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Abstract—Energy efficiency metrics are important tools for
data center operators to optimize their facilities and thereby de-
creasing operational expenses while strengthen competitiveness.
However, commonly used metrics like Power Usage Effectiveness
do not consider productivity or suitable proxy indicators, thus
lacking the ability for correctly comparing energy efficiency
between data centers. Also, other known metrics which consider
productivity, do this in a subjective way, i.e. results are only
comparable for the same definitions. In order to address these
shortcomings we proposed the Load Dependent Energy Effi-
ciency (LDEE) metric, which uses a combination of utilization,
performance, and power models to provide detailed efficiency
data. By using load dependent models the concrete workloads
are abstracted realizing comparability. Furthermore, models are
trained with public information such as hardware specifications
and benchmark results to avoid disruption of operation and
thereby increasing applicability. This paper focuses on the uti-
lization and performance models of LDEE.

Index Terms—Data center, performance modeling, load mod-
eling, energy efficiency metric, benchmarks

I. INTRODUCTION

Data centers (DCs) with their computing, storage, and
network capacities are the backbone of today’s information
and communication technology (ICT). With rising usage of
ICT-supported services also the demand for DCs and their
capacities increases. While IT components are getting more
and more energy efficient, the total energy demand and thereby
operational expenses are still rising. Thus, improving energy
efficiency (EE) of DCs is an important topic for their operators
to stay competitive in a highly contested industry. The first
step, however, is the EE measurement in order to evaluate
the as-is state and finding suitable starting points for improve-
ments.

Currently, the most commonly used EE metric is Power
Usage Effectiveness (PUE) by The Green Grid [1], which
relates total DC energy to IT energy usage. While it is easy
to measure as well as to understand, PUE is not significant
for EE in its typical definition – useful output related to the
invested energy – but is an indicator for energy overheads
in DC infrastructure, i.e. inefficient climatisation or power
supply. However, there are other known metrics which try to
implement the EE definition by evaluating the accomplished
useful work, such as DC Energy Productivity (DCeP) or DC
Performance per Watt (DCPpW). These metrics try to abstract

productivity by measuring the number of relevant successful
tasks, which have to be defined and prioritized in relation
to each other prior to application. These definitions have to
be done manually with the consequence that comparisons
between DCs with different task loads are not feasible, i.e.
such metrics can only be used for single DCs.

In contrast to the mentioned metrics the Load Dependent
Energy Efficiency (LDEE) takes an other approach on abstract-
ing productivity. By using component models for objectively
measurable utilization, performance, and power, comparability
between DCs can be ensured. Furthermore, the models can
be trained with publicly available data like results from
performance and energy benchmarks in order to enhance
the applicability of LDEE, which is another drawback of
current productivity metrics. In addition to this, the usage of
component models allows the evaluation of component EE
next to the high level view of a complete DC, i.e. while
LDEE provides a general overview over the as-is state of EE it
also enables identification of suitable optimization points. The
main concept of LDEE has already been introduced in prior
published work [2]. In this paper, we focus on the utilization
and performance evaluation part of the LDEE, which shall
abstract the DC productivity. Therefore, respective models
are proposed which utilize IT hardware specifications as well
as public performance benchmarks to realize preferably non-
invasive surveys.

The remainder of this paper is as follows. In Section II
related work in the topics metrics, benchmarks, and per-
formance modeling is presented. Afterwards, the proposed
models for IT load (Section IV) and performance (Section V)
are described in detail. In Section VI the models will be
evaluated and compared to other approaches. The paper closes
with a conclusion.

II. RELATED WORK

The most commonly used EE metric is the aforementioned
PUE [1], which has the drawback of not considering the
output in the sense of work done but as energy needed by
the IT. As actual accomplished work may differ enormously
for same power draws, the PUE is not meaningful as EE
metric for whole DCs but only for infrastructure energy
overhead. Metrics with focus on productivity are DCeP [3],
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DCPpW [4], DPPE [5], and DC-EEP [6]. However, all these
metrics need subjective manual definitions of accomplished
work (e.g. which tasks to count) which prevents comparisons
between DCs. Further information about EE metrics in DC
context is given in [2] and [7].

Interest groups like Standard Performance Evaluation Cor-
poration (SPEC), Transaction Processing Performance Council
(TPC), and Storage Performance Council (SPC) cover a broad
range of performance and also power benchmarks for typical
DC equipment which can be utilized for EE evaluations. They
differ mainly in the used workloads and the target system
under test (SUT). In contrast, high performance computing
(HPC) benchmarks such as LINPACK for the Top500 and
Green500 lists evaluate huge, unique HW systems which are
not representative for typical DCs. There are also bench-
marks published in research like JouleSort [8] or SWEEP [9].
JouleSort uses the same sorting algorithm for different IT
systems and measures energy demand in addition to speed.
SWEEP offers customizable synthetic workloads. However, as
these benchmarks are largely unknown, they are not providing
sufficient public results for performance modeling of most IT
systems. The specifically used benchmarks and the reasoning
behind will be explained in Section V-A1.

