Ũαr ≥ m

)
.

(14)

Step III:Due to themembership function’s asymmetry,
the number of examples on the left- and right-hand side
Nl and Nr will in most cases not be the same and must
be determined. Of course it holds

N = Nl + Nr . (15)

In our approach, the numbers Nl and Nr are chosen in a
way that the resulting virtual examples xvs preserve the
location of the class representative r , which means that
the examples x̃vs in the class space must sum up to zero:

0 !
=

N∑
i=1

x̃vs, i =
Nl∑
i=1

x̃vs,l, i +
Nr∑
i=1

x̃vs,r, i . (16)

However, all virtual examples will be available only at
the end of the algorithm. Hence, it is convenient to

approximately replace (16) by an equation which relies
on the conditional expectations computed in step II. To
this end, we make use of the linear transformations t̃l/r,
which map the values ũl/r onto x̃l/r (see Fig. 3). It will
later become clear that—in anticipation of steps IV to
VI—these mappings depend non-linearly on Nl and Nr =

N − Nl, respectively. Thus, the approximative version of
(16) is given by

0 = Nl · t̃l(ml) + (N − Nl) · t̃r(mr) =: H (Nl), (17)

with the non-linear function H . Numerically solving this
equation will yield Nl, as well as Nr via (15).
Step IV: A synthetic uniform distribution of values

U = Ul ∪Ur with left sideUl = {ul,1, ul,2, . . . ul,Nl } and
right sideUr = {ur,1, ur,2, . . . ur,Nr } is set up.
Step V: The distribution information can now be im-

printed by applying the inverse CDFs Gl and Gr from
(11) for the respective side. This yields Ũ = Ũl ∪ Ũr
with

ũl/r, i = Gl/r(ul/r, i) .

Step VI: The elements of Ũl and Ũr exhibit syn-
thetic distributions of the CDF Fαl and Fαr , respectively,
on their corresponding domains. Still, they have to be
transformed into the class space, i. e. onto an axis of the
univariate MF. As pointed out before, this is conducted
by affine linear mappings t̃l/r, which we formalise by

x̃vs,l/r = t̃l/r(ũl/r) = vl/rũl/r + wl/r . (18)

Regarding Fig. 3, the offsetswl/r and the slopes vl/r result
from the conditional equations

t̃l(Gl (ul1)) = −cl, t̃r(Gr (ur,Nr)) = cr ,

and t̃l(Gl(0.5)) = t̃r(Gr(0.5)) = t̃l/r(m) = 0 .
(19)

Step VII: For the univariate case, the final step is to
transform the virtual examples x̃vs ∈ X̃ into the feature
space X. For the transformation from the class space
into the feature space, we can employ the inverse of the
tranformation t, defined in Sect. 2.1. We obtain

xvs,l/r = x̃vs,l/r + r . (20)

In the multivariate case, it is required that all seven steps
must be executed for every dimension. In order to cover
the entire class space and to prevent correlation between
different features of X̃, we further require a random per-
mutation of the virtual samples in each dimension. Only
after the permutation, the multivariate examples x̃vs can
be transformed (instead of (20)) according to

xvs = T> x̃vs + r . (21)

3.2. Concrete Implementation of the Algorithm

When choosing a CDF for the algorithm, it is clear that
not all CDFs support all values of the excess kurtosis
required for the permissible range of d parameter values
(d ≥ 1, cf. Sect. 2). In this section, we will employ a
symmetric beta distribution, which can be parameterised
for excess kurtoses γ ∈ (−2, 0). This corresponds to

1114

values 2 < d < ∞, which cover most practical cases. If
values 1 < d < 2 are needed (i. e. γ ∈ (0,∞)), one can
choose Student’s t-distribution. The special case d = 2
(γ = 0) is covered by the standard normal distribution.
For brevity, we will only cover the implementation using
the beta distribution in this paper.
The CDF of a symmetric beta distribution with the

distribution parameter α > 0 is defined as

u = Fα (ũ) =
1

B(α, α)

∫ ũ

0
(τ(1 − τ))α−1dτ (22)

on its support [0, 1]. B(α, β) =
∫ 1
0 τα−1(1 − τ)β−1dτ

denotes the beta function. The excess kurtosis yields

γ = − 6
3 + 2α

. (23)

