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Abstract. This paper presents an MCMC-based particle filter TBD algorithm for multi-target 
detection and tracking in low SNR environment. In this algorithm, a set of unweighted samples is used 
to represent the posterior distribution of the joint multi-target state. Then, a MH algorithm is adopted 
to recursively obtain the unweighted samples approximation for the posterior. Simulation results show 
that the performance of the proposed algorithm is very well for a fix known number of targets, even 
targets’ paths are close proximity.  

Introduction 
Track-before-detect (TBD) techniques are effectively to deal with the low signal-to-noise ratio 

(SNR) targets through a joint processing of multi-frame of unthresholded data and integrating the 
targets’ information. Because TBD techniques show superior detection performance compared with 
the conventional methods, more and more researchers pay attention to them, especially in the field of 
radar.  

The existing studies on TBD mainly focused on the detection of single target in the radar scenario 
[1-3]. However, in the radar scenario, the number of targets is unknown and time-varying. Thus, the 
problem of multi-target more accords with the actual radar scenario. In [4], the authors have proposed 
a multitarget particle filter track before detect algorithm. The Sampling Importance Resampling (SIR) 
particle filter (PF) is used in this algorithm, i.e., 1) the importance sampling function is chosen to be the 
state transfer probability function, and 2) the resampling step is to be applied at every time index[5]. 
Due to the dimensions of the target state spaces increase with the increase of number of targets, the 
performance of the detection and tracking of the SIR-PF is declined with the increase of number of 
targets. Thus, the first problem in SIR-PF for multi-target tracking is the dimension disaster. Another 
problem is sample impoverishment caused by the resmapling. In [6], the authors proposed a 
MCMC-based PF algorithm for tracking multi-target in video surveillance. 

Based on the work of [6], in this paper, we present a PF TBD algorithm based on Markov Chain 
Monte Carlo (MCMC) sampling, in which the sampling importance resampling step of the PF is 
replaced by an efficient MCMC sampling step. Using a set of unweighted samples, MCMC method 
efficiently samples from the posterior distribution over the joint target state, which can reduce the two 
problems of SIR-PF discussed above. 

The rest of this paper is organized in the following manner. In Section 2, we introduce the model of 
the multi-target moving and measurement. An MCMC-based PF TBD algorithm is presented in 
Section 3. In Section 4, the simulation results are given and the performance is analyzed. A summary 
are presented in Section 5 finally. 

Moving and Measurement Model 

Multi-target Moving Model 
Assuming that there are E  targets in the surveillance zone, and this number of targets is known and 

fixed. Let ( )      j j j j j
k k k k kx x y y= & &x  denote j  target states at k  frame, where, ( )j j

k kx y  and ( )j j
k kx y& &  
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are the position and the velocity of target j , respectively. j
kx  evolves according to a discrete-time 

linear Gaussian target motion model, 

1|j j
k k−x x  ~ ( )1; , 1,...,j

kF j E−⋅ =qxN ;                                                                                          (1) 

where, ( ); ,µ ΣxN ;  is Gaussian probability distribution function with µ  mean and Σ  variance; F  is 
transition matrix, q  is the covariance matrix of process noise, 
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where, jq  is the power spectral density of process noise of j  target, T  is the sample interval. 
Thus, the joint multi-target state at k  frame can denote as the collection of individual target states 

( )1 2, ,..., E
k k k k=X x x x . In multi-target tracking, the joint state kX  is needed to be estimated. 

Measurement Model 
The measurements of each frame are the reflected power on azimuth-range domain. The azimuth 

and range domain are divided into aN  and rN  cells. Let { }, , 1, , ; 1, ,m n
k k a rz m N n N= = =z K K  denote 

the power measurements at k  frame, where each pixel ,m n
kz  can be expressed as 

( ) ( )
,

, , , ,
1

( )   1
m n

kkm n j m n j m n m n
k k k k k kj

z P h w
=

= + ≥∑ X x XM M                                                                                       (3) 

( ), , ,  0m n m n m n
k k k kz w= =XM                                                                                                              (4) 

where, ,m n
kw  is an exponential distribution noise, ( ),m n

k kXM  is the number of targets at ( ),m n  cell, 
j

kP  is the power of j  target at k  frame, ( )h ⋅  is the sensor’s point spread function and is given by 

( ) ( )2 2

,
2 2( ) exp

j j
r k a km n j

k
r a

m r n
h

α

δ δ

 ∆ − ∆ − = − −
 
 

x                                                                                              (5) 

