International Conference on Computer Science and Intelligent Communication (CSIC 2015)

High Performance Approximate Sort Algorithm
Using GPUs

Jun Xiao, Hao Chen, Jianhua Sun

College of Computer Science and Electronic Engineering

Hunan University
Changsha, China
xia0jun9081(@gmail.com, haochen@aimlab.org, jhsun@aimlab.org

Abstract—Sorting is a fundamental problem in computer
science, and the strict sorting usually means a strict order with
ascending or descending. However, some applications in reality
don’t require the strict ascending or descending order and the
approximate ascending or descending order just meets the
requirement.

Graphics processing units (GPUs) have become accelerators
for parallel computing. In this paper, based on the popular CUDA
parallel computing architecture, we propose high performance
approximate sort algorithm running on multicore GPUs. The
algorithm divides the distribution interval of input data into
multiple small intervals, and then uses the processing cores of
GPUs to map the data into the different intervals in parallel.
Finally by combining the small intervals, we can make the data
between the different intervals in order state and the data in the
same interval is disorder state. Thus we can get the approximate
sorting result and the result is characterized by a general order
but local disorder. By utilize the massive core of GPUs to parallel
sort data, the algorithm can greatly shorten the execution time.
Radix sort is the fastest GPUs-based sorting and the experimental
results show that our approximate sort algorithm is two times as
fast as the radix sort and far exceeds all the GPUs-based sorting.

Keywords—sorting, parallel computing, high performance, GPUs,
CUDA

I. INTRODUCTION

Sorting is one of most widely studied algorithmic problems
in computer science, and has become a fundamental
component in data structures and algorithms analysis. Many
applications could be just classified as sorting problem, and
the other applications depend on the efficient sorting as an
intermediate step to accelerate the execution time [1], [2]. For
example, search engine widely uses of sorting to select
valuable information to users. Therefore, designing and
implementing efficient sorting routine is important on any
parallel platforms. As many parallel platforms spring up, we
need to explore efficient sorting techniques for utilizing
parallel computing power [3].

Recently, Graphics Processing Units have evolved into high
performance accelerators and provide considerably higher
peak computing and memory bandwidth than CPUs[4]. For
instance, NVIDIA’s GeForce GTX 780 GPUs contain up to
192 scalar processing cores (SPs) per chip. And, these cores

© 2015. The authors - Published by Atlantis Press 121

are broken up into 12 Streaming Multiprocessors (SMs) and
each SM comprises 16 SPs. A 3GB off-chip global memory is
shared by the 192 on-chip cores. By introduction of CUDA,
programmers could use C to program GPUs for general-
purpose computation [5]. In consequence, it is an explosion of
research on GPUs for high performance computing [6]. With
the high computing power, advanced features such as atomic
operations, shared memory and synchronization, also lead into
modern GPUs.

Many researchers have proposed GPUs-based sorting
algorithms and transit from the coarse-grained parallelism of
multicore chips to the fine-grained parallelism of manycore
chips. Quick sort is a popular sorting algorithm, and Cederman
et al. [7] have adapted quick sort for GPUs to parallelization.
Satish et al. [3] have designed efficient sorting algorithms to
make use of the fast on-chip memory provided by NVIDIA
GPU and change from a largely task-parallel structure to a
more data-parallel structure. The studies of GPUs sorting
mainly concentrate on bitonic sort, quick sort, radix sort and
merge sort.

However, these GPUs-based sorting are belong to the strict
sorting. The strict sorting usually means the strict order with
ascending or descending after sorting. Some applications in the
reality don’t necessarily require the strictly ascending or
descending order, and tolerate unsorted order to some extent.
As a result, the approximately ascending or descending order
already meets the requirement. In this situation, the overhead
of the strict sorting is relatively high.

Our focus, in this paper, is to develop the approximate sort
on manycore GPUs which is suitable for sorting data to reach
the state of the approximately ascending or descending order.
Our experimental results demonstrate that our approximate
sort is fastest in all previously published GPUs sorting when
running on current-generation NVIDIA GPUs. The radix sort
is the fastest GPUs sorting for the large amount data[3] and
our approximate sort could achieve at least more than twice
compared with GPUs-based radix sort.

The rest of this paper is organized as follows: In Section 2
we will describe the background on GPUs architecture and the
sorting on GPUs. In Section 3 we will elaborate the
approximate sort in detail. In Section 4 we will present the

mailto:jhsun@aimlab.org

experimental evaluation of the approximate sort compared
with GPUs-based sorting.

II. BACKGROUND

In this section, we will provide background information on
GPU architecture and the GPU-based sorting.

