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Abstract – In the given paper one-dimensional Bin Packing 

Problem which plays an important role for the optimization of 

transportations and production activities is considered. The 

Hybrid Genetic Algorithm for one-dimensional Bin Packing 

Problem is proposed. For this purpose two evolution models (de 

Vries’ evolution model and Lamarck’s evolution model) have 

been adapted. Besides, new problem-oriented genetic operators 

are developed. The main advantage of the suggested approach is 

that it never decreases the quality of solution so it allows 

obtaining valid Bin Packing Problem solutions. Two effective 

local search algorithms allowing to improve of Bin Packing 

Problem solutions by getting quasi-optimal and optimal packings 

are proposed. Computational experiments show that a new 

hybrid approach based on genetic algorithm intended for solving 

one-dimensional BPP provides approximation and optimal 

solutions for all benchmarks in-stances in a tolerable 

computational time as well as demonstrate the robustness of the 

proposed approach. 

Keyword – optimization problem, bin packing, genetic 

algorithms, local search 

I.  INTRODUCTION  

Bin Packing Problem (BPP) plays an important role for the 
optimization of transportations and production activities as well 
as the development of new information and computer 
technologies, etc. The problem of BPP is a complex 
combinatorial logic and NP-complete task. The goal of this 
task is to arrange the elements in blocks with a given 
dimension (capacity), in such a way as to maximize the filling 
of blocks and to minimize the total number of blocks. Bin 
Packing Problem refers to a common scientific and industrial 
field. Despite on the existence of a large number of different 
approaches, methods and algorithms of packing, the optimal 
solutions are not found. Currently, there is no universal 
algorithm be capable for solving all test tasks with similar 
efficiency. Therefore, the development of new effective 
heuristic approaches, methods and algorithms is an urgent and 
important issue. 

To our extend there are some heuristic approaches applied 
to the problem of Bin Packing Problem.  Gupta and Ho [1] 
proposed the bin-oriented heuristic, which they called 
Minimum Bin Slack (MBS). This heuristic is different from 
item-oriented heuristics in that the packing process is carried 
out bin-by-bin rather than item-by-item, using a procedure 
called MBS-One-Packing. At each iteration, instead of packing 
the items one by one based on certain rules, the MBS-One-
Packing procedure searches for a group of items (from all the 
unpacked items) that could fill a bin with minimal slack (i.e. 
the smallest residual capacity) and packs this group of items 
into a new bin. The MBS heuristic repeatedly calls MBS-One-
Packing procedure until all items are packed. A recursive 
version of MBS-One-Packing was illustrated in [2].  The 
procedure stops when either a combination with zero slack (i.e. 
no residual capacity left) is found or all item combinations 
have been explored. 

MBS’ heuristic.  Fleszar and Hindi [2] presented a variant 
of this procedure (denoted by MBS’), which always packs the 
first item of the vector into the current packing. The modified 
algorithm gives similar solution quality but shorter 
computation time in most instances. The MBS heuristic has 
shown to be superior to FFD, BFD, B2F and FFD-B2F in terms 
of the solution quality and is able to solve the problem to 
optimality where the optimal solution is two bins. It is 
especially efficient when the optimal solution requires the 
majority of bins to be fully filled. The worst time complexity of 
this algorithm is 2n, where n is the number of items. However, 
the experimental results have shown it to be very efficient for 
most problem instances ([1], [2]). 

One more approach for solving BPP is based on variable 
neighborhood search algorithm. The main components of this 
approach are moves. By “move” we define the transition of an 
item from its current bin to another one or the swap of a pair of 
items across their respective current bins. Moves that do not 
violate the bin capacity constraint are called “valid moves”. 
Further only valid moves are considered [2]. The essential 
stage of any neighborhood search process is the choice of the 
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objective function. According to our problem, we have to 
choose such an objective function that allows minimizing the 
number of bins. The objective function is rather pointless since 
because of a lot of different configurations, in terms of the 
assignment of items to bins, corresponding to the same number 
of bins. Considering that a good solution will always have 
nearly full bins leads to an objective function that seeks 
configurations having this feature. Let’s consider the following 
objective function  
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where m is a number of bins in x and l(α) is a sum of sizes of 
items Aα assigned to bin α, i.e., 







Ai itl )(                       (2) 

Besides the maximization of bin loads, the objective 
function tries to reduce the number of bins. So, it is obvious 
that the value of the function will not change if an empty bin is 
added or removed [2]. 