Solutions for performance evaluation of complete DCs are
rare. An exemplary approach applied by Google was an eval-
uation of SW platforms like MapReduce by directly applying
a sort algorithm on billions of data sets in one of their DC
facilities [10]. However, this method needs specific infras-
tructures and is adapted to Google’s demands, i.e. a general
application is not realistic. An evaluation method for cloud
performance of DCs is proposed by Bruneo [11]. Requests and
workloads are distributed on the HW capacities and metrics
such as utilization, availability, queue times, service times, and
response times – in sum representing user QoS demands –
are measured and used for evaluation. However, as concrete
HW specifications are not considered in the model, detailed
performance results are not quantifiable.

III. LOAD DEPENDENT ENERGY EFFICIENCY METRIC

The LDEE is a holistic data center energy efficiency metric
with focus on load dependency of DC components’ EE. The
metric consists of two main parts with (1) the performance
of IT hardware and (2) the power demand of any equipment
located inside DC. The LDEE is thus represented by following
Equation 1,

LDEE (~l ,T ) =
perfDC (~l)

powerDC (~l ,T )
(1)

with DC IT utilization ~l ∈ R2 consisting of l1 for server and
l2 for storage load with l1, l2 ∈ [0, 1] and outside temperature
T [◦C] at the free cooling system as inputs. The LDEE is
then defined by the relation of performance perfDC to the
corresponding power demand powerDC for the given input
parameters.
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Fig. 1. DC power model composed of IT, power supply, and cooling power
models with load as input and aggregated power demand as output.
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Fig. 2. DC performance model composed of IT component performance
models with load as input and aggregated used performance as output.

The power demand powerDC is estimated by a combined
DC power model shown in Figure 1. A single component’s
power demand is modeled regarding its corresponding load
dependency. For IT equipment the load is defined by the
utilization of subsystems (CPU, RAM, I/O, ...), which is
estimated by the IT load model based on DC load and applied
distribution algorithms. The resulting IT power Pit will then
be aggregated and used as input for the uninterruptible power
supply (UPS) model delivering the according power dissipa-
tion Pups . The combined power usage is then again input
parameter for the cold chain models, as the power demand
equals dissipated heat that has to be removed from the server
rooms. The chiller and free cooling models also depend on
outside temperature T besides the heat flow Q̇, which results
from the heat absorbed by the computer room air handler
(CRAH). The aggregated power usage of IT equipment, power
supply, and climate infrastructure then represents the total DC
power demand.

The combined DC performance is estimated in a similar
way – as depicted in Figure 2. The resulting DC performance
perfDC is composed of the ’used performance’ (maximum
performance scaled with usage) of every IT component. The
particular usage is again estimated by the same IT load model
and allocated to the server and storage systems. Only the
network equipment will not be scaled with the load but will
be incorporated as network performance factor in the overall
DC performance. The concrete performance modeling process
is explained in detail in Section V.

In contrast to common EE metrics, cf. II, the LDEE uses a
combination of IT utilization and performance as substitute for
useful work or productivity, which would be the natural pa-
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Fig. 3. Activity diagram describing the sequencing of IT load modeling.

rameter based on typical efficiency definitions [12]. Although
the resulting ’used performance’ is only an approximate value
for productivity, as all tasks is considered and not only
the useful ones, this approach has the advantage of being
objective. Especially metrics with focus on useful workloads
or productivity have the issue that tasks running in the DC
and their priority have to be defined manually, such that these
metrics lack the possibility for correct comparisons between
DCs due to differences in task definitions.

Another advantage for using the LDEE approach is the
possibility to be independent from actual measurements by
using publicly available data to pre-configure the needed
power and performance models of each DC component. This
has the effect that the LDEE can be ascertained for arbitrary
input data and correct comparisons between different DC sites
and types can be achieved, as both DCs can be examined for
the same workload levels.

IV. IT LOAD MODEL

Power and performance models of IT equipment need
utilization data as input in order to deliver the load dependent
outputs. As the LDEE metric shall be applicable without
a need for measured data, an IT load model is used to
estimate the workload distribution and concrete utilization
levels among IT systems. The IT load model abstracts the
behavior of power management (PM) algorithms in different
submodels, which are selected based on the available training
data. The summarized process of IT load modeling is depicted
in Figure 3.

The IT load model is separated in two main parts: (1) identi-
fication of active IT components in the case PM is applied and
(2) utilization estimation for each IT component. Each part is
also sensitive to the input or training data available. If histor-
ical utilization traces of IT components have been measured,
the IT load model makes use of them with more accurate

methods. If there are no detailed activity and utilization data
available, the IT load model makes assumptions based on the
IT equipment configurations and PM techniques.

A. Utilization Conversion

The LDEE has the input vector ~l with utilization data for
server l1 and storage l2, cf. Section III. However, the IT load
model uses the aggregated, absolute load of all IT systems, so
utilization has to be converted to these values beforehand.

The storage systems’ utilization is defined as the ratio
of absolute allocated storage to the maximum storage ca-
pacity. As only the actual available storage is considered,
utilization values are comparable and transferable independent
from applied redundancy mechanisms such as RAID. So, the
absolute storage load can be computed by aggregating the
total available storage capacity and multiplying it with the
utilization l2.

