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Abstract

As reflected by the TOP500 list, hypercubes are popular interconnection networks for massively paral-
lel systems, the main reason being the simplicity and ease of implementation of this network topology.
In order to retain performance high and avoid bottleneck situation, routing algorithms are critical for
these high-performance systems. Furthermore, disjoint path routing is a very desirable property of such
communication algorithms. Effectively, selecting mutually node-disjoint paths guarantees that notorious
parallel processing issues such as deadlocks, livelocks and starvations shall never occur. In this paper, we
describe a routing algorithm for hypercubes that, given a bit constraint, selects internally node-disjoint
paths between any pair of nodes satisfying the constraint, and such that the selected paths all satisfy the
constraint. The introduction of such bit constraint enables the selection of multiple sets of disjoint paths
between several node pairs each satisfying a distinct bit constraint, which is impossible with conven-
tional routing algorithms. Selecting simultaneously disjoint paths between different node pairs induces
increased communication performance and system dependability. The correctness and complexities of
the described algorithm are formally proved, and analysis of the algorithm performance in practice is
conducted by empirical evaluation.

Keywords: Supercomputer, parallel system, network, disjoint paths, dependable system, node-to-node.

1. Introduction

Thanks to a simple topology definition, and thus

facilitated hardware and software implementation,

hypercubes1 are popular interconnection networks

for massively parallel systems. Such hypercube-

based machines feature a decades long history2, with

very recent ones including the NASA Pleiades and

NOAA Zeus supercomputers3. Additionally, one

should note that hypercubes are very popular as seed

(i.e. sub-network) of more complex interconnec-

tion network topologies, especially those for hierar-

chical interconnection networks (HINs) with exam-

ples such as dual-cubes4, metacubes5, hierarchical

hypercubes6 and hierarchical cubic networks7.

It thus easy to understand that because of these

reasons, routing in hypercubes is a critical and ac-

tively researched topic. Several routing algorithms

for hypercubes have been described in the litera-

ture. For example, optimal node-to-node disjoint
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paths routing algorithm8,9, node-to-set disjoint paths

routing algorithm10, set-to-set disjoint paths rout-

ing algorithm11 and k-pairwise disjoint paths routing

algorithm12. Now, these conventional approaches to

hypercube routing do not enable enforcing a con-

straint on the nodes selected when generating paths.

Yet, routing with constraint has interesting proper-

ties, allows for new applications, and importantly

induces increased performance and system depend-

ability. Indeed, by enforcing restriction on selected

nodes, it is easy to achieve disjoint paths routing be-

tween several node pairs, at the condition that each

pair satisfies a distinct constraint. This topic has

been discussed previously13, and is actually a conve-

nient method to achieve path signature as presented

in14.

The selection of node-disjoint paths is a very

desirable property of routing algorithms in parallel

systems. Effectively, communication conducted ac-

cording to mutually disjoint paths ensures the ab-

sence of notorious resource allocation problems of

parallel systems, namely deadlocks, livelocks and

starvations. Furthermore, as parallel communication

enables more efficient utilisation of the interconnec-

tion network, simultaneous path selection has a criti-

cal positive impact on system performance, and with

implications going as far as Green IT15. In addition,

dramatically increased system dependability is yet

another critical aspect of disjoint paths routing. In-

deed, with modern supercomputers now including

a huge number of computing nodes (e.g. 705,024 in

the Fujitsu K3), there is a high probability that faulty

nodes will be present16. Here, by enforcing selec-

tion of mutually node-disjoint paths, the impact of

one such broken node is severely limited: one fault

can neutralise at most one path thanks to the mutual

disjointness of the selected paths.

In this paper, we describe a routing algorithm

that solves the container problem with bit con-

straint in a hypercube. This routing problem is

also known as the node-to-node disjoint paths rout-

ing problem, and consists of finding a set of mutu-

ally internally node-disjoint paths between any pair

of nodes17,18,19. And by considering routing with

bit constraint, we further increase the advantages

of disjoint paths routing. Concretely, by consid-

ering several node pairs each satisfying a distinct

bit constraint, we make it possible to easily select

at the same time several sets of disjoint paths be-

tween these node pairs, something which is impossi-

ble with conventional algorithms, even with disjoint

paths routing algorithms. This added routing capa-

bility enables selecting even more disjoint paths that

are available simultaneously for routing operations,

and thus significantly improves communication per-

formance and system dependability. We give an il-

lustration in Figure 1.

...

...