An approach of Hybrid Ant Colony Optimization algorithm 
for BPP, proposed by John Levine and Frederick Ducatelle [4] 
combines the ACO meta-heuristic with a simple but effective 
iterated local search algorithm based on the Dominance 
Criterion of Martello and Toth [5].  Starting with a set of empty 
bins, fill each bin in turn by repeatedly placing the largest item 
from those remaining which will still fit into the bin. If no 
items left are small enough to fit into the bin, a new bin is 
started. This procedure results in the FFD solution, but is more 
useful for purposes of ACO: it shows that the heuristic 
favourability of an item is directly related to its size [6].  

Building the solution. Every ant starts with the set of all 
items to be placed and an empty bin. It will add the items one 
by one to its bin, until none of the items left are light enough to 
fit in the bin. Then the bin is closed, and a new one is started.  

Iterated local search. In every ant's solution, the n least full 
bins are opened and their contents are made free. Items in the 
remaining bins are replaced by larger free items. This gives 
fuller bins with larger items and smaller free items to reinsert. 
The free items are reinserted via FFD. The procedure is 
repeated until no further improvement is possible. Only the 
global best ant increases the pheromone trail. 

International studies in the field of computer science and 
genetics allow obtaining new information technology related to 
the use of nature evolution models. It is therefore proposed to 
solve BPP based on bioinspired methods including 
evolutionary, genetic and swarm approaches. The main feature 
of genetic algorithms is their possibility of working not with 
one solution, but a set of alternative solutions. But in the case 
of too large search space bioinspired algorithms have 
drawbacks related with pure convergence in the global 
optimum with an adequate precision. Local search techniques 
follow a different strategy, being able to find any local 
optimum with great precision, using information from the 
neighboring candidate solutions. Advantages and drawbacks of 
genetics algorithms and local optimization approaches are con-

verse. The synergy between them leads to appearance of new 
hybrid methods, simultaneously global and precise. The direct 
implementation of this idea is to apply a genetic search and a 
local technique in two consecutive steps. Actually, the genetic 
algorithm explores the domain and finds a good set of initial 
estimates. On the second step in order to locate the nearest and 
best solution, the obtained estimates are refined by the local 
technique. In this paper we propose a new hybrid approach 
based on genetic algorithm intended for solving one-
dimensional BPP providing approximation and optimal 
solutions for all benchmarks instances in a tolerable 
computational time [7]. 

II. SIMULATED ANNEALING HYPER-HEURISTICS FOR A 

MAXIMISATION PROBLEM 

Simulated annealing is a local search method inspired by 
Metropolis et al.’s algorithm to simulate the physical cooling 
process [8]. Since its introduction as an optimization tool [3], 
SA has been intensively studied both in theory and application. 
The theoretical analysis of SA have been concerned with its 
convergence criteria, based on the fact that simulated annealing 
can be treated as a series of homogeneous Markov chains or a 
single nonhomogeneous Markov chain. Research has proven 
that SA is able to asymptotically converge to an optimal 
solution if certain conditions are satisfied [3]. However, these 
theories are not very useful in practice because guaranteeing an 
optimal solution often requires more iterations than an 
exhaustive search. 

The procedure for simulated annealing is fairly simple. For 
a maximization problem with objective function f and 
neighborhood structure N, SA starts from an initial solution 
and repeatedly generates and transfers to a neighbor of the 
current solution. During this process, SA has the possibility of 
visiting worse neighbors in order to escape from local optima. 
Specifically, a parameter, called temperature t, is used to 
control the possibility of moving to worse neighbor solutions. 
The algorithm, starting from a high temperature, repeatedly 
decreases the temperature in a strategic manner (usually 
referred to as a cooling schedule) until the temperature is low 
enough, or some other stopping criteria are satisfied. In each 
iteration, the algorithm accepts all uphill (a move which 
increases the objective value for a maximization problem) 
moves and some of the downhill (a decrease in the objective 
value for a maximization problem) moves according to the 
Metropolis probability, defined by exp(δ/t) where δ is the 
difference in the objective function between the new candidate 
solution and the current solution. A general simulated 
annealing algorithm for maximization problem can be 
described by the following [1]: 

Repeat  
 Repeat  
  Randomly select s  N (s0); 
  δ = f(s) − f(s0); 
  If δ > 0 s0 = s; 
  Else if exp(δ/t) > random(0,1) s0 = s; 
  Endif  
  If f(s0) > f(sbest) sbest = s0; 
  Endif  
 Until iteration_count = nrep  
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 Set t = ϕ(t); 
Until the stopping conditions are met  
Output sbest as the best solution found. 
 

