
Heuristics methods for solving the block packing

problem

Viktor M. Kureychik

Computer sciences and information safety institute

Southern Federal University

Taganrog, Russia

kur@tgn.sfedu.ru

Vladimir Vl. Kureychik

Computer sciences and information safety institute

Southern Federal University

Taganrog, Russia

kureichik@yandex.ru

Roman Potarusov

Southern Federal University

Taganrog, Russia

potarusov.roman@gmail.com

Liliya Kureychik

Computer sciences and information safety institute

Southern Federal University

Taganrog, Russia

kur@tgn.sfedu.ru

Abstract – In the given paper one-dimensional Bin Packing

Problem which plays an important role for the optimization of

transportations and production activities is considered. The

Hybrid Genetic Algorithm for one-dimensional Bin Packing

Problem is proposed. For this purpose two evolution models (de

Vries’ evolution model and Lamarck’s evolution model) have

been adapted. Besides, new problem-oriented genetic operators

are developed. The main advantage of the suggested approach is

that it never decreases the quality of solution so it allows

obtaining valid Bin Packing Problem solutions. Two effective

local search algorithms allowing to improve of Bin Packing

Problem solutions by getting quasi-optimal and optimal packings

are proposed. Computational experiments show that a new

hybrid approach based on genetic algorithm intended for solving

one-dimensional BPP provides approximation and optimal

solutions for all benchmarks in-stances in a tolerable

computational time as well as demonstrate the robustness of the

proposed approach.

Keyword – optimization problem, bin packing, genetic

algorithms, local search

I. INTRODUCTION

Bin Packing Problem (BPP) plays an important role for the
optimization of transportations and production activities as well
as the development of new information and computer
technologies, etc. The problem of BPP is a complex
combinatorial logic and NP-complete task. The goal of this
task is to arrange the elements in blocks with a given
dimension (capacity), in such a way as to maximize the filling
of blocks and to minimize the total number of blocks. Bin
Packing Problem refers to a common scientific and industrial
field. Despite on the existence of a large number of different
approaches, methods and algorithms of packing, the optimal
solutions are not found. Currently, there is no universal
algorithm be capable for solving all test tasks with similar
efficiency. Therefore, the development of new effective
heuristic approaches, methods and algorithms is an urgent and
important issue.

To our extend there are some heuristic approaches applied
to the problem of Bin Packing Problem. Gupta and Ho [1]
proposed the bin-oriented heuristic, which they called
Minimum Bin Slack (MBS). This heuristic is different from
item-oriented heuristics in that the packing process is carried
out bin-by-bin rather than item-by-item, using a procedure
called MBS-One-Packing. At each iteration, instead of packing
the items one by one based on certain rules, the MBS-One-
Packing procedure searches for a group of items (from all the
unpacked items) that could fill a bin with minimal slack (i.e.
the smallest residual capacity) and packs this group of items
into a new bin. The MBS heuristic repeatedly calls MBS-One-
Packing procedure until all items are packed. A recursive
version of MBS-One-Packing was illustrated in [2]. The
procedure stops when either a combination with zero slack (i.e.
no residual capacity left) is found or all item combinations
have been explored.

MBS’ heuristic. Fleszar and Hindi [2] presented a variant
of this procedure (denoted by MBS’), which always packs the
first item of the vector into the current packing. The modified
algorithm gives similar solution quality but shorter
computation time in most instances. The MBS heuristic has
shown to be superior to FFD, BFD, B2F and FFD-B2F in terms
of the solution quality and is able to solve the problem to
optimality where the optimal solution is two bins. It is
especially efficient when the optimal solution requires the
majority of bins to be fully filled. The worst time complexity of
this algorithm is 2n, where n is the number of items. However,
the experimental results have shown it to be very efficient for
most problem instances ([1], [2]).