A. GPUs architecture

Our approximate sort algorithm is designed and
implemented on the NVIDIA GPUs architecture. GPUs have
become high performance accelerators for parallel computing,
which are massively multi-threaded data-parallel processor.
GPUs contain two major components: the processing
component and the memory component.

A certain number of streaming multiprocessors comprises
the processing component. At the same time, each streaming
multiprocessor includes a series of simple cores that execute
the in-order instructions. For high performance, a few tens of
thousands of threads are launched and these threads carry out
the same instruction on the different data sets. Threads in
GPUs have three-level hierarchy: each block includes
hundreds of threads mapped to a streaming multiprocessor and
a grid contains a set of blocks executed on a kernel [8].

In the memory component, the off-chip global memory in
GPUs is accessible across all streaming multiprocessors. The
data transfer between host and device memory is at the means
of DMA. A 16KB on-chip cache equipped in each streaming
multiprocessor, which has very high bandwidth and very low
access latency.

Our approximate sort algorithm leverages the CUDA Data
Parallel Primitives library [9], specifically its scan and reduce.
By using the CUDPP library, we avoid do tedious work that
the CUDPP has done for us.

B. Sorting on GPUs

We here present only the most relevant work because
sorting on GPUs has always been the research hotspot.

Early GPUs-based sorting algorithms were primarily based
on Batcher’s bitonic sort[10]. Barajlia et al. [11] presented a
practical bitonic sorting network implemented in CUDA when
bringing in the new general-purpose parallel platform.
Cederman et al. [7] developed an efficient implementation of
GPUs quick sort to make use of the highly parallel nature and
its limited cache memory. Satish et al. designed efficient
parallel radix sort and merge sort for GPUs, and their radix
sort is the fastest GPU sort [3].

Above mentioned sorting can be viewed as a feasible
alternative to sort a large amount of data on GPUs. However,
these sorting routines are all belong to the strict sorting. We
define the strict sorting that the strict order with ascending or
descending after sorting, otherwise call as the approximate
sorting. For example, we have an input array of (10, 8, 2, 9, 3,
1) and sort in ascending order. If the output is (1, 2, 3, 8, 9, 10)
with strict order, the sorting algorithm used is part of the strict
sorting. If the output is (1, 3, 2, 10, 9, 8) or others with
unsorted within the interval and sorted between the intervals,

122

the sorting algorithm used belongs to the approximate sorting.
The length of the interval controlled by the users and the
length of the interval is 3 in this case. For further explanation,
(1,3,2)and (10, 9, 8) are two intervals. (1, 3, 2) or (10, 9, 8) is
unsorted but every element in (1, 3, 2) is less than the one in
(10, 9, 8), that is the ascending order between the intervals and
it means the approximately ascending order.

Some applications in the reality don’t necessarily require
the strictly ascending or descending order, and tolerate
unsorted order to some extent. As a result, the approximately
ascending or descending order already meets the requirement.
In this situation, the overhead of the traditional sorting is
relatively high. We propose lightweight approximate sort on
manycore GPUs to address the above problem.

III. APPROXIMATE SORT ON GPUS

In the following section, we present the detail of
approximate sort algorithm on GPUs to parallelism.

Max = 10 Min=1

NUM_INTERVAL=3

input

interval_count array
offset array

prefix sum

interval_count array

approximately-sorted array

Fig. 1. Illustration of approximate sort on GPUs

As shown in Figure 1, our algorithm on GPUs operates in
three steps. First, each data element in the input array is
mapped into a smaller interval (the number of the smaller
intervals is a pre-defined parameter and typically much less
than the input size, NUM_INTERVAL=3 in our case). In this
step, we use offset array to maintain an ordering among all
data elements that are mapped into the same interval. At the
same time, the interval counter array is use to record the
number of data elements falling into each interval. Second, an
exclusive prefix sum operation is performed on the interval
counter array. In the third step, the results of the above two
steps are combined to produce the final coordinates that are
then used to transform the input array to the approximately-
sorted form.