Two important factors have to be carefully considered 
before implementing this general simulated annealing 
algorithm. These are the definition of neighborhood structure N 
and the cooling schedule which is determined by  

1) a starting temperature ts;  

2) temperature reduction function α(t);  

3) the number of iterations at each temperature nrep and  

4) stopping condition(s).  

The starting temperature. The initial temperature should be 
high enough to allow “free moves” at the initial state such that 
the final solution is not dependent on the initial state [3]. 
However, if one wants SA to start from a good quality solution 
created by some sophisticated heuristics, the initial temperature 
should not be too high. This is due to the fact that, when the 
temperature is too high, the algorithm accepts almost all of 
downhill moves (without specification, it is assumed that we 
are trying to maximize the objective function). In this case, the 
search, in fact, starts from a random initial solution. The effort 
of obtaining a high quality initial solution is, therefore, 
irrelevant.  

A lot of research has been carried out in order to identify an 
optimal initial temperature or a method by which an initial 
temperature can be determined.  

In [9] suggested an initial temperature t0 = δmax where 
δmax is the maximal difference in the objective value between 
two neighboring solutions. Another more intuitive method is 
setting an initial temperature value such that the ratio of 
accepted downhill moves to all neighborhood moves is equal to 
a predefined value. Besides the authors suggested using the 
average cost difference of a set of sample neighboring solutions 
to approximate the initial temperature of a given acceptance 
ratio of downhill moves. Suppose δ represents the average cost 
difference of a set of sampled neighboring solutions and r0 is 
the given acceptance ratio allowed at the beginning of the 
search, the initial temperature can be calculated by t0 = 
−δavg/ln(r0). 

Cooling schedule. Considerable research has been carried 
out in the pursuit of a good cooling strategy. Two of the most 
popular methods are geometric cooling ϕ(t) = αt (α < 1) and a 
non-linear cooling function ϕ(t) = t/(1 + βt) (where β is a very 
small positive value) [10]. In the geometric cooling function, 
the temperature reduction rate is a constant and usually takes 
value in the range of [0.8, 0.99]. However, in the Lundy and 
Mees’ cooling function, the temperature drops very quickly 
when the temperature is high and relatively slower when the 
temperature is low. At each temperature only one iteration is 
executed. Both cooling schedules are monotonic de-creasing 
functions. However, an optimal cooling schedule may be not 
monotonic and be dependent on different problems [11]. 
Therefore, several other cooling strategies have also been 

proposed which take into account the history of the search and 
allow temperature increases during the search. 

When the temperature becomes very low, SA degenerates 
into a hill climbing algorithm and most of the time is being 
wasted in generating and rejecting inferior solutions.  

Instead, the temperature could be held constant throughout 
the search. He tested the idea on quadratic assignment 
problems and concluded that there exists a fixed temperature at 
which the performance is optimized. However, this optimal 
temperature might be different from problem to problem and is 
very difficult to obtain. 

Stopping condition(s). The conventional simulated 
annealing algorithm stops when the temperature reaches zero 
or a value small enough such that the algorithm converges to a 
local optimum. Choosing an appropriate value of the stopping 
temperature can be based on experiments or one can monitor 
the acceptance ratio of downhill moves and the algorithm stops 
when the ratio decreases below a given very small value (0.01 
for example). Other stopping conditions were also used, such 
as the allowed computation time, the number of consecutive 
non-improvement moves, etc.  

Figure 1 shows a general framework for the simulated 
annealing hyper-heuristic proposed by Ruibin Bai [11].  

 

Fig. 1. The framework of simulated annealing hyper-
heuristics for a maximization problem 

The system is very similar to other forms of hyper-
heuristics except that a simulated annealing algorithm is used 
as an acceptance criterion. At each iteration, the algorithm 
selects a heuristic from the set of low-level heuristics available 
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and applies it to the current solution. If the solution generated 
by this heuristic is better than the current solution, it is 
accepted. Otherwise, it is accepted according to a Metropolis 
probability. The temperature of the simulated annealing is then 
modified. When the stopping conditions are met, the system 
terminates and outputs the best solution found so far. Note that 
the proposed hyper-heuristic does not conflict with the existing 
local search hyper-heuristics. The selection of the heuristics 
could be in a random way or by utilizing some intelligence that 
has been proposed in other hyper-heuristic frameworks. In his 
thesis, he requires all of the solutions generated by the low 
level heuristics to be feasible, i.e. the low level heuristics 
searches in the feasible solution space [11]. 