The inverse CDF G(u) as defined in (11) cannot be given
in analytic form. Hence, numerical evaluation becomes
necessary. The concrete implementation of the algo-
rithm using the beta CDF is presented in the following.
Step I: By means of (9) and (23), the distribution

information dl/r has to be mapped onto the distribution
parameters αl/r via the excess kurtoses γl/r. We obtain

γl/r = −65
ln (dl/r − 1)

ln 19
and hence

αl/r = − 3
γl/r
− 3
2
=

5
2

ln 19
ln (dl/r − 1)

− 3
2
. (24)

Step II: By virtue of (14) and with m = EŨ = 0.5
in mind, the left- and right-sided conditional expections
can be computed:

ml =
2

B(αl, αl)

∫ 0.5

0
ταl (1 − τ)αl−1 dτ (25)

mr =
2

B(αr, αr)

∫ 1

0.5
ταr (1 − τ)αr−1 dτ (26)

ml/r =
1
2
∓ 1
22αl/rαl/rB(αl/r, αl/r)

(27)

Step III: As denoted, we anticipate steps IV to VI
in order compute the left-hand side and right-hand side
sample sizes Nl and Nr. That is to say, we have to
specify at least the leftmost value ul1 and the rightmost
value ur,Nr of U for determining the parameters of the
linear transformations t̃l/r (cf. (19)). It is proposed to
choose these values dependent on Nl/r in terms of

ul1(Nl) =
1

klNl
and

ur,Nr (Nl) = 1 − 1
krNr

= 1 − 1
kr(N − Nl)

,

(28)

where kl/r > 0 denote additional parameters, suitable
to tune the algorithm. We skip some elementary alge-
bra, which transforms (17) into the concrete non-linear
equation for the determination of Nl, yielding

0 = Nl

(
2cl [ml − Gl (ul1(Nl))]

1 − 2Gl (ul1(Nl))
− cl

)
(29)

− (N − Nl)
(
2cr

[
mr − Gr

(
ur,Nr (Nl)

)]
2Gr

(
ur,Nr (Nl)

) − 1 + cr

)
.

Nr can then be computed via Nr = N−Nl. Note that there
will be a kind of discretisation error, since the optimal
number Nl/r will in general not be an integer value.
Step IV: The boundary points of the set U =Ul ∪

Ur of equidistantly distributed values uli and uri have
already been given in (28). In a similar manner, but
non-parametrically, we propose

ul,Nl =
1
2
− 1
4Nl

and ur1 =
1
2
+

1
4Nr

(30)

for the “mid points” ofU . Thus, eachUl/r results from a
synthetic uniform distribution of Nl/r valueswith starting
point ul/r,1 and end point ul/r,Nl/r .
Step V: The inverse CDFs for the left- and right-hand

side are applied to Ul and Ur, respectively, using the
distribution information computed by (24):

ũl/r, i = Gl/r (ul/r, i), i = 1, . . . , Nl/r (31)

An example of the results of steps IV and V can be seen
in Fig. 4. The parameters kl/r have been set to 4 herein.

0 0.1 0.2 0.3 0.4 0.5

0 0.1 0.2 0.3 0.4 0.5

Figure 4: Equidistantly distributed values uli of step IV
(upper plot) and synthetically beta-distributed values ũli
of step V (lower plot) for Nl = 94 and αl = 2.19.

Step VI: The elements of Ũl/r are transformed into
the class space, i. e. onto an FPC axis, using the side-
specific linear mappings t̃l/r from (18). In case of the
beta distribution, we achieve

x̃vs,l, i =
2cl

1 − 2ũl1
(ũli − ũl1) − cl and (32)

x̃vs,r, i =
2cr

2ũr,Nr − 1
(
ũr, i − ũr,Nr

)
+ cr . (33)

Since the execution of step VII is independent of the
chosen distribution type, we refer to Sect. 3.1 for its
description.