One more approach for solving BPP is based on variable
neighborhood search algorithm. The main components of this
approach are moves. By “move” we define the transition of an
item from its current bin to another one or the swap of a pair of
items across their respective current bins. Moves that do not
violate the bin capacity constraint are called “valid moves”.
Further only valid moves are considered [2]. The essential
stage of any neighborhood search process is the choice of the

Information Technologies in Science, Management, Social Sphere and Medicine (ITSMSSM 2016)

© 2016. The authors - Published by Atlantis Press 222

objective function. According to our problem, we have to
choose such an objective function that allows minimizing the
number of bins. The objective function is rather pointless since
because of a lot of different configurations, in terms of the
assignment of items to bins, corresponding to the same number
of bins. Considering that a good solution will always have
nearly full bins leads to an objective function that seeks
configurations having this feature. Let’s consider the following
objective function

 



m

lxf
1

2))(()(max


 (1)

where m is a number of bins in x and l(α) is a sum of sizes of
items Aα assigned to bin α, i.e.,







Ai itl)((2)

Besides the maximization of bin loads, the objective
function tries to reduce the number of bins. So, it is obvious
that the value of the function will not change if an empty bin is
added or removed [2].

An approach of Hybrid Ant Colony Optimization algorithm
for BPP, proposed by John Levine and Frederick Ducatelle [4]
combines the ACO meta-heuristic with a simple but effective
iterated local search algorithm based on the Dominance
Criterion of Martello and Toth [5]. Starting with a set of empty
bins, fill each bin in turn by repeatedly placing the largest item
from those remaining which will still fit into the bin. If no
items left are small enough to fit into the bin, a new bin is
started. This procedure results in the FFD solution, but is more
useful for purposes of ACO: it shows that the heuristic
favourability of an item is directly related to its size [6].

Building the solution. Every ant starts with the set of all
items to be placed and an empty bin. It will add the items one
by one to its bin, until none of the items left are light enough to
fit in the bin. Then the bin is closed, and a new one is started.

Iterated local search. In every ant's solution, the n least full
bins are opened and their contents are made free. Items in the
remaining bins are replaced by larger free items. This gives
fuller bins with larger items and smaller free items to reinsert.
The free items are reinserted via FFD. The procedure is
repeated until no further improvement is possible. Only the
global best ant increases the pheromone trail.

International studies in the field of computer science and
genetics allow obtaining new information technology related to
the use of nature evolution models. It is therefore proposed to
solve BPP based on bioinspired methods including
evolutionary, genetic and swarm approaches. The main feature
of genetic algorithms is their possibility of working not with
one solution, but a set of alternative solutions. But in the case
of too large search space bioinspired algorithms have
drawbacks related with pure convergence in the global
optimum with an adequate precision. Local search techniques
follow a different strategy, being able to find any local
optimum with great precision, using information from the
neighboring candidate solutions. Advantages and drawbacks of
genetics algorithms and local optimization approaches are con-

verse. The synergy between them leads to appearance of new
hybrid methods, simultaneously global and precise. The direct
implementation of this idea is to apply a genetic search and a
local technique in two consecutive steps. Actually, the genetic
algorithm explores the domain and finds a good set of initial
estimates. On the second step in order to locate the nearest and
best solution, the obtained estimates are refined by the local
technique. In this paper we propose a new hybrid approach
based on genetic algorithm intended for solving one-
dimensional BPP providing approximation and optimal
solutions for all benchmarks instances in a tolerable
computational time [7].

II. SIMULATED ANNEALING HYPER-HEURISTICS FOR A

MAXIMISATION PROBLEM

Simulated annealing is a local search method inspired by
Metropolis et al.’s algorithm to simulate the physical cooling
process [8]. Since its introduction as an optimization tool [3],
SA has been intensively studied both in theory and application.
The theoretical analysis of SA have been concerned with its
convergence criteria, based on the fact that simulated annealing
can be treated as a series of homogeneous Markov chains or a
single nonhomogeneous Markov chain. Research has proven
that SA is able to asymptotically converge to an optimal
solution if certain conditions are satisfied [3]. However, these
theories are not very useful in practice because guaranteeing an
optimal solution often requires more iterations than an
exhaustive search.