In contrast to storage systems, server utilization is not
directly transferable between server types with differing per-
formance characteristics. A server with higher performance
will finish the same workloads in a shorter time than a server
with low performance, i.e. the high-performing server has a
lower average utilization for the same time window. Thus,
server utilization values have to be normalized to a reference
machine before they can be aggregated to an absolute value.
Furthermore, in order to transfer utilization between servers,
it has to be scaled corresponding to the performance relations
of these servers.

The utilization conversion makes use of performance bench-
marks, which evaluate the server performance by applying one
or more concrete workloads on them. By measuring the actual
workload dependent performance, different hardware architec-
tures are considered in contrast to simply scaling with CPU
frequency [13]. However, a disadvantage of using performance
benchmarks is the requirement of actual measurements or the
need for publicly available extensive data sets with benchmark
results. In this work, the SPECpower ssj20081 will be used to
normalize and convert server utilization.

The utilization u1 of server s1 will be multiplied with the
corresponding maximum measured throughput pmax

1 of the
SPECpower ssj2008 benchmark (ssj ops @ 100%) to get the
throughput corresponding to the load: p1(u1) = u1 ·pmax

1 . By
dividing the load dependent throughput with the maximum
throughput pmax

2 of another server s2, the corresponding
utilization u2 on this server may be computed: u2 = p1(u1)

pmax
2

.
In order to aggregate all server loads, these will be converted
to the utilization of a defined reference machine sr. Therefore,
the same method can be used with s2 = sr. The resulting ag-
gregated load then always has to be considered with regard to
the reference machine and represents the number of necessary
reference machines to handle the workload.

B. IT Activity Modeling

In the case a DC runs PM for EE reasons, some of the IT
equipment will be shut down or transferred to an energy-saving

1https://www.spec.org/power ssj2008/
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state to increase the utilization of active systems. Thus, the first
task of IT load modeling is to abstract the switching behavior
of the used PM in order to estimate the active systems. As
PM is currently mainly applied to server systems, if at all,
the description of the activity model will concentrate on the
application on servers. Also, the concrete modeling depends
on the concrete PM running in an IT environment. While the
general approach is transferable to other PM algorithms, the
method will be shown for the PM developed in the AC4DC
project [14]. This management algorithm is based on the work
of Hoyer et al. [15] and implements proactive migrations of
virtual machines (VMs) in fully virtualized environments using
utilization forecasts and EE data of servers.

In a first step, the minimum needed capacities will be
computed with Equation 2, as the most important requirement
of PM is to guarantee the provision of sufficient computing
capacities at all times.

lmaxi = max(lj), ∀j ∈ N : i ≤ j ≤ i+ tpl (2)

tpl =
fsch · |V | · tm

res
(3)

For every time point i of the aggregated DC load l the
maximum load lmaxi of a time window tpl starting from point
i will be ascertained. This time window represents the planning
time of the PM algorithms, for which a certain capacity has to
be reserved. It is affected by several operational parameters,
which depend on the type of management algorithm and the
software environment. For the algorithm developed in AC4DC
project the planning time is derived from the following pa-
rameters: (1) a scheduling factor fsch , which is the factor
of migrated to total VMs, i.e. the distance to a pre-defined
starting allocation, (2) the number |V | of managed VMs, (3)
the migration time tm per VM in minutes, and (4) the time
resolution of aggregated load l, i.e. the number of minutes
per time point in l. So, in the AC4DC case the time window
tpl is the estimated time to return to the starting allocation. In
Figure 4, the application on an aggregated CPU trace is shown
as an example. The red curve is the minimum CPU capacitiy
that has to be reserved.

On basis of the minimum required resources, the number of
active servers can be ascertained. Thus, for each time point i
the load l on system resource r (CPU, RAM, I/O, ...) will be
allocated theoretically to the available servers s by using the
primitive recursive function f(l, n) in Equation 4. The result is
the number of active servers so that the ordering of the sorted
server set (S,≤) determines the active servers, as the ordering
represents the usage priority.

f(l, n) =

{
n if l ≤ 0

f(l − (crsn+1
· ftl), n+ 1) if l > 0

(4)

The function will be called initially by f(lrmaxi
, 0). With

every function call the capacity crs of resource r and server s
with index n+ 1 of the ordered set (S,≤) will be subtracted
from the load l, while the target load is also considered by

applying the factor ftl with 0 ≤ tl ≤ 1 . Basically, with each
function call a server will be added to the list of active servers
until the resource capacities are sufficient while keeping the
actual load below the defined target load. The required capac-
ity is reached, when the remaining load l ≤ 0. The number of
server systems needed at a specific time point is the maximum
of all considered resources: max(f(lrmaxi

, 0))∀r ∈ R with R
as set of considered system resources.

The active servers are determined by the ordered set of
server systems. As shown in Figure 3, there are two approaches
with different precision to sort the servers: (1) a method using
the historical activity rate and (2) a method using device
specifications. The activity rate can be extracted from detailed
server utilization data and represents the fraction of time a
server was active. The assumption is now that servers with
high past activity rates will also most probably be selected
by the PM algorithms in future. The alternative approach, if
no detailed utilization data is accessible, regards server system
capacities for CPU and RAM as well as EE characteristics (e.g.
SPECpower results). The two approaches will be compared in
Section VI.