3.3. Using VSG for Adaptive Classifiers

As mentioned at the beginning of Sect. 3, we want to
construct the virtual sample generation in a way that the
set of virtual examples xvs leads to the same FPC param-
eters (gained by means of the batch learning procedure
in Sect. 2.2) as the original learning data x. This marks a

1115

crucial point for the usage of VSG in adaptive classifiers
since the VSG will be used several times in an on-line
learning task and thus errors in the process might ac-
cumulate. It turns out that a high accuracy of the VSG
in this sense is achieved by tuning the parameters kl/r
such that the discretisation error of step III can be nearly
compensated.
For the setup of an adaptive classification process

based on fuzzy pattern classes and the presented virtual
sample generation, the following workflow is proposed:

1. Given an initial set of learning data XL,0, compute
the membership function parameters p0 by means
of the batch learning procedure of Sect. 2.2. Set the
update index I := 0.

2. Forget XL, I .
3. When an update is necessary, generate a virtual

sample Xvs, I on the basis of pI .
4. Increment I := I+1. New learning data for updating

has been collected and is denoted as Xnew, I .
5. Compute the updated MF parameters pI on the

basis of XL, I := Xvs, I−1 ∪Xnew, I by batch learning.
6. Go back to 2.

In a straightforward approach, the size of the virtual
samples Xvs, I can be chosen equal to the size of XL, I ,
which means that the class is growing continously with-
out forgetting effects. Moreover, by reducing the sample
size of Xvs, I , the weight of new learning data can be in-
creased and thus the impact of old data can successively
be reduced. Since this practically important strategy is
not investigated within the scope of the present paper, it
leaves space for future research.

4. Examples

The functional capability of the proposed algorithm shall
be illustrated with the help of toy examples. First, the
adaption of an FPC according to Sect. 3.3 will be covered
with the help of a unidimensional problem. Afterwards,
a two-dimensional task is investigated.

4.1. Unidimensional Case

The complete learning data set for the unidimensional ex-
ample comprises 200 objects which exhibit a determin-
istic uniform distribution from one to four. Additionally,
each object has independently been superimposed with
a Gaussian disturbance N (0, 0.25).

The starting configuration XL,0 consists of the 170
leftmost learning objects and their associated FPC as
initial model, see Fig. 5a. Based on this initial model, we
add the remaining 30 rightmost learning objects Xnew, I
in steps I = 1, 2, 3, each with ten objects.

The idea behind this approach is to show the adaption
of the class borders cl/r as well as the right-hand-sided
fuzziness parameter dr and the class representative r .
After each update, we compare the adapted FPC with its
batch learning counterpart. Since the reader may not be
acquainted with FPCs, we compare the adaption visually,
see Fig. 5b and Fig. 5c, and quantitatively, see Table 1.
As for the visual comparison, only the initial, first and

end configuration will be displayed, due to the space
limitations. Besides the batch-learned FPC in blue and
the adapted FPC in red, Fig. 5b and Fig. 5c display also
the corresponding virtual examples in blue and the new
learning objects in red as singletons.

Along with this visual confirmation for the adaption
of cl/r, dr, and r , Table 1 displays the values and abso-
lute errors for each update step I in comparison to the
corresponding batch learning step.

I method r cl cr dl dr

1
VSG 2.37 2.16 1.56 5.3 20
batch 2.36 2.15 1.57 5.4 20

abs. err. 0.01 0.01 0.01 0.1 0

2
VSG 2.47 2.26 1.81 6.39 16.64
batch 2.45 2.24 1.83 7.04 18.38

abs. err. 0.02 0.02 0.02 0.65 1.74

3
VSG 2.58 2.37 2.52 7.54 8.86
batch 2.56 2.35 2.54 7.94 8.37

abs. err. 0.02 0.03 0.02 0.4 0.49

Table 1: FPC parameters and adaption errors for the
unidimensional example of Fig. 5.

As anticipated, the change in the distribution due to
the more noisy objects leads to a smoother form of the
class as well as an expansion of the class. Both visual
observations in Fig. 5b and Fig. 5c are reflected by the
decrease of dr and the increase of the class borders cl/r
(notably cr), see Table 1.

Errors occur mainly in the d parameter because it is by
construction not as robust as r or cl/r. However, further
experiments showed that there is no systematic error in
d such that it averages to zero for continuing updates.
We remark that the elementary fuzziness ce for the 1D

and the following 2D case has been set to zero.