The procedure for simulated annealing is fairly simple. For
a maximization problem with objective function f and
neighborhood structure N, SA starts from an initial solution
and repeatedly generates and transfers to a neighbor of the
current solution. During this process, SA has the possibility of
visiting worse neighbors in order to escape from local optima.
Specifically, a parameter, called temperature t, is used to
control the possibility of moving to worse neighbor solutions.
The algorithm, starting from a high temperature, repeatedly
decreases the temperature in a strategic manner (usually
referred to as a cooling schedule) until the temperature is low
enough, or some other stopping criteria are satisfied. In each
iteration, the algorithm accepts all uphill (a move which
increases the objective value for a maximization problem)
moves and some of the downhill (a decrease in the objective
value for a maximization problem) moves according to the
Metropolis probability, defined by exp(δ/t) where δ is the
difference in the objective function between the new candidate
solution and the current solution. A general simulated
annealing algorithm for maximization problem can be
described by the following [1]:

Repeat
 Repeat
 Randomly select s N (s0);
 δ = f(s) − f(s0);
 If δ > 0 s0 = s;
 Else if exp(δ/t) > random(0,1) s0 = s;
 Endif
 If f(s0) > f(sbest) sbest = s0;
 Endif
 Until iteration_count = nrep

223

 Set t = ϕ(t);
Until the stopping conditions are met
Output sbest as the best solution found.

Two important factors have to be carefully considered
before implementing this general simulated annealing
algorithm. These are the definition of neighborhood structure N
and the cooling schedule which is determined by

1) a starting temperature ts;

2) temperature reduction function α(t);

3) the number of iterations at each temperature nrep and

4) stopping condition(s).

The starting temperature. The initial temperature should be
high enough to allow “free moves” at the initial state such that
the final solution is not dependent on the initial state [3].
However, if one wants SA to start from a good quality solution
created by some sophisticated heuristics, the initial temperature
should not be too high. This is due to the fact that, when the
temperature is too high, the algorithm accepts almost all of
downhill moves (without specification, it is assumed that we
are trying to maximize the objective function). In this case, the
search, in fact, starts from a random initial solution. The effort
of obtaining a high quality initial solution is, therefore,
irrelevant.

A lot of research has been carried out in order to identify an
optimal initial temperature or a method by which an initial
temperature can be determined.

In [9] suggested an initial temperature t0 = δmax where
δmax is the maximal difference in the objective value between
two neighboring solutions. Another more intuitive method is
setting an initial temperature value such that the ratio of
accepted downhill moves to all neighborhood moves is equal to
a predefined value. Besides the authors suggested using the
average cost difference of a set of sample neighboring solutions
to approximate the initial temperature of a given acceptance
ratio of downhill moves. Suppose δ represents the average cost
difference of a set of sampled neighboring solutions and r0 is
the given acceptance ratio allowed at the beginning of the
search, the initial temperature can be calculated by t0 =
−δavg/ln(r0).

Cooling schedule. Considerable research has been carried
out in the pursuit of a good cooling strategy. Two of the most
popular methods are geometric cooling ϕ(t) = αt (α < 1) and a
non-linear cooling function ϕ(t) = t/(1 + βt) (where β is a very
small positive value) [10]. In the geometric cooling function,
the temperature reduction rate is a constant and usually takes
value in the range of [0.8, 0.99]. However, in the Lundy and
Mees’ cooling function, the temperature drops very quickly
when the temperature is high and relatively slower when the
temperature is low. At each temperature only one iteration is
executed. Both cooling schedules are monotonic de-creasing
functions. However, an optimal cooling schedule may be not
monotonic and be dependent on different problems [11].
Therefore, several other cooling strategies have also been

proposed which take into account the history of the search and
allow temperature increases during the search.

When the temperature becomes very low, SA degenerates
into a hill climbing algorithm and most of the time is being
wasted in generating and rejecting inferior solutions.

Instead, the temperature could be held constant throughout
the search. He tested the idea on quadratic assignment
problems and concluded that there exists a fixed temperature at
which the performance is optimized. However, this optimal
temperature might be different from problem to problem and is
very difficult to obtain.