C. IT Utilization Modeling

After determining the potential active systems, the next step
of the IT load model is to estimate utilization of each system.
As depicted in Figure 3, there are again two different ap-
proaches depending on the available data: (1) linear regression
on historical data or (2) distribution based on capacities.

The first approach is applicable, if detailed historical utiliza-
tion data for each system are available. The relation of these
data to aggregated DC load will be abstracted in a model,
which then can be used to get system utilization for arbitrary
aggregated load levels. In a first step, DC load is grouped
into utilization classes. Then the probability distribution of
time points with specific load corresponding to these classes
is computed, as shown in Figure 5 (left) for an example
of 20 classes with 5% utilization each. In a next step, the
system utilization regarding the utilization classes is modeled
using linear regression, such that there exist linear regression
parameters

(
a
b

)
= LRx,y for each system sx and utilization

class cly . These are saved in a look-up table as demonstrated in
Figure 5 (right). In order to get a system utilization abstraction
lx, the regression parameters LRx,y corresponding to system
x and aggregated load l in class y will be inserted into
lx = a+ b · l + e.

In the case only aggregated data center load data is available,
the distribution of workloads on the formerly estimated active
systems is determined by their resource capacities. Thus, the
load lx of system x is computed by Equation 5 with aggregated
DC load l and maximum resource capacity lxmax

.

lx =
l∑

x lxmax

· lxmax
(5)

The utilization model will be applied for every resource
type that is considered in the performance and power models
of IT equipment. Furthermore, the model has to be applied
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Fig. 4. Maxima lmaxi (red) of the aggregated resource demand (blue) represents the minimum resource capacity to provide.

s1 s2 ... sn 

cl1 LR1,1 LR2,1 ... LRn,1 

cl2 LR1,2 LR2,2 ... LRn,2 

... ... ... ... ... 

clm LR1,m LR2,m ... LRn,m 

Fig. 5. Utilization abstraction for an IT system s by using a linear model
LR for each utilization class cl.

for each time point of aggregated DC load time series, as the
aggregated load changes over time as well as the number of
active IT systems, if PM is used.

V. DATA CENTER PERFORMANCE MODEL

As the DC performance model is part of the LDEE, it has
to fulfill the following requirements:

1) Comparability: Performance values for different DCs as
well as points in time should be directly comparable.

2) Completeness: Results should represent a cross section
of different typical DC workloads.

3) Applicability: The model should be applicable for pro-
ductive DCs without disturbing operation.

4) Load Dependency: As the LDEE considers actual usage,
the influence of DC load has to be respected by the
performance model.

5) Comprehensibility: Performance results should be in a
format, which is easy to understand with brief explana-
tions.

A typical approach for performance estimation would be
to analyze the hardware specifications and summarize the
quantitatively identifiable key characteristics, e.g. CPU and
RAM by number of cores, frequency, and memory size,
respectively. However, due to different hardware architectures
and technologies, these numbers are often not comparable

between different workloads, which restricts the applicability
of this approach for the LDEE.

Another approach is the direct measurement of produc-
tive systems in order to capture the amount of work done.
However, each application has its own performance indicators
such as operations per second or response times in different
magnitudes. Summarizing these indicators requires a manual
definition in relation to each other. Due to this subjective
definition, the comparability between DCs is not given and
thus, direct measurements are not suitable for the LDEE.

In order to realize comparability of performance values,
IT systems have to be stressed with the same workload
in an objective manner. Thus, performance benchmarks are
predestined to fulfill this requirement. However, applying a
single benchmark is not sufficient for achieving completeness,
as benchmarks usually represent one single use case. So,
several different benchmarks should be used to characterize
the performance of an IT system to stress the diverse sub-
systems. A big disadvantage of directly applying performance
benchmarks on IT systems is the high effort that is needed
to isolate such systems from production and reintegrate them
again afterwards. As another obstacle some systems may not
even be allowed to be isolated.

An alternative approach which profits from the advantages
of performance benchmarks without the need for real measure-
ments is the indirect usage of benchmarks by analyzing already
available performance results. This way the applicability is
ensured, however, the number of potential benchmarks is
limited as there have to be enough performance results publicly
available to cover the majority of IT systems. Thus, the
completeness is worse than with direct application of bench-
marks. However, as the applicability is the most important
requirement for DC metrics, this compromise will be accepted.

By using performance benchmarks, the first three require-
ments can be covered. Regarding load dependency, bench-
marks usually provide the maximum performance of an SUT.
Thus, the resulting maximum performance will be scaled with
the actual or estimated utilization. This ’used performance’
then stands for the totally processed work in the DC and is an
approximation to useful work, which is easier to estimate. And
the fifth requirement – comprehensibility – will be achieved
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by normalizing the single performance values by defined
reference systems.