...

Figure 1: Several sets of node-to-node disjoint

paths, enabling high performance network commu-

nications and increases system dependability.

The rest of this paper is organised as follows.

First, the notations and definitions used in the pa-

per hereinafter are recalled in Section 2. Then, we

describe in Section 3.1 the hypercube node-to-node

disjoint paths routing algorithm with bit constraint,

and we give the corresponding pseudo-code. Next,

the algorithm correctness and complexities are for-

mally proved in Section 3.2. This is followed in Sec-

tion 3.3 by an example of the algorithm execution

trace. Then, an empirical evaluation of the described

algorithm is conducted so as to inspect its practical

behaviour and to make a comparison with the es-

tablished theoretical results of the previous sections.

Lastly, we conclude this paper in Section 5.

2. Preliminaries

We recall in this section several definitions, nota-

tions and results used throughout the paper. In addi-

tion, new notations are introduced.
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Container Problem in a Hypercube with Bit Constraint

Definition 1. An n-dimensional hypercube, denoted

by Qn, consists of 2n nodes, each having a unique

n-bit address. Two nodes u and v of a hypercube

are adjacent if and only if their Hamming distance

H(u,v) is equal to one.

Let us recall important topological properties of

hypercubes. First, a Qn is symmetric and of connec-

tivity, degree and diameter n (see1). In addition, one

should remember that a Qn has a recursive structure.

Effectively, for any dimension δ (0 � δ � n− 1), a

Qn consists of two (n− 1)-dimensional hypercubes

Q0
n−1 and Q1

n−1, here called subcubes, and defined

as follows. The subcube Q0
n−1 (resp. Q1

n−1) is in-

duced by the set of nodes of Qn whose δ -th bits are

set to 0 (resp. 1). When considering the subcubes

of a hypercube, we talk of hypercube reduction. As

an example, a 4-dimensional hypercube Q4 with its

two subcubes Q0
3 and Q1

3 highlighted is illustrated in

Figure 2.

Q0
3 Q1

3

0000

0100

0010

0110

1100 1110

10101000

00110001

0101 0111

11111101

10111001

Figure 2: A 4-dimensional hypercube Q4 with its

two subcubes Q0
3 and Q1

3 induced by δ = 0.

We assume that the address of any node of a

Qn (i.e. an n-bit address) can be stored in a fixed

number of machine words, therefore allowing for

constant time node comparison, most significant bit

(MSB) detection as well as Hamming distance and

bit weight (a.k.a. Hamming weight, see Definition 2

below) calculations.

Definition 2. For a binary n-bit sequence b =
bn−1 . . .b1b0, bi ∈{0,1}, 0� i� n−1, the bit weight
of b, denoted by w(b), is the number of bits of b that

are set to 1.

Also, let us adopt the following conventions: in

this paper, logarithms are in base two, and the MSB

of any bit sequence is the leftmost bit. In addition,

the binary bitwise operations are denoted as follows:

the bitwise AND is denoted by &, the binary nega-

tion is denoted by ¬, and the bitwise exclusive-OR is

denoted by ⊕.

Definition 3. A k-constraint is a k-tuple of distinct

natural numbers (i1, i2, . . . , ik).
In this paper, we apply such constraint to the bit

weight of the address of a hypercube node. We fo-

cus on 2-constraints and simply speak of bit con-
straints, which are denoted by pairs of natural num-

bers (i, j). Since we are considering routing inside

hypercubes where we recall that adjacent nodes have

one single bit different, it is easy to understand that

bit constraints considered all have the form (i, i+1).
And if we were to consider k-constraints on hyper-

cubes, those bit constraints would have the form

(i, i+1, . . . , i+β ) with i+β � n.

Definition 4. In a Qn, for i ∈ N and 0 � i � n− 1,

a node u satisfies the constraint γi = (i, i+ 1) if and

only if w(u) = i or w(u) = i+1 holds.

For example, let us consider a hypercube Q3

and the bit constraint γ1 = (1,2). So, the three

nodes 010, 110 and 100 all satisfy the constraint γ1

whereas the node 111 does not.

Now, we recall definitions and notations that

concern paths. In any graph, a path is an alternate

sequence of nodes and edges. For a path p, we

write p : u1,(u1,u2),u2, . . . ,uk−1,(uk−1,uk),uk, with

(ui,ui+1) denoting the edge between the two distinct

nodes ui and ui+1. Conveniently, that same path p
can also be written as u1 → u2 → . . .→ uk, and even

more concisely as u1 � uk, the latter notation possi-

bly bringing ambiguity regarding the nodes included

in the path and thus a notation to be used with care.