4.2. Two-Dimensional Case

For the two-dimensional example, we first define 300
equidistantly distributed objects on the segment from
(1, 1) to (3, 2). Similar to the unidimensional case, these
points are disturbed with independent random vectors,
yielding the initial learning data XL,0. As disturbance
in each dimension, we use a sum of three independent
uniform distributions, which has zero mean and variance
1. The according initial FPCmodel is depicted in Fig. 6a.

In order to show the classifier’s adaption, we only use
one step I = 1 based on new dataXnew,1 with sample size
20. The newdata are constructed by adding disturbances,
in the sameway as for the initial learning data, to the point
(3.25, 2.25). Figure 6b visualises the sets XL,0 (white)
and Xnew,1 (black) and the model batch-learned from
their union. An expansion of the class (i. e. increased
cl/r) as well as a smoother slope of the MF at the upper
right area (i. e. decreased d) can be observed.

The result of the adaption by means of the VSG is
displayed in Fig. 6c. The white dots denote the 300
virtual examples Xvs,1. High accordance with the batch-
learned case can visually be attested.

1116

−2 −1 0 1 2 3 4 5
0

0.5

1

feature space

m
em

be
rs

hi
p

/ n
ew

 o
bj

ec
ts

x
learn

μ
FPC

start

(a) 170 learning objects and their initial FPC

−2 −1 0 1 2 3 4 5
0

0.5

1

feature space

m
em

be
rs

hi
p

/ n
ew

 o
bj

ec
ts

VS
x

new

μ
FPC

batch

μ
FPC

VS

(b) 1st update step with 10 additional objects

−2 −1 0 1 2 3 4 5
0

0.5

1

feature space

m
em

be
rs

hi
p

/ n
ew

 o
bj

ec
ts

VS
x

new

μ
FPC

batch

μ
FPC

VS

(c) 3rd update step with 10 additional objects

Figure 5: Example for the adaption of a univariate FPC by means of the VSG in three update steps (2nd not displayed).

(a) 300 learning objects and their initial FPC (b) Batch learning from old and new data (c) Update step with virtual examples and new data

Figure 6: Example for the adaption of a two-dimensional FPC by means of the VSG in one update step.

Table 2 provides the quantitative comparison between
the batch-learned and the VSG-based adaptive proce-
dure. Similar to the unidimensional case, the accuracy
of the adapted FPC is high w. r. t. the representative r
and the class borders c1/2,l/r. Again, deviations occur for
the fuzziness parameter d. The remarks passed therefor
in the unidimensional case remain valid for the two-
dimensional example.

j method rj cj l cjr dj l dj r

1
VSG 2.05 2.25 2.09 5.62 3.25
batch 2.05 2.25 2.09 6.59 3.09

abs. err. 0.01 0.01 0.00 0.97 0.16

2
VSG 1.51 1.31 1.49 2.91 2.36
batch 1.51 1.32 1.45 3.36 2.27

abs. err. 0.00 0.01 0.04 0.46 0.08

Table 2: FPC parameters and adaption errors in dimen-
sions j = 1, 2 for the example of Fig. 6.

5. Conclusion

We presented an approach for using a novel type of vir-
tual sample generation in the context of an evolving fuzzy
classifier. Therefore, we virtually inverted the existing

batch learning process for a specific multivariate para-
metric fuzzy set, called fuzzy pattern class (FPC). The
virtual examples have been generated in way that the
model information, i. e. the FPC parameters, were re-
tained. The incremental model update for chunks of new
data was realisable by means of the familiar batch learn-
ing algorithm, but without the need to store the data.
This constitutes the main contribution of the article.

Feasibility has been shown in terms of an adaptive
learning task for a unidimensional and a two-dimensional
toy example. The classifier based on virtual samples was
able to adequately reproduce the evolving characteristics
of the learning data.

The method is not only restricted to the incremen-
tal adaption of classifiers using new learning data. It
might also enable us to cope with other evolving phe-
nomena, such as the fusion of similar classes of a clas-
sifier. By generating and merging virtual examples for
two (or more) similar classes, a resulting class can easily
be learned using the existing batch learning algorithm.

Main points for future research include tests with real-
world data, an incorporation of forgetting effects, and the
investigation of other phenomena of evolving classifiers
such as the fusion or the split of classes. A compari-
son with related adaptive fuzzy and non-fuzzy classifiers
might also be fruitful.