A. Modeling Approach

The basic approach for performance modeling starts with
the one-time determination of used performance benchmarks
for server and storage systems. On basis of system perfor-
mance data, a reference system will be defined which then
will be used to normalize the single performance values to
comparable performance factors. After that, the performance
factors corresponding to each IT system are combined to a
single performance value. Subsequently, the single steps will
be explained more in detail.

1) Benchmark Selection: The selection of suitable perfor-
mance benchmarks bases on the requirements for performance
modeling mentioned above. Especially the completeness and
the applicability affect the benchmark choices. However, both
requirements represent a trade-off, for which the best pro-
portion has to be found. On the one hand, the completeness
requires the usage of diverse benchmarks to consider several
kinds of workloads which stress the subsystems from different
angles. On the other hand, the applicability demands for
publicly available performance results for a high variety of
IT systems.

Server Performance Benchmarks: In case of server sys-
tems there are currently three suitable choices for performance
benchmarks: (1) SPEC CPU20062, (2) SPECpower ssj2008,
and (3) SAP Sales and Distribution (SD) Standard Applica-
tion Benchmark3. To the best of our knowledge, no other
performance benchmark can comply with the requirements.
Many benchmarks are designed to assess an SUT consisting
of several servers, storage systems, and connecting network
equipment, which is not ideal for performance modeling of
single components. Examples are SPECvirt sc2010, VMmark
2.X, or TPC-C/E/H. In some other cases the problem is the
low count of benchmark results, i.e. only a small number of
server systems could be modeled.

The three selected server benchmarks have slightly different
focal points. SPEC CPU2006 is a CPU-intensive benchmark
which stresses the processor and memory subsystems by
applying workloads based on real user applications in different
application areas like artificial intelligence, optimization and
search problems, compression, fluid/molecular/... dynamics,
etc. – divided into integer and floating point [16]. For perfor-
mance modeling, the four base metrics of elapsed execution
time and throughput each for integer and floating point will
be used. SPECpower is a performance/power benchmark,
which stresses the SUT on eleven load levels from active
idle to full load in 10% steps with a Server Side Java (ssj)
workload exercising the CPU, caches, memory hierarchy, and
the scalability of shared memory processors [17]. Results
are given in throughput per power (ssj ops/W) for each
load level as well as maximum performance which will be

2http://www.spec.org/cpu2006/
3http://www.sap.com/campaigns/benchmark/appbm sd.epx

used by the proposed model. SAP SD Standard Application
Benchmark covers a sell-from-stock scenario simulating user
orders including processing and delivery [18]. The number
of simulated users is increased until the response time of the
SUT arrives at one second (two seconds before 2009). The
workload is mainly CPU-driven but also stresses the memory
subsystem. The achieved throughput (order line items per
hour) at maximum load is then converted into SAPS (SAP
Application Performance Standard), which will be used for
performance modeling.

Storage Performance Benchmarks: In case of storage
performance modeling there are currently two suitable public
benchmarks: (1) SPECsfs20084 and (2) SPC Benchmark 15.
Other benchmarks either have no data base with publicly
available results like FileBench or have too few entries such as
SPC Benchmark 2. Apart from these problems, the two exem-
plary benchmarks would be suitable for storage performance
modeling and may be integrated in the future.

SPECsfs2008 is a benchmark for network file systems mea-
suring a file server’s throughput and response time. There are
two different workloads: A NFS workload and one for CIFS
which both are based primarily on data collected from tens of
thousands of file servers from SPEC member companies [19].
Load generating clients stress the file server on at least ten
different load levels, reporting throughput (in operations per
second) and average response time per operation values. For
the storage performance model results for the NFS workload
will be used, as the CIFS workload has too few results so
far. SPC-1 has a single workload performing typical functions
of business critical applications on storage systems consisting
predominately of random I/O, query, and update operations
like OLTP, mail server, or database applications [20]. SPC-1
evaluates the maximum I/O request throughput in SPC-1 IOPS
for systems with a high amount of parallel tasks and the least
I/O request response time in SPC-1 LRT for business critical
applications. For both benchmarks the maximum throughput as
well as the response times will be used for storage performance
modeling.

2) Normalization Process: As the performance model is
supposed to estimate an aggregated performance value over
all systems, the single performance values from the selected
benchmarks have to be comparable and combinable for the
respective type of IT system. However, the benchmarks eval-
uate performance with different indicators in different ranges,
which have to be scaled in relation to each other. E.g.
SPEC CPU measures execution times in relation to a pre-
defined reference machine with factors from 1 to 2000+ while
SPECpower returns maximum performance by the number of
ssj ops with up to 10+ millions.

In order to achieve the required comparability between
different benchmarks, the single results have to be normalized
regarding a reference machine, i.e. dividing all results by the
result of the reference machine. Selecting a suitable reference

4http://www.spec.org/sfs2008/
5http://www.storageperformance.org/results/#spc1 overview
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machine, however, is not trivial. Choosing a real existing
IT system with results for each selected benchmark may be
the common approach, but if this system is not balanced
throughout all benchmarks, this imbalance will transfer to the
normalized results with the consequence that some bench-
marks will be emphasized, which is not desired. E.g., if
reference machine rm belongs to the slowest 20% of SUTs in
benchmark B and is in the middle of the field (50%) for every
other benchmark, normalized values for B would be much
higher compared to the other benchmarks. Thus, benchmark
B would have a higher weight which restrains comparability.