The length of a path corresponds to the number of

its edges.

Two paths are mutually node-disjoint (or simply

disjoint) if and only if they have no node in com-

mon. Conveniently, we consider a path as a set of

nodes, and thus the two paths p1 and p2 are dis-

joint if and only if p1 ∩ p2 = /0 holds. We say that

two paths are internally disjoint if and only if they

have no node in common at the possible exception

of their terminal nodes (i.e. the two nodes that start

and end the path). Formally, two paths p1 : u1 � v1

and p2 : u2 � v2 are internally disjoint if and only

if p1 ∩ p2 ⊆ {u1,u2,v1,v2} holds. We recall that
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the container problem (a.k.a. the node-to-node dis-

joint paths routing problem) consists in selecting in-

ternally disjoint paths between any pair of distinct

nodes.

Definition 5. A path p connecting a node u to a

node v satisfies the constraint γi = (i, i+ 1) if and

only if each node of p satisfies γi. We write u
γi
� v,

or simply u
γ
� v.

Hence, since the Hamming distance between any

two adjacent nodes in a hypercube is equal to one,

a path cannot satisfy a 2-constraint other than that

of the form (i, i+ 1) (or (i, i− 1), which is equiva-

lent). If the path u
γ
� v connecting the two nodes u

and v while satisfying a constraint γi has been gener-

ated by a shortest-path routing algorithm, we write

u
γ , spr
� v to indicate that it is a shortest path.

Finally, let us recall in the following theorem

a previous result regarding hypercube shortest-path

routing with bit constraint13.

Theorem 1. 13 In a Qn, given a bit constraint γi =
(i, i+1) and any two distinct nodes s and d that sat-
isfy γi, we can select a shortest path s

γ
� d (i.e. of

length H(s,d)) satisfying γi in O(H(s,d)) optimal
time.

This algorithm is referred to as HC-SPR there-

after.

3. Node-to-node disjoint paths routing
algorithm with γi constraint

First, given a node u ∈ Qn satisfying γi = (i, i+ 1),
we begin this section by discussing the number of

its neighbours that satisfy γi. If w(u) = i+ 1, then

u has i+ 1 neighbours satisfying the constraint. If

w(u) = i, then u has n− i neighbours satisfying the

constraint. Therefore, in a Qn, given two nodes s,d
satisfying γi, we can select at most k � min(n− i, i+
1) internally node-disjoint paths s

γ
� d that satisfy

γi (this is an application of Menger’s theorem20).

Also, one can note that in the case i = 0, the max-

imum number of disjoint paths that can be selected

is min(n− i, i+ 1) = 1, and it is thus more efficient

to apply the shortest-path routing algorithm of The-

orem 1. So, let us assume without loss of generality

that i � 1. The proposed algorithm pseudo-code is

given in Algorithm 1 with sub-cases in Algorithms

2 and 3.

Algorithm 1 HC-CONTAINER(Qn, i, k, s, d)

Input: A Qn, a bit constraint γi = (i, i+1), k the number

of paths to find (k � min(n− i, i+1)), a source node

s and a destination node d.

Output: k internally node-disjoint paths s
γ
� d in Qn sat-

isfying γi.

1: if k = 1 then
2: return HC-SPR(Qn, i, s, d)

3: else if w(s) = i then
4: return CASE1(Qn, i, k, s, d)

5: else // w(s) = i+1

6: return CASE2(Qn, i, k, s, d)

3.1. Algorithm description

If n− i = 0, the constraint γi = (i, i+ 1) cannot be

satisfied since i+ 1 > n. If n− i = 1, the constraint

γi = (i, i+1) implies that only the nodes of weights

n and n− 1 can be selected, hence H(s,d) � 2. In

this special case, the problem is solved as follows.

If H(s,d) = 1, there exists only one path s
γ
� d: the

path of length one s
γ , spr
� d = s → d. If H(s,d) = 2,

there exists only one path s
γ
� d: the path of length

two s
γ , spr
� d = s → u → d with u the unique node of

Qn of weight n. So, we can now assume without loss

of generality that n− i � 2.