Firstly, the simulated annealing hyper-heuristic biases the 
exploration of the neighborhood by heuristically sampling the 
candidate solutions (using different low-level heuristics) rather 
than sampling them uniformly from the given neighborhood as 
does a traditional simulated annealing algorithm with multi-
neighborhoods. Secondly, a simulated annealing algorithm 
requires every state to be reachable (i.e. any solution can be 
reached by any other solution after a finite number of iterations 
of moves in the defined neighborhood) [11]. However, in the 
simulated annealing hyper-heuristic, the low-level heuristics do 
not necessarily satisfy this requirement as long as there is a 
combination of these heuristics that can make each solution 
reachable. This is very useful when we have several possible 
heuristics or operators that can transfer the state of the current 
solution but these operators alone are not able to generate a 
neighborhood that satisfies the reachability condition. For 
example, when dealing with the bin packing problem, a 
neighbor solution can be created by “interchanging two 
(random) items of two (random) bins”. However, using this 
heuristic alone cannot guarantee to reach every other solution 
(from the current solution) within a limited number of 
executions. Meanwhile, although the neighborhood defined by 
another operator “shifting a random item from one random bin 
to another random bin” satisfies the reachability condition, the 
local search algorithms using this operator alone generally 
perform very badly. 

III. APPLYING SA HYPER-HEURISTIC FOR SOLVING THE BPP 

The difficulty of applying SA to bin packing probably 
comes from the fact that the objective function of the bin 
packing problem (the number of the bins occupied) is not 
sensitive to the general neighborhood moves [12]. For instance, 
two general neighborhood moves, interchanging two items 
between two bins and shifting an item from one bin to another, 
are usually not able to change the objective function. 
Employing some elaborate moves could damage the 
reachability of the neighborhood and prematurely lead the 
search into a local optimum. In fact, improving the bin packing 
solution really needs the cooperation of several types of 
neighborhood moves rather than executing single type of 
moves. However, a general simulated annealing algorithm only 
allows a single neighborhood structure with the requirement of 
reachability, which handicaps the application of SA in 
problems such as bin packing. Therefore, in this application R. 
Bai propose to utilize several heuristics under the framework of 
the simulated annealing hyper-heuristics, rather than just using 
a single neighborhood.  

The heuristics used to transfer the state of the solution do 
not necessarily satisfy the reachability requirement as required 
by a neighborhood definition. The heuristics used could have 
some intelligent elements such that the cur-rent solution is 
transferred to the promising directions rather than being purely 
random. 

Low-level heuristics. The implementation of the simulated 
annealing hyper heuristic requires a set of problem-specific 
low-level heuristics. A total of five low-level heuristics are 
used, as follows [12]: 

H1: Exchange largest Bin_largest Item. This heuristic 
selects the largest item from the bin with the largest residual 
capacity and exchanges this item with another smaller item (or 
several items whose capacity sum is smaller) from another 
randomly selected non-fully-filled bin. The idea behind this 
heuristic is to transfer smaller residual capacity from a random 
bin to a bin with the largest residual capacity such that this bin 
can be emptied by other heuristic(s). 

H2: Exchange random Bin_largest Item. This heuristic is 
similar to H1 except that the exchange is carried out between 
two randomly selected non-fully filled bins. 

H3: Shift. This heuristic selects each item from the bin with 
the largest residual capacity and tries to shift them to the rest of 
the bins using the BFD heuristic. 

H4: Split. H1, H2 and H3 all operate on non-fully-filled 
bins. However, in some cases, a fully-filled bin may contain 
too many small items such that it is impossible to transfer to 
the optimal solution using H1, H2 and H3 because of the 
difficulty in packing large items. Hence this heuristic is 
designed to solve this problem. Once the number of the items 
in a bin is found to have exceeded the average number of items 
of other bins, this heuristic transfers half of the items, selected 
at random, into a new bin. 