Instead of using an existing IT system as reference machine,
the normalization process will make use of a virtual reference
machine representing the average IT system. This machine
will be computed from the set R of all IT systems s, which
have a result PBs for each performance benchmark PB of the
selected set A, as shown in Equation 6. With set R the concrete
reference performance value PBi

R for every benchmark i
can be computed by averaging the performance results PBi

s

of every IT system s ∈ R, cf. Equation 7. This reference
performance PBi

R can then be used in Equation 8 to normalize
all performance results PBi

s of benchmark i to a performance
factor PF i

s , which represents the relation of system s to the
virtual reference machine regarding performance.

R = {s|∃PBs,∀PB ∈ A} (6)

PBi
R =

∑
s∈R

PBi
s

|R|
(7)

PF i
s =

PBi
s

PBi
R

(8)

The set R of IT systems representing the reference system
is determined exactly one time and will be constant for each
version of LDEE. Otherwise, comparability of performance
and consequently of EE results cannot be guaranteed.

3) Combination of Performance Factors: After normaliza-
tion of performance results, every IT system s has a perfor-
mance factor PF i

s for each benchmark i, which then have to
be combined to a single result pfs . Therefore, the weighted
geometrical mean of all performance factors of system s with
weights wi is computed, cf. Equation 9.

pf s =
w

√√√√ |A|∏
i

(PF i
s)

wi with w =

|A|∑
i

wi (9)

For a general performance evaluation all benchmarks have
the same share, i.e. ∀i wi = 1. However, to focus on specific
workloads or DC types, the benchmarks may be weighted
differently to emphasize the ones representing respective work-
loads.

In case of general server performance, the benchmarks
SPECpower and SAP SD have a weighting of 1, while SPEC
CPU subdivides in four individual results and thus, each
single performance value is weighted with 0.25 in order to

achieve a balance between all three benchmarks. The two
selected storage performance benchmarks consist both of two
performance values, such that each single value is weighted
with 0.5. However, before combining the storage performance
factors, the factors for the response times have to be inverted
to their reciprocals: 1/PF i

s . While all other performance
indicators represent higher performance with higher values, the
response times behave exactly converse, i.e. a smaller response
time indicates higher performance.

B. Network Performance Model

Performance analysis of computer networks is much more
complex than evaluating server or storage systems, as not
only one or few hardware and software systems are involved
but all network nodes as well as every application that uses
network functions. I.e., benchmarking all network components
like switches and routers separately is not sufficient due to the
influence of the network architecture and the shape of traffic
on the overall DC network performance. Also, as the network
architecture is specific for each DC, performance is hardly
comparable and therefore public data bases with performance
results are not available.

For the usage in the LDEE metric, the network performance
will not be considered in absolute, comparable numbers, but
as a percentage of sufficient network capacities. Therefore,
network parameters regarding quality of service (QoS) have
to be continuously measured (e.g. via DC infrastructure man-
agement) in order to check the adherence to the network’s
service level agreements (SLA). By using a DC’s specific SLA,
the assumption is met that adhering to SLA implies the pro-
visioning of sufficient network capacities. Thus, the network
performance coefficient (NPC) is introduced, representing the
times QoS is fulfilled. In Equation 10, an example for some
typical QoS parameters is shown.

NPC =
1

n

n∑
i=0

min

(
min

(
1,

⌊
thrqos
thri

⌋)
,

min

(
1,

⌊
latqos
lati

⌋)
,min

(
1,

⌊
plqos
pli

⌋))
(10)

The parameters data throughput thr (MBit/s), latency lat
(ms), and relative packet loss pl (%) will be compared with
their QoS requirements for each time point i of the considered
historical time frame. If a single QoS target cannot be met at
one time point, i.e. parameter pmi > pmqos , the whole term
will be 0 representing network shortcomings at time point i.
Otherwise, if targets are met, the whole term is 1 which stands
for a smooth operation. The NPC then is the percentage of
time points without shortcomings in network operation, i.e. if
NPC is 1, network capacities were always sufficient regarding
historical application traffic.

The main advantage in using SLA and their corresponding
QoS parameters for modeling network performance is the
abstraction from the actual network architecture. SLA are
specifically adapted to a certain DC with its individual network

48



topologies and architectures as well as to the installed software
and services. Otherwise, the network has to be modeled
specifically for each DC. By using SLA in the NPC, network
shortcomings indirectly affect the DC performance. The other
case of inefficiently used (wasted) network performance can-
not be considered by this approach. However, the objective of
LDEE is to survey EE and therefore performance regarding
load or usage, i.e. wasted performance is not relevant for
LDEE. Then again, inefficient networks will be considered
on the energy side of LDEE as higher network performance
usually means higher energy demands.

C. Combined DC Performance Rating

In order to increase the comprehensibility of LDEE, which
is required for a broad adoption in DC monitoring and control-
ling, both server and storage performance will be converged to
a single performance rating representing the number of used
converged reference units (abbreviated as ru).