The main idea of this algorithm is to follow a

divide-and-conquer approach by solving the prob-

lem recursively in one of the two subcubes Q0
n−1

and Q1
n−1 of the original network Qn. The base

case of this induction process is k = 1, with k �
min(n− i, i+ 1) the number of paths to find, decre-

mented at each recursive call. This base case k = 1

induces either i = 0 or i = n− 1, and each of these

two cases induces the selection of one single path

(shortest) as already discussed. We distinguish two

cases.

3.1.1. Case 1: w(s) = i

We proceed in several main steps as follows.

Pseudo-code is given in Algorithm 2.
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Step 1 Find a bit position δ (0 � δ � n− 1) such

that the δ -th bit of s is set to 0 and the δ -th bit of

d is set to 1.

Reducing the hypercube Qn along this bit position

δ , we obtain the two subcubes Q0
n−1 and Q1

n−1, and

s ∈ Q0
n−1, d ∈ Q1

n−1.

Step 2 Select the edge s ∈ Q0
n−1 → s′′ ∈ Q1

n−1 with

s′′ the unique neighbour of s in Q1
n−1. Since w(s)=

i and the δ -th bit of s is 0, s′′ satisfies γi; we have

w(s′′) = i+1.

Step 3 Select the k − 1 neighbours v1,v2, . . . ,vk−1

of s in Q0
n−1 that satisfy γi. Since w(s) = i, we

have w(v j) = i + 1 (1 � j � k − 1). For an ar-

bitrary bit position z such that the z-th bit of s is

set to 1, select the k − 1 nodes u1,u2, . . . ,uk−1 in

Q0 with u j = v j ⊕ 2z (1 � j � k− 1). Obviously,

w(u j) = i (1 � j � k − 1) holds. Then, select

the edges u j → u′j in Q1
n−1 (1 � j � k− 1). The

nodes s′′,u′1,u
′
2, . . . ,u

′
k−1 are adjacent to the node

s′ = (s⊕ 2z)⊕ 2δ . Obviously, we have w(s′) = i
and w(u′j) = i+1 (1 � j � k−1).

Step 4 Apply this algorithm recursively in Q1
n−1 to

find k− 1 internally disjoint paths s′
γ
� d satisfy-

ing γi−1 = (i−1, i).

Now, we distinguish two sub-cases depending

on the value of w(d).

Case 1.A: w(d) = i+1.
The configuration in this case is given in Figure 3.

......

s s′′
s′

dd′

u1 uk−1

v1 vk−1

u′1
u′k−1

Q0
n−1 Q1

n−1

Figure 3: Illustrating the case w(s) = i, w(d) = i+1.

Step 5 Select the edge d → d′ with d′ the unique

neighbour of d in Q0
n−1. Find a path s

γ
� d′ in Q0

n−1

as follows. Select a shortest path s
γ , spr
� d′ in Q0

n−1.

Let v be the closest node to d′ on that path such

that v is already included in a path s → v j → u j,

say s → v1 → u1. So, s is connected to d′ with

the path s
γ
� v

γ , spr
� d′ with s

γ
� v a sub-path of

s → v1 → u1. See Figure 4.

...... ......

d′

s
v1u1

v ju j
d′

s
v1u1

v ju j

Figure 4: Possible collisions between the path s
γ
� d′

and a path s
γ
� u j in Q0

n−1: part of s
γ
� u j may be

discarded.

Step 6 Assume without loss of generality that d′ is

connected to s in Q0
n−1 via v1 ∈N(s); then the edge

u1 → u′1 cannot be selected. The paths selected in

Q1
n−1 are connected to s as follows.

First, assume that the edge s′ → s′′ is included in

one of the selected paths. So, for this particular

path, simply replace the edge s′ → s′′ by s → s′′.
Assume without loss of generality that there ex-

ists a node u′w ∈ Q1
n−1 neighbour of s′ that is not

included in any path selected in Q1
n−1. If there

is no such node, it means that a path s′
γ
� d se-

lected in Q1
n−1 includes two nodes of N(s′), say

u′1,u
′
2, and thus that path can be shortcut from

s′
γ
� u′1

γ
� u′2 → d to s′

γ
� u′1 → d, freeing such

a node u′w (here u′w = u′2).

If the edge s′ → u′1 is included in one of the se-

lected paths, that path s′ → u′1
γ
� d is modified

to s → vw → uw → u′w → s′ → u′1
γ
� d. Each of

all the other k − 2 paths s′ → u′j
γ
� d is modi-

fied to s → v j → u j → u′j
γ
� d (2 � j � k − 1).