Step 1: Similar to many parallel sort algorithms that
subdivide the input into the equally-sized intervals and then
sort each interval in parallel, we first map each data element of
the input array into an interval. As shown in Listing 1, the
number of the interval is a fixed value NUM_INTERVAL, and
the mapping procedure is a linear projection of each data
element of the input vector to one of the NUM_INTERVAL

intervals. The linear projection is demonstrated at lines 10 and
11 in Listing 1. The variables of min and max represent the
minimum and maximum value in the input respectively, which
can be obtained when using the CUDPP’s reduce tool on
GPUs. In this way, each interval represents a partition of the
interval [min, max], and all intervals have the same width of
(max — min) / NUM_INTERVAL. The data elements in the
input array are assigned to the target interval whose value
range contains the corresponding data element, and for brief
illustration we use interval index array to record the target
interval. In addition, another array interval count is
maintained to record the number of data assigned to each
interval. As shown at line 13, the offset array is based on an
atomic function provided by CUDA, atomiclnc, to avoid the
potential conflicts incurred by concurrent writes. The function
atomicInc returns the old value located at the address
presented by its first parameter, which can be leveraged to
indicate the local ordering among all the data eclements
assigned to the same interval. The Kepler GPUs have
substantially improved the throughput of atomic operations
compared to Fermi GPUs, which also demonstrated in our
implementation.

Listing 1: Assigning elements to intervals.

1 __global__ void assign_interval (uint *input, uint lenght, uint max, uint min,
2 uint *offset, uint xinterval_count, uint xinterval_index)
3 {

4 int idx = threadx.x+blockDim.x*blockldx.x;

5 uint interval_idx;

6 for (; idx<lenght ; idx+=total_threads)

7

8

{
uint value = input[idx];

9
10 interval_idx = (size - min) * (NUM_INTERVAL - 1) / (max — min);
11 interval_index[idx] = interval_idx;
12
13 offset[idx] = atomiclnc (&interval count[interval_idx],length);
14 }
15 }

1 __global__ void appr_sort (uint *key, uint *key_sorted, void *value, uint length,
2 void *value_sorted, uint *offset, uint xinterval_count,
uint xinterval_index)

3

4

5 int idx = threadldx.x + blockDim.x * blockldx.x;
6 uint count=0;

7 for (;idx < length;idx += total threads)

8

9

{
uint Key = key[idx];

10 uint Value = value[idx];

11

12 uint Interval_index = interval_index[idx];
13 count = interval_count[Interval_index];
14 uint off = offset[idx];

15 off = off + count;

16

17 key_sorted[off] = key;

18 value_sort[off] = value;

19 }

20}

Step 2: Having obtained the counters for each interval and
the local ordering within a specific interval, we perform a

123

prefix sum operation on the interval count array to determine
the address at which each interval’s data would start. Given an
input array, the prefix sum, also known as scan, is to generate a
new array B from original array A in which each data BJ[i] is
the sum of data from A[0] to A[Z] (inclusive and exclusive
prefix sum respectively). Because the length of the interval
count_array (NUM_INTERVAL) is typically less than that of
the length of the input, performing the scan operation on CPU
is much fast than the GPUs counterpart. However, due to the
data transfer overhead (in our case, two transfers), and the fact
that we observed devastating performance degradation when
mixing the execution of the CPU-based scan with other GPUs
kernels in a CUDA stream, the parallel prefix sum is
performed on GPUs using the CUDPP library.

Step 3: By combining the atomically-incremented offsets
generated in step 1 and the interval data locations produced by
the prefix sum in step 2(as shown at lines 12-15 in Listing 2),
it is straightforward to scatter the key-value pairs to proper
locations (see lines 17-18).

Choosing a suitable value for the number of intervals may
have important implications for the efficiency and
effectiveness of our sorting algorithm. As the number of
intervals increases, if the input data exhibiting uniform
distribution of elements, our algorithm would approximate
more closely to the ideal sorting, while the overhead of
performing the prefix sum may increase accordingly. When
decreasing the number of intervals, we will get a coarse-
grained approximation for the input array. We will present
empirical evaluations on this in Section I'V.

IV. EXPERIMENTAL EVALUATION

A. Experiment setup

We ran the experiments on an eight-processor Intel Xeon
E5 2648L 1.8GHz machine. At the same time, the machine
equipped with a high-end NVIDIA GeForce GTX 780 GPUs
with 12 multiprocessors and 192 GPUs processing cores.

We compared approximate sort on GPUs with the
following state-of-the-art GPUs sorting algorithms: Satish et
al.’s[3] merge sort and radix sort. Because the version of radix
sort is the fastest GPUs sort and the version of merge sort is
the fastest comparison-based GPUs sort according to the
reference. At the same time, the source code of that merge sort
and radix sort is available in the NVIDIA CUDA SDKJ12].

The data sets we automatically generated for the
benchmark test conform to Uniform distribution or Gaussian
distribution. Values that are picked randomly from 0 to 231
produce Uniform distribution. The Gaussian distribution is
created by always taking the average of four randomly picked
values from the uniform distribution [7]. We choose the two
distributions for the representative.