The server (i) and storage (j) performance models provide
maximum performance pfi and pfj for single IT systems,
which have to be adapted with the actual usage li and lj .
Used performance for server and storage systems will then be
aggregated separately and subsequently converged to a single
value, whereby different weights wsrv and wsto are used. This
combined result will then be scaled with the NPC to the final
used DC performance pf DC , cf. Equation 11.

pf DC = NPC

wsrv

∑
i∈srv

lipfi + wsto

∑
j∈sto

ljpfj

 (11)

The standard case for weighting between server and storage
is simply adding the single results, i.e. wsrv = wsto = 1.
Differing weights are used, when specific data center types
are relevant and the data center will be compared to others of
the same kind. Although weights may be adapted individually
(Free Choice), it is not recommended doing so as the compa-
rability is only ensured for identical weights. Thus, there are
some recommendations for DC classes:

• Standard (S): wS
srv = 1; wS

sto = 1
• Compute-Intensive (C): wC

srv = 0.8; wC
sto = 0.2

• Data-Intensive (D): wD
srv = 0.2; wD

sto = 0.8
• Free Choice (F): wF

srv = x; wF
sto = 1− x

{x ∈ R|0 ≤ x ≤ 1}
The stated ratios between server and storage systems are
currently not based on hardware numbers, as such data is
not available. However, the strong difference of 0.8 to 0.2 in
compute- and data-intensive DCs is recommended to empha-
size clearly the respective IT systems in contrast to a balanced
weighting.

VI. EVALUATION

This section describes evaluations for the proposed IT load
model (Section IV) and DC performance model (Section V).

A. Evaluating the IT Load Model

For evaluating the IT load model, data based on the DC
power management simulation from the AC4DC project [14]
were used. The simulation has been executed for several given
numbers of VMs with ten different arbitrarily chosen DC
configurations for each number of VMs. The resulting time
series with server activity data and utilizations as well as
aggregated DC CPU and RAM utilization have been separated
into training and test data, with training data used for model
characterization and test data to analyze the model error.

In the evaluation of the IT activity model the two presented
approaches – activity rate AR and server specifications Sp –
were compared to each other. These two approaches were also
evaluated in a slightly adapted version (w/o max ), where no
maximum utilization for time windows was computed prior
to estimating the active servers as it would be the case for
reactive PM without forecasts. Furthermore, Av estimated
server activity based on historic average utilization and Rdm
conducted a random selection of servers. While AR and Av
used detailed utilization information, Sp and Rdm based on
aggregated DC load only. The relative mean square errors are
shown in Figure 6.

0

0.05

0.1

0.15

0.2

0.25

0.3

AR AR w/o max Av Sp Sp w/o max Rdm

re
la

ti
ve

 s
q

u
ar

e
d

 e
rr

o
r 

method 

200 VMs

300 VMs

400 VMs

Fig. 6. Mean errors of estimated number of active servers to actual one.

As expected, with detailed utilization data per server (AR,
AR w/o max , Av) considerably better estimations can be
achieved than by methods using aggregated DC load (Sp,
Sp w/o max , Rdm) alone. Looking at the hit rate for correct
server selection, the difference is even bigger: While chosen
severs by AR matched 90% of the actual servers, less than
50% servers matched by using Sp. Preprocessing input data
by analyzing maxima is not necessarily needed, as results were
marginally better (0.3% for AR and 0.1% for Sp), i.e. the IT
load model is more flexibly applicable for other (reactive) PM
algorithms.

In order to evaluate the utilization estimation, the pro-
posed approaches based on utilization classes (Cl + LR)
and capacity information (Cap) were applied to productive
utilization data which had been measured in the context of
the AC4DC project [14]. Furthermore, other methods for ab-
stracting detailed utilization data were analyzed with harmonic
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mean (H), arithmetic mean (A), and mode for grouped data
(Mode) in addition to linear regression (LR). With exception
of Mode, these methods were also analyzed without prior
utilization classification. Besides, for each result an additional
interpolation to match the corresponding aggregated DC load
was performed and compared to the corresponding unchanged
result. For each method, the difference to actual utilization
(mean square error) was computed, which is depicted in
Figure 7.
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The advantage of classification (Cl) prior to abstracting
utilization data is clearly visible. However, the difference
between the diverse abstraction methods is marginal. As linear
regression does not need a further interpolation to improve
the results, it is the chosen method in the IT load model. As
expected, the method based on maximum resource capacity
(Cap) is the least accurate, as it only makes use of the
aggregated DC load and hardware specifications.

B. Evaluating the Performance Model

As the proposed server and storage performance models
base on the most common performance benchmarks, an eval-
uation by comparing the models with these benchmarks has no
significance. However, even a comparison with benchmarks,
which were not used, or with other means of performance esti-
mation is not meaningful, because performance is not distinct
but it depends strongly on the considered characteristics. I.e.,
performance values may differ exceedingly without meaning
that one of these values is wrong.