Stopping condition(s). The conventional simulated
annealing algorithm stops when the temperature reaches zero
or a value small enough such that the algorithm converges to a
local optimum. Choosing an appropriate value of the stopping
temperature can be based on experiments or one can monitor
the acceptance ratio of downhill moves and the algorithm stops
when the ratio decreases below a given very small value (0.01
for example). Other stopping conditions were also used, such
as the allowed computation time, the number of consecutive
non-improvement moves, etc.

Figure 1 shows a general framework for the simulated
annealing hyper-heuristic proposed by Ruibin Bai [11].

Fig. 1. The framework of simulated annealing hyper-
heuristics for a maximization problem

The system is very similar to other forms of hyper-
heuristics except that a simulated annealing algorithm is used
as an acceptance criterion. At each iteration, the algorithm
selects a heuristic from the set of low-level heuristics available

224

and applies it to the current solution. If the solution generated
by this heuristic is better than the current solution, it is
accepted. Otherwise, it is accepted according to a Metropolis
probability. The temperature of the simulated annealing is then
modified. When the stopping conditions are met, the system
terminates and outputs the best solution found so far. Note that
the proposed hyper-heuristic does not conflict with the existing
local search hyper-heuristics. The selection of the heuristics
could be in a random way or by utilizing some intelligence that
has been proposed in other hyper-heuristic frameworks. In his
thesis, he requires all of the solutions generated by the low
level heuristics to be feasible, i.e. the low level heuristics
searches in the feasible solution space [11].

Firstly, the simulated annealing hyper-heuristic biases the
exploration of the neighborhood by heuristically sampling the
candidate solutions (using different low-level heuristics) rather
than sampling them uniformly from the given neighborhood as
does a traditional simulated annealing algorithm with multi-
neighborhoods. Secondly, a simulated annealing algorithm
requires every state to be reachable (i.e. any solution can be
reached by any other solution after a finite number of iterations
of moves in the defined neighborhood) [11]. However, in the
simulated annealing hyper-heuristic, the low-level heuristics do
not necessarily satisfy this requirement as long as there is a
combination of these heuristics that can make each solution
reachable. This is very useful when we have several possible
heuristics or operators that can transfer the state of the current
solution but these operators alone are not able to generate a
neighborhood that satisfies the reachability condition. For
example, when dealing with the bin packing problem, a
neighbor solution can be created by “interchanging two
(random) items of two (random) bins”. However, using this
heuristic alone cannot guarantee to reach every other solution
(from the current solution) within a limited number of
executions. Meanwhile, although the neighborhood defined by
another operator “shifting a random item from one random bin
to another random bin” satisfies the reachability condition, the
local search algorithms using this operator alone generally
perform very badly.

III. APPLYING SA HYPER-HEURISTIC FOR SOLVING THE BPP

The difficulty of applying SA to bin packing probably
comes from the fact that the objective function of the bin
packing problem (the number of the bins occupied) is not
sensitive to the general neighborhood moves [12]. For instance,
two general neighborhood moves, interchanging two items
between two bins and shifting an item from one bin to another,
are usually not able to change the objective function.
Employing some elaborate moves could damage the
reachability of the neighborhood and prematurely lead the
search into a local optimum. In fact, improving the bin packing
solution really needs the cooperation of several types of
neighborhood moves rather than executing single type of
moves. However, a general simulated annealing algorithm only
allows a single neighborhood structure with the requirement of
reachability, which handicaps the application of SA in
problems such as bin packing. Therefore, in this application R.
Bai propose to utilize several heuristics under the framework of
the simulated annealing hyper-heuristics, rather than just using
a single neighborhood.

The heuristics used to transfer the state of the solution do
not necessarily satisfy the reachability requirement as required
by a neighborhood definition. The heuristics used could have
some intelligent elements such that the cur-rent solution is
transferred to the promising directions rather than being purely
random.

Low-level heuristics. The implementation of the simulated
annealing hyper heuristic requires a set of problem-specific
low-level heuristics. A total of five low-level heuristics are
used, as follows [12]:

H1: Exchange largest Bin_largest Item. This heuristic
selects the largest item from the bin with the largest residual
capacity and exchanges this item with another smaller item (or
several items whose capacity sum is smaller) from another
randomly selected non-fully-filled bin. The idea behind this
heuristic is to transfer smaller residual capacity from a random
bin to a bin with the largest residual capacity such that this bin
can be emptied by other heuristic(s).