And otherwise, each path s′ → u′j
γ
� d is modi-

fied to s → v j → u j → u′j
γ
� d (1 � j � k − 1),

with the exception in the case s = d′ (i.e. d = s′′)
that the path s′ → d of length one is modified to
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s → vw → uw → u′w → s′ → d instead.

Assume the edge s′ → s′′ is not included in one of

the selected paths in Q1
n−1. The path s′ → u′1

γ
� d

is modified to s → s′′ → s′ → u′1
γ
� d, and the

other k − 2 paths s′ → u′j
γ
� d are modified to

s → v j → u j → u′j
γ
� d (2 � j � k−1).

Case 1.B: w(d) = i.
The configuration in this case is given in Figure 5.

...

... ...

s s′′
s′

d
w

d′

u1 uk−1

v1 vk−1

u′1
u′k−1

Q0
n−1 Q1

n−1

Figure 5: Illustrating the case w(s) = w(d) = i.

Step 5 Assume without loss of generality that there

exists a node w ∈ Q1
n−1 neighbour of d that is not

included in any path selected in Q1
n−1. If there

is no such node, it means that a path s′
γ
� d se-

lected in Q1
n−1 includes two nodes of N(d), say

w1,w2, and thus that path can be shortcut from

s′
γ
� w1

γ
� w2 → d to s′

γ
� w1 → d, freeing such a

node w (here w = w2).

Select the path d → w → d′ with d′ the unique

neighbour of w in Q0
n−1. Find a path s

γ
� d′ in

Q0
n−1 as in Step 5 of Case A.

Step 6 Similarly, the path s
γ
� d′ in Q0

n−1 may trig-

ger rerouting in Q1
n−1 around s′. This is handled as

in Step 6 of Case A.

Algorithm 2 CASE1(Qn, i, k, s, d)

Input: A Qn, a bit constraint γi = (i, i+1), k the number

of paths to find (k � min(n− i, i+1)), a source node

s with w(s) = i and a destination node d.

Output: k = min(n − i, i + 1) internally node-disjoint

paths s
γ
� d in Qn satisfying γi.

1: R := /0; // Result set
2: δ := �log((s⊕d)&d)	;

3: z := �logs	;

4: s′′ := s⊕2δ ;

5: s′ := s⊕ z⊕2δ ;

6: // The simple cases s′ = d and s′′ = d are omitted.
7: {v1,v2, . . . ,vk−1} := N(s)∩Q0

n−1 sat. γi;

8: {u1,u2, . . . ,uk−1} := {v1 ⊕ z,v2 ⊕ z, . . . ,vk−1 ⊕ z};

9: {u′1,u
′
2, . . . ,u

′
k−1}:={u1⊕2δ ,u2⊕2δ , . . . ,uk−1⊕2δ};

10: P := HC-CONTAINER(Q1
n−1, i−1, k−1, s′, d);

11: if w(d) = i+1 then
12: d′ := d ⊕2δ ;

13: (p∗ : s′ → u′x
γ
� d′) := HC-SPR(Q0

n−1, i, s, d′);
14: for all p : s′ → u′j

γ
� d in P do

15: if u′j = u′x then
16: if ∃q ∈ P with (s′ → s′′) ∈ q then
17: u′w := {u′1,u

′
2, . . . ,u

′
j}\

⋃
q∈P q;

18: R := R∪{s → vw → uw → u′w → p}
19: else
20: R := R∪{s → s′′ → p}
21: else
22: if u′j = s′′ then

23: R := R∪{s → (u′j
γ
� d)⊂ p}

24: else
25: R := R∪{s → v j → u j → (u′j

γ
� d)⊂ p}

26: else // w(d) = i
27: w := (N(d)∩Q1

n−1 sat. γi)\⋃q∈P q;

28: d′ := w⊕2δ ;

29: (p∗ : s′ → u′x
γ
� d′) := HC-SPR(Q0

n−1, i, s, d′);
30: for all p : s′ → u′j

γ
� d in P do

31: if u′j = u′x then
32: if ∃q ∈ P with (s′ → s′′) ∈ q then
33: u′w := {u′1,u

′
2, . . . ,u

′
j}\

⋃
q∈P q;

34: R := R∪{s → vw → uw → u′w → p}
35: else
36: R := R∪{s → s′′ → p}
37: else
38: if u′j = s′′ then

39: R := R∪{s → (u′j
γ
� d)⊂ p}

40: else
41: R := R∪{s → v j → u j → (u′j

γ
� d)⊂ p}

42: return R∪{p∗ → d}
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3.1.2. Case 2: w(s) = i+1

We first proceed in two steps before reducing this

case to Case 1 (i.e. Section 3.1.1). Pseudo-code is

given in Algorithm 3.