Thus, only the combined DC performance model was
evaluated by analyzing its behavior in comparison to known
metrics Data Center Energy Productivity (DCeP) by The Green
Grid [3] and Digital Service Efficiency (DSE) by Ebay [21].
For the evaluation, only the numerator of DCeP was used:
Useful Work Produced =

∑M
i=1 Vi ·Ui(t, T ) ·Ti, which is the

sum of accomplished tasks Ti. Each task is defined by a run-
time function Ui(t, T ) and a normalization factor Vi, which
have to be defined manually. The DSE is similar to DCeP
with the restriction that only Ebay key indicators number of

generated Buy and Sell URL will be counted without further
normalization or consideration of execution times.

By using the AC4DC PM [14], an evaluation scenario
consisting of 21 rack servers with four different server models
and one storage model has been defined and simulated for 100,
200, and 300 VMs, which had been measured in a productive
environment. Moreover, for each number of VMs two different
kinds of volatility have been induced: (1) low volatility is
created by combining VMs with shifted profiles which form an
average utilization with narrow variation and (2) high volatility
originates from combining VMs with similar profiles which
result in high variations within the time series. For each of
the six simulations the ’used DC performance’ (as part of
the LDEE) was computed by applying the proposed models
on the specific IT components with the corresponding load.
Also, load and performance of IT systems were converted to a
number of accomplished predefined tasks, considered by DCeP
and DSE. The results are given in Table I.

TABLE I
PERFORMANCE AND PRODUCTIVITY FOR DIFFERENT WORKLOADS

VM profile high volatility
number VMs 100 200 300
used DC performance [ru] 0.419 0.837 1.252
DCeP [M tasks] 13.651 26.222 40.003
DSE [M tasks] 4.838 9.677 14.515
server utilization 0.020 0.040 0.061
storage utilization 0.321 0.642 0.958
VM profile low volatility
number VMs 100 200 300
used DC performance [ru] 0.727 1.785 2.483
DCeP [M tasks] 23.198 57.888 80.482
DSE [M tasks] 7.258 19.354 29.030
server utilization 0.040 0.103 0.141
storage utilization 0.321 0.642 0.958

The results show that all three considered metrics are depen-
dent on the load, as with higher loads the used performance
as well as productivity increases, and can thus fulfill the
fourth requirement in Section V. Regarding comparability,
only ’used DC performance’ is consistent between different
DC configurations and SW environments, which can be seen in
Table II. There, a second testing scenario TS2 with a different
SW stack was assumed for an identical DC configuration.
While the DC performance model provides the same results
by abstracting from the workloads, the numbers of DCeP are
quite differing due to different subjective task definitions. In
order to achieve comparability for DCeP, task definitions have
to be normalized over all tasks in all DCs, which is virtually
unaccomplishable.

Regarding the other requirements (cf. Section V), there are
also some advantages of the proposed performance model.
Applicability has already been discussed and is one of the key
benefits compared to common metrics. While comprehensibil-
ity is subjective, the performance model has the advantage of
delivering a single number in a single format – the number of
used reference machines. On the contrary, e.g. DCeP provides
an abstract value computed from tasks of undefined types
normalized with subjective priorities. Solely regarding com-
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TABLE II
PERFORMANCE AND PRODUCTIVITY FOR TWO TESTING SCENARIOS TSi

testing scenario TS1

number VMs 100 200 300
used DC performance [ru] 0.419 0.837 1.252
DCeP [M tasks] 13.651 26.222 40.003
testing scenario TS2

number VMs 100 200 300
used DC performance [ru] 0.419 0.837 1.252
DCeP [M tasks] 4.234 8.467 12.701

pleteness, the DCeP has the advantage of considering every
relevant workload, while the performance model makes use of
a limited number of predefined workloads from benchmarks.

VII. CONCLUSION AND FUTURE WORK

The proposed model of used DC performance is an integral
part of the LDEE metric, which realizes objective EE analysis
with full comparability between DCs while being noninva-
sively applicable without disrupting productive operation. By
using common performance benchmarks with publicly avail-
able results, performance models can be trained without real
measurements and applied to arbitrary DC loads. The same is
true for the IT power models needed for EE analysis, which
base on public energy benchmarks. Thus, LDEE handles
shortcomings of previous metrics such as incompleteness of
PUE or subjectivity and complex applicability of DCeP.

The next step in pushing usage of LDEE in the DC segment
is the implementation of an easy to use work flow. Basis
would be common DC management tools such as data center
infrastructure management (DCIM) or monitoring systems.
These tools may be used to inventory the IT and infrastructure
components and also readout the concrete system specifica-
tions and potential operational data. LDEE models then can be
trained either by using available measurement data and/or by
using energy and performance data from public data bases. EE
results may then be added to the administration dashboards.

Moreover, the LDEE is a significant component of dynamic
energy aware workload management. In the EU project M2DC
(Modular Microserver Data Center) [22], the LDEE will be
used to determine the energy efficiency of IT systems in order
to dynamically deploy applications in the most energy efficient
way. In addition to this, the extension of LDEE to alternative
compute nodes like ARM processors, GPUs or FPGAs will
be analyzed in the context of M2DC.
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