H2: Exchange random Bin_largest Item. This heuristic is
similar to H1 except that the exchange is carried out between
two randomly selected non-fully filled bins.

H3: Shift. This heuristic selects each item from the bin with
the largest residual capacity and tries to shift them to the rest of
the bins using the BFD heuristic.

H4: Split. H1, H2 and H3 all operate on non-fully-filled
bins. However, in some cases, a fully-filled bin may contain
too many small items such that it is impossible to transfer to
the optimal solution using H1, H2 and H3 because of the
difficulty in packing large items. Hence this heuristic is
designed to solve this problem. Once the number of the items
in a bin is found to have exceeded the average number of items
of other bins, this heuristic transfers half of the items, selected
at random, into a new bin.

H5: Best Packing. This heuristic firstly selects the biggest
item from a probabilistically selected bin. The TBR_MBS
heuristic is then used to search a group of items (called one
packing) that contains this item and considers all the other
items (the sequence of these items in the vector Π is sorted by
the residual capacity of the corresponding bins with tie broken
arbitrarily). All the items that appeared in the packing found by
TBR_MBS are then transferred into a new bin. The time limit
is set to 0.2 second based on preliminary experiments. The
probability of selecting a bin is calculated by

ψ= resCapj / ∑resCapj, (3)

where resCapj is the residual capacity of the bin j. Hence the
selection is in favour of the bins with the larger residual
capacity. The bins with zero residual capacity will not be
selected because they are already packed well [12].

Note that heuristics H1 and H2 are normally not able to
change the objective, while heuristic H3 is an objective
improving heuristic and heuristic H4 is objective non-
improving. Heuristic H5 could undermine or improve the
objective.

225

IV. IMPLEMENTATION OF BPP BASED ON SA HYPER-HEURISTIC

Let’s demonstrate results of implementation of BPP based
on SA hyper-heuristic. These data sets consist of two classes of
problems: uniform and triplet. In the uniform class, the number
of items is 120, 250, 500 and 1000 respectively and their sizes
are uniformly distributed in the range of [20,100]. The bin
capacity is 150. There are 20 instances for each problem size
and hence 80 problem instances in total. In the triplet class, the
bin capacity is 1000 and the item sizes are deliberately
generated such that, in the optimal solution, every bin contains
exactly three items (one “big” and two “small” items) without
any residual capacity. The number of the items is 60, 120, 249
and 501 and each of them contains 20 instances. This class of
data set is claimed to be more difficult because of the fact that
no residual capacity is allowed in any bin in the optimal
solution [12].

Table 1. Computational results of MBS based heuristics and
hyper-heuristics

 MBS TBR_MBS SAHH

Data sets #num #opt #opt #opt

FAL_U120 20 11 17 20.0

FAL_U250 20 12 13 18.6

FAL_U500 20 11 11 19.0

FAL_U1000 20 7 5 20.0

FAL_T60 20 0 0 20.0

FAL_T120 20 0 0 20.0

FAL_T249 20 0 0 20.0

FAL_T501 20 0 0 20.0

Table 2. Computational results of MBS based heuristics and
hyper-heuristics

 HGGA VNS SAHH

Data sets #num #opt #opt #opt

FAL_U120 20 18 20 20.0

FAL_U250 20 18 19 18.6

FAL_U500 20 20 20 19.0

FAL_U1000 20 20 20 20.0

FAL_T60 20 18 20 20.0

FAL_T120 20 20 20 20.0

FAL_T249 20 20 20 20.0

FAL_T501 20 20 20 20.0

In the tables:
- #num is the number of instances in the given data sets.
- #opt is the number of instances for which the given

algorithm finds a solution.