Step 1 Find a bit position δ (0 � δ � n− 1) such

that the δ -th bit of s is set to 1 and the δ -th bit of

d is set to 0.

Reducing the hypercube Qn along this bit position

δ , we obtain the two subcubes Q0
n−1 and Q1

n−1, and

s ∈ Q1
n−1, d ∈ Q0

n−1.

Step 2 Select the edge s ∈ Q1
n−1 → s′′ ∈ Q0

n−1 with

s′′ the unique neighbour of s in Q0
n−1. Since w(s)=

i+1 and the δ -th bit of s is set to 1, s′′ satisfies γi;

we have w(s′′) = i.

Then, the case w(s) = i+ 1, w(d) = i is solved

similarly to the case w(s) = i, w(d) = i+ 1 (Case

1.A) by exchanging the roles of s and d, and the

case w(s) = i+ 1, w(d) = i+ 1 is solved similarly

to the case w(s) = i, w(d) = i (Case 1.B) with the

differences that

• in Step 3, the bit position z is selected such

that the z-th bit of s is set to 0;

• in Step 4, the algorithm is applied recursively

in Q0
n−1, the constraint considered thus re-

maining γi = (i, i+1);

• in Step 5, a shortest-path routing algorithm

is applied in Q1
n−1, the constraint considered

thus becoming γi−1 = (i−1, i).

Algorithm 3 CASE2(Qn, i, k, s, d)

Input: A Qn, a bit constraint γi = (i, i+1), k the number

of paths to find (k � min(n− i, i+1)), a source node

s with w(s) = i+1 and a destination node d.

Output: k = min(n − i, i + 1) internally node-disjoint

paths s
γ
� d in Qn satisfying γi.

1: if w(d) = i then
2: return HC-CONTAINER(Qn, i, k, d, s)

3: R := /0; // Result set
4: δ := �log((s⊕d)&s)	;

5: z := �log¬s	;

6: s′′ := s⊕2δ ;

7: s′ := s⊕ z⊕2δ ;

8: {v1,v2, . . . ,vk−1} := N(s)∩Q1
n−1 sat. γi;

9: {u1,u2, . . . ,uk−1} := {v1 ⊕ z,v2 ⊕ z, . . . ,vk−1 ⊕ z};

10: {u′1,u
′
2, . . . ,u

′
k−1}:={u1⊕2δ ,u2⊕2δ , . . . ,uk−1⊕2δ};

11: P := HC-CONTAINER(Q0
n−1, i, k−1, s′, d);

12: w := (N(d)∩Q1
n−1 sat. γi)\⋃q∈P q;

13: // The simple cases s′ = d and s′′ = w are omitted.
14: d′ := w⊕2δ ;

15: (p∗ : s′ → u′x
γ
� d′) := HC-SPR(Q1

n−1, i−1, s, d′);
16: for all p : s′ → u′j

γ
� d in P do

17: if u′j = u′x then
18: if ∃q ∈ P with (s′ → s′′) ∈ q then
19: u′w := {u′1,u

′
2, . . . ,u

′
j}\

⋃
q∈P q;

20: R := R∪{s → vw → uw → u′w → p}
21: else
22: R := R∪{s → s′′ → p}
23: else
24: if u′j = s′′ then

25: R := R∪{s → (u′j
γ
� d)⊂ p}

26: else
27: R := R∪{s → v j → u j → (u′j

γ
� d)⊂ p}

28: return R∪{p∗ → w → d}

3.2. Correctness and complexities

We show in this section the correctness of the algo-

rithm of Section 3.1 and establish its worst case time

and path length complexities.

Lemma 2. The algorithm of Section 3.1 is correct
and always terminates.

Proof. We recall that the edge s → s′′ is selected,

with s,s′′ in distinct subcubes. We start by showing

the existence of a reduction bit δ .

Assume w(s) = i. Suppose there is no bit posi-

tion δ with the δ -th bit of s set to 0 and the δ -th bit
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of d set to 1. If w(d) = i, this supposition implies

that s = d, which is a contradiction. If w(d) = i+1,

this supposition implies that all the bits of d corre-

sponding to the positions of the n− i bits of s set to

0 are also set to 0, and thus that d has n− i bits set to

0 and i+1 bits set to 1. This is a contradiction since

d of n bits (d ∈ Qn).