1117

References

[1] Moamar Sayed-Mouchaweh and Edwin Lughofer.
Prologue. In Moamar Sayed-Mouchaweh and Ed-
win Lughofer, editors, Learning in Non-Stationary
Environments, pages 1–17. Springer New York,
2012.

[2] Fernando Gomide and Edwin Lughofer. Recent
advances on evolving intelligent systems and ap-
plications. Evolving Systems, 5(4):217–218, 2014.

[3] Arne-Jens Hempel, Holger Hähnel, and Gernot
Herbst. Learning non-convex fuzzy classifiers us-
ing single-class SVMs. In 2013 IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE 2013),
pages 1–8, 2013.

[4] Holger Hähnel, Arne-Jens Hempel, Uwe Mönks,
and Volker Lohweg. Integration of statistical anal-
yses for parameterisation of the fuzzy pattern clas-
sification. In F. Hoffmann and E. Hüllermeier,
editors, 22. Workshop Computational Intelligence,
6.–7. Dezember 2012, volume 45, pages 115–131.
Karlsruher Institut für Technologie (KIT), 2012.

[5] Walter Dyck, Thomas Türke, Johannes Schaede,
and Volker Lohweg. A fuzzy-pattern-classifier-
based adaptive learning model for sensor fusion.
In 2007 IEEE Workshop on Machine Learning for
Signal Processing, pages 282–287, 2007.

[6] Arne-Jens Hempel, Holger Hähnel, Uwe Mönks,
and Volker Lohweg. SVM-integrated fuzzy pattern
classification for nonconvex data-inherent struc-
tures applied to banknote authentication. In 3.
Jahreskolloquium Bildverarbeitung in der Automa-
tion (BVAu 2012), 2012.

[7] Mahardhika Pratama, SreenathaG. Anavatti, and
Edwin Lughofer. An incremental classifier from
data streams. In Aristidis Likas, Konstantinos
Blekas, and Dimitris Kalles, editors, Artificial
Intelligence: Methods and Applications, volume
8445 of Lecture Notes in Computer Science, pages
15–28. Springer International Publishing, 2014.

[8] Arne-Jens Hempel, Holger Hähnel, and Gernot
Herbst. Building hybrid fuzzy classifier trees by
additive/subtractive composition of sets. In 15th
International Conference on Information Process-
ing andManagement of Uncertainty in Knowledge-
Based Systems (IPMU 2014), pages 516–525,
2014.

[9] P. Niyogi, F. Girosi, and T. Poggio. Incorporat-
ing prior information in machine learning by creat-
ing virtual examples. In Proceedings of the IEEE,
pages 2196–2209, 1998.

[10] Jing Yang, Xu Yu, Zhi-Qiang Xie, and Jian-Pei
Zhang. A novel virtual sample generation method
based on gaussian distribution. Knowledge-Based
Systems, 24(6):740–748, 2011.

[11] Michael Päßler and Steffen F. Bocklisch. Fuzzy
time series analysis. In Rainer Hampel, Michael
Wagenknecht, and Nasredin Chaker, editors, Fuzzy
Control: Theory and Practice, pages 331–345.
Physica, Heidelberg, 2000.

[12] B. Schmidt, F. Bocklisch, S. M. Päßler, M. Czon-
snyka, J. Schwarze, J. and J. Klingelhöfer. Fuzzy
pattern classification of hemodynamic data can be
used to determine noninvasive intracranial pres-
sure. Acta Neurochirurgica Supplement, 95:345–
349, 2006.

[13] Gernot Herbst and Steffen F. Bocklisch. Recog-
nition of fuzzy time series patterns using evolving
classification results. Evolving Systems, 1(2):97–
110, 2010.

[14] Arne-Jens Hempel and Steffen F. Bocklisch. Fuzzy
pattern modelling of data inherent structures based
on aggregation of data with heterogeneous fuzzi-
ness. In Gregorio Romero Rey and Luisa Martinez
Muneta, editors, Modelling Simulation and Opti-
mization, chapter 28, pages 637–655. INTECH,
2010.

[15] Steffen F. Bocklisch. Prozeßanalysemit unscharfen
Verfahren. Technik, Berlin, 1987.

[16] L. Devroye. Non-Uniform Random Variate Gener-
ation. Springer-Verlag, New York, NY, 1986.

1118