B. Performance analysis

We compare our approximate sort with merge sort and
radix sort on GPUs. First, we generate respectively three data
sets on Uniform distribution and Gaussian distribution. The
size of the data set we evaluate is 1M, 2M, 4M (M means 10°

in this paper) and we set the NUM_INTERVAL = 10000. As
shown in Figure 2 and Figure 3, the performance on the two
distributions is roughly the same. When the data volume is
doubling, the cost of approximate sort slowly increases
compared with merge sort. Our approximate could achieve at
least more than twice compare with radix sort.

20

I ApporSort
I MergeSort
N radixSort

-y
(&

Execution Times(ms)
=

w

™ 2M 4M
Data Size

Fig. 2. Data sets on Uniform distribution

15

] ApporSort
[MergeSort
B radixSort

Execution Times(ms)

™ 2M 4M
Data Size

Fig. 3. Data sets on Gaussian distribution

& dataset 1M
==&~ Dataset 2M

o—o—°—6—o—o—6—0—0

-
[

-
(=2

-
N

Execution Times(ms)
»

-

0.8 =
0 2 4 6 8 10
The Value of NUM_INTERVAL x 10

Fig. 4. The parameter of NUM_INTERVAL

In the Figure 4, we evaluate how the parameter of NUM _
INTERVAL effects on performance. We prepare two data set
on Uniform distribution and the size of the data set
respectively 1M and 2M. The values of NUM_INTERVAL is
(10000, 20000, 30000, 40000, 50000, 60000, 70000, 80000,
90000). As the NUM_INTERVAL increased, the execution

124

time of approximate sort almost the same. When the
NUM _INTERVAL is small, the cost of atomic operation is
high because multiple elements are assigned to the same
interval concurrently and the overhead of prefix sum is small.
When the NUM_INTERVAL is large, the cost of atomic
operation is low because fewer elements are assigned to the
same interval concurrently but the overhead of prefix sum is
expensive. It is suggested that the performance almost keep
same when the NUM_INTERVAL changes within a certain
range.

V. CONCLUSIONS

This paper, we propose approximate sort on manycore
GPUs to parallelism. The approximate sort could obtain the
approximate order with ascending or descending by
controlling the parameter of NUM_INTERVAL. The radix sort
is the fastest GPUs sort and our approximate sort could
achieve at least more than twice compared with GPUs-based
radix sort.

As for future, our work is to integrate our approximate sort
into the application in the reality.

VI. ACKNOWLEDGMENT

This research was supported in part by the National Science

Foundation of China under grants 61272190 and 61173166,
the Program for New Century Excellent Talents in University,
and the Fundamental Research Funds for the Central
Universities of China.

REFERENCES

[1] D. E. Kauth, “The art of computer programming: Volume 3/sorting and
searching,” 1973.

[2] T.H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein et al., Introduction
to algorithms. MIT press Cambridge, 2001, vol. 2.

[3] N. Satish, M. Harris, and M. Garland, “Designing efficient sorting
algorithms for manycore gpus,” in Parallel & Distributed Processing,
2009. IPDPS 2009. IEEE International Symposium on. IEEE, 2009 ,
pp. 1-10.

[4] C. Nvidia, “Nvidia cuda ¢ programming guide,” NVIDIA Corporation,
vol. 120, 2011.

[5] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with cuda,” Queue, vol. 6, no. 2, pp. 40-53, 2008.

[6] S. Bandyopadhyay and S. Sahni, “Grsgpu radix sort for multifield
records,” in High Performance Computing (HiPC), 2010 International
Conference on. IEEE, 2010, pp. 1-10.

[7] D. Cederman and P. Tsigas, “A practical quicksort algorithm for
graphics processors,” in Algorithms-ESA 2008. Springer, 2008, pp.
246-258.

[8] L. Chen and G. Agrawal, “Optimizing mapreduce for gpus with
effective shared memory usage,” in Proceedings of the 2Ist
international symposium on High-Performance Parallel and Distributed
Computing. ACM, 2012, pp. 199-210.

[9] M. Harris, J. Owens, S. Sengupta, Y. Zhang, and A. Davidson, “Cudpp:
Cuda data parallel primitives library,” 2007.

[10] K. E. Batcher, “Sorting networks and their applications,” in Proceedings
of the April 30-May 2, 1968, spring joint computer conference. ACM,
1968, pp. 307-314.

[11] R. Baraglia, G. Capannini, F. M. Nardini, and F. Silvestri, “Sorting
using bitonic network with cuda,” in the 7th Workshop on Large-Scale
Distributed Systems for Information Retrieval (LSDS-IR), Boston,
USA, 2009.

[12] “Nvidia cuda sdk,” (http://www.nvidia.com/cuda), 2014.