( ) ( )2 2j j j
k k kr x y= + , ( )arctanj j j

k k ky xα =                                                                                              (6) 

which are the range and an azimuth  respectively of j  target. Assuming that the noise variance is 2
wσ , 

targets are Swerling I target model. Thus, the pdf of  ,m n
kz  is 

( )( ) ( ) ( )
,

, ,
2 , 2 ,

1 1

1| exp
m n

m n m n k
k k k j m n j j m n j

w k k w k kj j

zp z
P h P hσ σ

= =

 
 = −
 + + ∑ ∑

X
x xM MM                                     (7) 

if ( ), 1m n
k k ≥XM , or 

( )
,

, ,
2 2

1| 0 exp
m n

m n m n k
k k

w w

zp z
σ σ

 
= = − 

 
M                                                                                               (8) 
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if ( ), 0m n
k k =XM . 

Let ( )kC X  denote the collection of azimuth and range cells in which E  targets are located. 
Assuming that all the pixels of kz  are independent, the likelihood function of kz  is given by 

( )( )
( )

( )
( )

, , , ,

( , ) ( , )

( | ) | | 0
k k

m n m n m n m n
k k k k k k k

m n C m n C
p p z p z

∈ ∉

= =∏ ∏z
X X

X XM M                                       (9) 

MCMC-based PF TBD Multitarget Algorithm 

According to the Bayesian tracking, the multi-target posterior pdf ( )| k
kp ZX  may be obtained 

under the commonly assumption that target motion is Markovian, recursively, in two stages:  
Prediction:

 

( ) ( )1 1
1 1 1( | ) | |k k

k k k k kp p p d− −
− − −= ∫Z ZX X X X X  

Update: 
1

1

( | ) ( | )( | )
( | )

k
k k k k

k k
k

p pp
p

−

−=
z ZZ

z Z
X XX  

Substituting the prediction equation into the update equation, the Bayes recursive estimation of the 
posterior distribution is recast as 

( ) ( ) ( ) ( )1
1 1 1| z | | |k k

k k k k k k kp cp p p d−
− − −= ∫Z ZX X X X X X                                                       (10) 

where, c  is a normalization constant.  
In order to using MCMC sampling instead of SIR in particle filter, firstly, we represent the posterior 

( )1
1 | k

kp −
− ZX  at frame 1k −  as a set of N  unweighted samples ( ) { }1

1 1 1
|

Nk i
k k i

p −
− − =

≈ZX X . 

Consequently, we obtain the following Monte Carlo approximation to the Equation (11) 

( ) ( ) ( )1
|  z | |

k

k i
k k k k

i
p cp p

−
≈ ∑ZX X X X                                                                                     (11) 

The posterior pdf given by equation (11) is constructed by the prior ( )1| i
k k

i
p −∑ X X  at frame 1k −  

and the likelihood ( | )k kp z X  at frame k . We use MCMC to sample from (11) at each time step and 

obtain a unweighted particle approximation for the posterior ( ) { } 1
|

Nk i
k k i

p
=

≈ZX X . 

MCMC Methods 
MCMC methods dynamically construct a Markov Chain, of which the stationary distribution is 

equal to the target distribution [7]. The Metropolis-Hastings (MH) algorithm [8] and Gibbs Sampling 
[9] are common MCMC methods. Here, the target distribution is the approximate posterior (11) and 
we use the MH algorithm to generate a set of samples from it. 

Combined with the multi-target tracking for the radar system, the MH algorithm is as follows. 
Assuming that the current sample of the Markov Chain at k  frame are the joint multi-target state 
n
kX , where n  is the number of samples. Then obtain all of the Markov Chain according to the 

following steps to iterate. 
1). Propose a new candidate sample *

kX , which is a new joint multi-target state, by sampling from 

the proposal density ( )*; n
k kq X X . 

2). Calculate the acceptance ratio r  for *
kX  
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( ) ( )
( ) ( )

* *

*

| ;

| ;

k n
k k k

n k n
k k k

p q
r

p q
=

Z

Z

X X X

X X X
                                                                                                            (12) 

3). Accept *
kX  with probability { }min 1,rα = , and set 1 *n

k k
+X = X ; otherwise, keep the current 

sample, i.e., 1n n
k k

+X = X . 
Repeat B MN+  times for above steps, where B  is the length of the burn-in period and M  is the 

length of the thinning interval [8], we can obtain a Markov Chain { } 1

B MNn
k n

+

=
X . Storing every M th 

sample after the initial B  burn-in iterations, a new sample set { } 1

Ni
k i=

X  can approximate the current 

posterior ( )| k
kp ZX , i.e. ( ) { } 1

|
Nk i

k k i
p

=
≈ZX X . 