Assume w(s) = i+1. Suppose there is no bit po-

sition δ with the δ -th bit of s set to 1 and the δ -th bit

of d set to 0. If w(d) = i+1, this supposition implies

that s = d, which is a contradiction. If w(d) = i, this

supposition implies that all the bits of s correspond-

ing to the positions of the n− i bits of d set to 0 are

also set to 0, and thus that s has n− i bits set to 0 and

i+1 bits set to 1. This is a contradiction since s of n
bits (s ∈ Qn).

Regarding the existence of available neighbours

and rerouting feasibility, a proof has already been

given in the corresponding steps of Section 3 for

more clarity.

Lemma 3. The algorithm of Section 3.1 generates
internally node-disjoint paths of lengths at most
n+3k in O(kn) time.

Proof. The paths generated by the algorithm of

Section 3.1 are internally node-disjoint as shown by

the algorithm description.

We now consider the maximum length of a gen-

erated path. A total of k = min(n− i, i+1) paths are

generated. First, one should note that exactly one

hypercube reduction is required for each path to be

generated. So, in total, the original hypercube Qn
is reduced k times. In other words, routing is per-

formed inside hypercubes of successive dimensions

n,n − 1, . . . ,n − k. When the base case condition

k = 1 is satisfied a shortest-path routing algorithm

is applied. This base case k = 1 actually means that

either i = 0 and thus a path of length at most two

is generated, or i = n− 1 and thus a path of length

at most n− k is generated. In addition, each hyper-

cube reduction induces 3−1 = 2 additional edges to

connect the paths selected by induction inside one

subcube to the node s located inside the other sub-

cube. Rerouting triggered in Step 6 may induce an

extra two edges to connect a path, say u′1
γ
� d, in the

sub-cube of d to s via the special node u′w ∈ N(s′)

(precisely, the two extra edges are u′w → s′ → u′1).

Thus, at most four edges in total to be added at

each reduction to connect paths in the sub-cube of

d to s. Therefore, generated paths have lengths of at

most 4k+(n− k) = n+ 3k edges. The single path

connecting d to s by application of a shortest-path

routing algorithm inside the subcube of s requires at

most two edges for the sub-path d
γ
� d′ and at most

n− 1 edges for the shortest path d′ γ , spr
� s, thus re-

quiring in total at most n+1 edges.

Regarding the time complexity of the algorithm

of Section 3.1, Steps 1 and 2 are both constant time

O(1). Step 3 is linear time O(n). Let T (n) be the

time required to solve the problem in a Qn. Step 4 is

thus T (n−1) time. Steps 5 and 6 are both linear time

O(n). From this discussion, we obtain the equation

T (n) = T (n− 1)+O(n). Since we have exactly k
hypercube reductions, the total time complexity of

the proposed algorithm is O(kn).

So, we can summarise this discussion in the fol-

lowing theorem.

Theorem 4. In a Qn, given a bit constraint γi =
(i, i+1) and any two distinct nodes s and d satisfy-
ing γi, we can select k = min(n− i, i+ 1) internally
node-disjoint paths s

γ
� d satisfying γi and of lengths

at most n+3k in O(kn) time.

Proof. This can be directly deduced from Lemmas

2 and 3.

3.3. Routing example

In a Q5, given a bit constraint γ2 = (2,3), a source

node s : 11010 and a destination node d : 10101, an

execution trace of the algorithm of Section 3 is given

in Table 1. As a result, the following three internally

node-disjoint paths, all satisfying γ2, are selected:

• s = 11010 → 11000 → 11100 → 10100 →
10101 = d

• s = 11010 → 10010 → 10011 → 10001 →
10101 = d

• s = 11010 → 01010 → 01110 → 00110 →
00111 → 00101 → 10101 = d

Published by Atlantis Press
Copyright: the authors

209



Container Problem in a Hypercube with Bit Constraint

Table 1: Node-to-node disjoint paths routing example in a Q5 with bit constraint γ2 = (2,3).

n 2δ s d s′ d′ ∈ Q0
n−1 ∈ Q1

n−1

5 8 11010 10101 10110 - d s

Selection of sub-path s = 11010→1010→1110.

Induction on Q0
4.

4 2 10110 10101 10101 - d,s′ s

Selection of sub-path s = 10110→10010→10011.

Induction on Q0
3: s′ = d, and thus selection of

s = 10110→10010→10011→10001→10101 = d.