The Hybrid Parallel Genetic Algorithm to solve the BPP
has been presented. New specific genetic operators are
developed with two effective replacement procedures. The
realized computational experiments establish that the
presented HGA never decrease the quality of existing solutions
in the literature. Moreover, new search strategy has been
designed. The main characteristic of this new strategy is
parallelization of genetic search, hybridized by effective local
search.

Two evolution models (de Vries’ evolution model and
Lamarck’s evolution model) have been adapted to solve the
BPP. New problem-oriented genetic operators have also been
developed. They never decrease the quality of solution and

allow obtaining valid BPP solutions. Two effective local search
algorithms are proposed. They allow improving of BPP
solutions to get quasi-optimal and optimal packings.

Computational experiments show that the presented
algorithm gives quasi-optimal and optimal solutions for all
benchmark instances in an acceptable amount of computing
time, clearly showing the robustness of the proposed approach.
In the case of quasi-optimal solutions the absolute deviation
from reference solution is at most one bin. Efficiency of HGA
is due to new hybridization mechanisms of genetic algorithms
and local search procedures.

 Future work could explore the possibility of designing
more sophisticated architectures of genetic search with
migration and applying the proposed approach to solve the
Vehicle Routing Problem with Multiple Routes. BPP approach
seems to be effective to distribute routes to vehicles.

ACKNOWLEDGMENT

This work is supported by the Grant of Russian Scientific
Foundation (project №14-11-00242) in the Southern Federal
University.

REFERENCES

[1] Gupta, J. N. D. and Ho, J. C., 1999. A New Heuristic Algorithm
for the Onedimensional Bin-packing Problem, Production Planning
& Control. 10, 598-603.

[2] Fleszar, K. and Hindi, K. S., 2002. New Heuristics for One-
dimensional Bin-packing, Computers & Operations Research. 29,
821-839.

[3] Ruibin Bai. An investigation of novel approaches for optimizing
retail shelf space allocation. PhD Thesis. The University of
Nottingham, Nottingham, UK, 2005.

[4] John Levine and Frederick Ducatelle. Ant Colony Optimization
and Local Search for Bin Packing and Cutting Stock Problems. -
Centre for Intelligent Systems and their Applications, School of
Informatics, University of Edinburgh, 2003.

[5] Knapsack problems, algorithms and computer implementations :
Silvano Martello and Paolo Toth Wiley, Chichester, England,
1990.

[6] Dorigo, M., Vittorio, M. and Alberto, C. Optimization by a Colony
of Cooperating Agents, IEEE Transactions on Systems, Man and
Cybernetics – Part B: Cybernetics. 26, 1996. 26-41 p.

[7] Potarusov, R., Kureychik, V., Goncalves, G. and Allaoui H.
Solving the Bin Packing Problem with Algorithm of Genetic
Search with Migration. Proceedings of International Conference on
Artificial Intelligence Systems (AIS’07), Divnomorskoe, Russia,
September 3-10, 2007. – 34-45 p.

[8] Petch, R.J. and Salhi, S. A multi-phase constructive heuristic for
the vehicle routing problem with multiple trips. Discrete Applied
Mathematics, 133, 2004. – 69-92 p.

[9] Alvim Adriana C.F., Glover Fred S., Ribeiro Celso C., and Aloise
Dario J. Local search for the bin packing problem. Journal of
heuristics, 10, 2004. – 205-229 p.

[10] Lourenco, H.R., Martin, O. C., and Stutzle, T. Iterated local search.
In: Glover, F. and Kochenberg, G.A. (Eds.), Handbook of
Metaheuristics, Kluwer, 2003. – 321-354 p.

[11] Blum, C. and Roli, A. Metaheuristic in Combinatorial
Optimization: Overview and Conceptual Comparison, ACM
Computing Surveys. 35, 2003. – 268-303 p.

[12] Kureychik, V.M., Potarusov, R.V., Goncalves, G. Bionicheskie
metodi upakovri blokov. – Taganrog: Izd-vo TTI UFU, 2009. –
120p.

[13] Gladkov, L.A, Kureychik, V.V., Kureychik, V.M.: Genetic
algorithms, 2nd. edn. Fizmatlit, Moscow (2006)

226