The proposal density is chosen as the normal distribution in the MH algorithm, usually [8]. Thus, for 
the multi-target TBD, we use the normal distribution of the joint multi-target state as the proposal 
density 

( ) ( )* *; ; ,n n
k k k kq =X X X XN Σ                                                                                                             (13) 

where Σ  is the covariance matrix. 
Substituting (13) and (11) into (12), the acceptance ratio for the multi-target TBD is recast as 

( )
( )

* *
1

1

( | ) |

( | ) |

i
k k k k

i
n n i

k k k k
i

p p
r

p p

−

−

=
∑
∑

z

z

X X X

X X X
                                                                                                            (14) 

where, ( | )k kp z X  is the measurement likelihood and given by Equation (9). ( )*
1| i

k kp −X X  is state 
transition probability density function and given by Equation (1). Finally, we obtain the multi-target 
TBD algorithm based on MCMC. The steps of the proposed algorithm are given in the next subsection. 
MCMC-based PF-TBD Steps 

The steps of the MCMC-based PF TBD algorithm we propose are detailed as follows. 
1. Initialize the MCMC sampler: Randomly select a sample 1

i
k -X , move all targets in the selected 

sample according to their motion models | 1
i
k k−X  ~ ( ) ( ),

1 1
1

E
i j j i

k k - k k-
j

p p
=

= ∏X | X x | x  and use the 

result as the initial state of the kX  Markov Chain. 
2. MCMC Sampling: Repeat B MN+  times: 

a. Propose a new state by sampling from the proposal density *
kX  ~ ( )*; ,n

k kX XN Σ . 
b. Calculate the acceptance ratio (14) for this proposed state. 
c. Generate a random number from the uniform distribution u  ~ ( )0,1U . 

d. If { }min 1,u rα≤ = , accept *
kX  as the next state for Markov Chain, i.e., 1 *n

k k
+ =X X ; otherwise, 

keep the current state, i.e., 1n n
k k

+X = X . 

3. As an approximation for the current posterior ( )| k
kp ZX , we return the new sample set { } 1

Ni
k i=

X , 

obtained by storing every M th sample after the initial B  burn-in iterations above. 
Therefore, according to MMSE criterion, the estimation of multi-target state is given by the sample 

set { } 1

Ni
k i=

X  
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( )MMSE

1

1ˆ |
N

k i
k k k k k

i
p d

N =

= ≈ ∑∫ ZX X X X X                                                                                                      (15) 

Simulation Results and Performance Analysis 
The simulated data consists of a total of 35 frames, with the three targets existing in the surveillance 

area. Target 1 is well separated from the else. Target 2 and target 3 are close and parallel. The 
trajectories are plotted as shown in Figure 1, which also labeled the moving direction and number of the 
targets. 
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Figure 1. Illustration of trajectories of the simulation scenario    Figure 2. Estimated trajectories by MCMC-TBD 
algorithm 

The parameters of the MCMC-based PF-TBD algorithm are set as: 500B = , 10M = , and 
100N = . Thus, the total length of the Markov Chain is 1500. 

Figure 2 plots the estimated trajectories and the actual paths of the three targets with SNR=10dB by 
single Monte Carlo trial. It is shown that the tracking performance for target 1 separated from the else 
is very well. For target 2 and 3 which paths are parallel in close proximity, the tracking performance 
declines slightly. 
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Figure 3. Performance of MCMC-based PF TBD algorithm versus SNR 

Figure 3 plots the root-mean-square errors (RMSE) of the position versus SNR. RMSE is given by 

( ) ( )( )2 2

, , , ,
1 1 1

1 ˆ ˆRMSE
I K E

j j j j
i k i k i k i k

i k j
x x y y

IEK = = =

= − + −∑∑∑                                                                               (16) 

where, I  is the number of Monte Carlo trails, K  is the total number of the frame, ( ), ,,j j
i k i kx y  is the 

actual value of the target j  at i  Monte Carlo trial, ( ), ,ˆ ˆ,j j
i k i kx y  is the estimation. 
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The curve in Figure 3 shows that the performance of the MCMC-based PF TBD algorithm increases 
with SNR. When SNR 8dB≥ , RMSE converges to less than the range resolution.  

Conclusion 
This paper presents an MCMC-based PF TBD algorithm for detection and tracking multi-target. 

The proposed algorithm uses an efficient MCMC sampling step to replace the sampling importance 
resampling step. The simulation results show the proposed algorithm can detect and track multi-target 
even their paths are close proximity. And, when SNR 8dB≥ , the performance is very well. 

The proposed algorithm here is for a fixed known number of targets. The extension is for a variable 
unknown number of targets. 
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