H5: Best Packing. This heuristic firstly selects the biggest 
item from a probabilistically selected bin. The TBR_MBS 
heuristic is then used to search a group of items (called one 
packing) that contains this item and considers all the other 
items (the sequence of these items in the vector Π is sorted by 
the residual capacity of the corresponding bins with tie broken 
arbitrarily). All the items that appeared in the packing found by 
TBR_MBS are then transferred into a new bin. The time limit 
is set to 0.2 second based on preliminary experiments. The 
probability of selecting a bin is calculated by  

ψ= resCapj / ∑resCapj,                                (3) 

where resCapj is the residual capacity of the bin j. Hence the 
selection is in favour of the bins with the larger residual 
capacity. The bins with zero residual capacity will not be 
selected because they are already packed well [12].  

Note that heuristics H1 and H2 are normally not able to 
change the objective, while heuristic H3 is an objective 
improving heuristic and heuristic H4 is objective non-
improving. Heuristic H5 could undermine or improve the 
objective. 
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IV. IMPLEMENTATION OF BPP BASED ON SA HYPER-HEURISTIC 

Let’s demonstrate results of implementation of BPP based 
on SA hyper-heuristic. These data sets consist of two classes of 
problems: uniform and triplet. In the uniform class, the number 
of items is 120, 250, 500 and 1000 respectively and their sizes 
are uniformly distributed in the range of [20,100]. The bin 
capacity is 150. There are 20 instances for each problem size 
and hence 80 problem instances in total. In the triplet class, the 
bin capacity is 1000 and the item sizes are deliberately 
generated such that, in the optimal solution, every bin contains 
exactly three items (one “big” and two “small” items) without 
any residual capacity. The number of the items is 60, 120, 249 
and 501 and each of them contains 20 instances. This class of 
data set is claimed to be more difficult because of the fact that 
no residual capacity is allowed in any bin in the optimal 
solution [12]. 

Table 1. Computational results of MBS based heuristics and 
hyper-heuristics 

  MBS  TBR_MBS  SAHH  

Data sets  #num  #opt  #opt  #opt  

FAL_U120  20  11  17  20.0 

FAL_U250  20  12  13  18.6 

FAL_U500  20  11  11  19.0 

FAL_U1000  20  7  5  20.0 

FAL_T60  20  0  0  20.0 

FAL_T120  20  0  0  20.0 

FAL_T249  20  0  0  20.0 

FAL_T501  20  0  0  20.0 

 

Table 2. Computational results of MBS based heuristics and 
hyper-heuristics 

  HGGA  VNS  SAHH  

Data sets  #num  #opt  #opt  #opt  

FAL_U120  20  18  20  20.0  

FAL_U250  20  18  19  18.6 

FAL_U500  20  20  20  19.0 

FAL_U1000  20  20  20  20.0 

FAL_T60  20  18  20  20.0 

FAL_T120  20  20  20  20.0 

FAL_T249  20  20  20  20.0 

FAL_T501  20  20  20  20.0 

In the tables: 
- #num is the number of instances in the given data sets. 
- #opt is the number of instances for which the given 

algorithm finds a solution. 
 

The Hybrid Parallel Genetic Algorithm to solve the BPP 
has been presented. New specific genetic operators are 
developed  with  two  effective  replacement  procedures. The  
realized  computational experiments establish that the 
presented HGA never decrease the quality of existing solutions 
in the literature.  Moreover, new search strategy has been 
designed. The main characteristic of this new strategy is 
parallelization of genetic search, hybridized by effective local 
search. 

Two evolution models (de Vries’ evolution model and 
Lamarck’s evolution model) have been adapted to solve the 
BPP. New problem-oriented genetic operators have also been 
developed. They never decrease the quality of solution and 

allow obtaining valid BPP solutions. Two effective local search 
algorithms are proposed. They allow improving of BPP 
solutions to get quasi-optimal and optimal packings.  

Computational experiments show that the presented 
algorithm gives quasi-optimal and optimal solutions for all 
benchmark instances in an acceptable amount of computing 
time, clearly showing the robustness of the proposed approach. 
In the case of quasi-optimal solutions the absolute deviation 
from reference solution is at most one bin. Efficiency of HGA 
is due to new hybridization mechanisms of genetic algorithms 
and local search procedures.  

 Future work could explore the possibility of designing 
more sophisticated architectures of genetic search with 
migration and applying the proposed approach to solve the 
Vehicle Routing Problem with Multiple Routes. BPP approach 
seems to be effective to distribute routes to vehicles. 
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