4 2 10110 10101 10101 00111 d,s′ s,d′

Selection of s = 10110→00110→00111→00101→10101 = d

(by shortest-path routing in Q1
3).

5 8 11010 10101 10110 11100 d,s′ s,d′

Selection of s = 11010→11000→11100→10100→10101 = d

(by shortest-path routing in Q1
4),

s = 11010→01010→01110→00110→00111→00101→10101 = d,

and s = 11010→10010→10011→10001→10101 = d

(by joining sub-paths).
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4. Empirical evaluation

In order to inspect the practical behaviour of the pro-

posed hypercube node-to-node disjoint paths routing

algorithm, that is in other words investigating how

the algorithm performs in average, we have con-

ducted an empirical evaluations consisting of vari-

ous measurements. Additionally, we aimed at com-

paring the obtained experimental results to the theo-

retical estimations of Section 3.2.

For this experimentation, we have implemented

the algorithm HC-CONTAINER of Section 3 us-

ing the Scheme functional programming language21.

We have then considered a hypercube of dimension

n with 4� n� 16 and a bit constraint γ2 =(2,3), and

we have used our algorithm implementation to solve

10,000 random instances of the container problem

for each value of n. One should note that val-

ues of n smaller than 4 are ignored since at most

k = min(n− i, i+1) disjoint paths can be found, that

is at most one path for n< 4, and thus a shortest-path

routing algorithm would suffice in such case. The

source node and destination node were randomly se-

lected from the set of the nodes satisfying the bit

constraint γ2 in Qn; they are distinct.

Execution time (ms)

n

Figure 6: Average execution time for each value of

n (i = 2 and 4 � n � 16).

So first, we have measured the average time re-

quired to solve one instance of the container prob-

lem in the conditions previously described. The re-

sults are given in Figure 6. The theoretical worst-

case time complexity established in Section 3.2 has

also been plotted for reference.

Then, we have measured the maximum path

length obtained for each value of n, and also for

each value of n the average of the 10,000 maxi-

mum path lengths, each average value being ob-

tained when solving one instance of the container

problem. The results are illustrated in Figure 7. To

facilitate comparison with the theoretical estimation,

we have additionally plotted the theoretical maxi-

mum path length as established in Lemma 3.

Path length

n

Figure 7: Maximum path length and average max-

imum path length with standard deviation for each

value of n (i = 2 and 4 � n � 16).

First, one can observe that the time complexity

theoretically established is not overestimated as it

follows the average algorithm execution time. Sec-

ond, one can notice that our algorithms performs sig-

nificantly better than the theoretical estimation for

the maximum path length, paths being in practice

much shorter. There may thus be room for refining

our theoretical upper bound on the length of a gen-

erated path. Also, one can see that the maximum

maximal path length recorded seems to stabilise be-

yond n = 8. This is can be explained by the fact that

since both the source node and the destination node

satisfy the constraint γi, the Hamming distance be-

tween them is bounded by i+(i+1), that is 5 in our

experiment.
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5. Conclusions

Thanks to simplicity for both hardware and soft-

ware implementation, hypercubes are popular in-

terconnection networks for massively parallel sys-

tems. Disjoint paths routing is one robust method

to avoid infamous parallel systems resource alloca-

tions problems such as deadlocks or starvations. In

this paper, we have presented an algorithm solving

the container problem with bit constraint in a hyper-

cube Qn. For a bit constraint γi = (i, i+ 1) and any

two distinct nodes s,d satisfying γi, the algorithm

selects k = min(n− i, i+ 1) internally node-disjoint

paths s
γ
� d satisfying γi. The lengths of the selected

paths are at most n+3k, and the time complexity of

this routing algorithm is O(kn). We have analysed

empirically the average behaviour of the proposed

algorithm, the obtained results showing that regard-

ing the lengths of the generated paths, this algorithm

performs in practice significantly better than the the-

oretical worst-case estimations. Consequently, by

enforcing a bit constraint when routing, this algo-

rithm enables the selection of several sets of disjoint

paths between several node pairs, each pair satisfy-

ing a distinct bit constraint. Conventional routing

algorithms, even disjoint paths routing algorithms,

are not able to provide such result.

Regarding future works, extending this research

to solve the node-to-set disjoint paths routing prob-

lem with bit constraint in a hypercube is a meaning-

ful objective. In addition, enhancing the fault toler-

ance for instance by considering cluster-fault toler-

ance, is also an interesting objective.
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