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Abstract — Fluid-structure interaction problems occur in a wide 

variety of science and engineering fields. In solving such problems, 

two domains of different characteristics shall be modeled and 

analyzed through separate kinematic equations. The complexity in 

the computation of such kind of problems arise mainly from the 

modeling and analysis of the problem at the interface. Thus, the 

interfacing condition is also treated as an independent part. A 

range of computational techniques based on spatial and temporal 

discretization schemes have been proposed and being employed in 

solving diverse FSI problems. Monolithic and partitioned 

approaches are the two broad classes of FSI numerical analysis 

approaches under the temporal discretization scheme. The 

monolithic approach requires development of complex 

mathematical model to represent the whole FSI domain 

collectively. The partitioned approach, unlike the monolithic 

approach, make good use of the existing developed and advanced 

tools with segregate analysis. Nevertheless, the latter requires an 

additional external code for coupling at the interface. Based on the 

behavior of the coupling conditions at the interface, FSI 

computational methods are also categorized under either one-way 

or two-way coupled approaches. Moreover, the formulation 

scheme chosen to describe mesh motions, spatial discretization and 

more other approaches determine classification schemes of FSI 

solution techniques. In line with the broader classifications based 

on temporal discretization and coupling schemes, simulation 

results on a benchmark problem employing selected 

computational approaches have been analyzed and discussed. 

Results from a strongly coupled two-way partitioned approach, 

from an open source code, is compared against one-way coupled 

partitioned approach utilizing ANSYS code (academic research 

mechanical). The strongly coupled portioned approach shows a 

more realistic result than the one-way coupled system.   

Keywords—Fluid-Structure interaction; temporal 

discretization; monolithic and partitioned method; one and two-way 

coupling  

I. INTRODUCTION 

Various fields of science and engineering applications face 
challenges from the occurrence of fluid structure interaction 
(FSI) problem. For instance, the interaction of rotating and 
stationary parts in pumps and turbines against water in 
hydrodynamics and in offshore constructions [1, 2], the 
interaction of pulsating blood flow against the wall of cardio 
vascular vessels in medical science[3, 4], and others can be 

mentioned. In such FSI problems, two different domains, as 
shown in Fig. 1, are involved and analyzed by different 
kinematic equations. Furthermore, their interface is considered 
and analyzed separately. Thus, three basic components should 
be modeled mathematically in solving FSI problems: (i) fluid, 
(ii) structure and (iii) the interface.  

The computational challenges in numerically solving FSI 
problems, perhaps, arise mainly in dealing with how the 
interfaces have to be treated in modeling the coupling of the two 
domains and the discretization techniques that should be 
employed. As a result, a number of research works in diverse 
applications based on different coupling conditions and 
discretization schemes are emerging and reported [5-7].  

Navier-Stokes equations in fluid dynamics and dynamic 
equilibrium equations in structural continuum mechanics based 
on the conservation laws of momentum, mass and energy are 
among the governing kinematic equations in modeling FSI 
problems. Coupling of the two models are undertaken through 
well-known coupling conditions, called Dirichlet and Neumann 
coupling conditions [8]. Moreover, there is another coupling 
condition based on Robin’s condition [6] that modifies the 
former two conditions and addresses both conditions through a 
single model. Algorithms of the coupling conditions are 
discussed in detail latter in this paper. In the former coupling 
conditions, the fluid domain at the interface obtains the velocity 
resulting from the structural analysis, referred to as Dirichlet 
condition. On the other hand, the resulting traction load from 
computational fluid dynamics (CFD) analysis of the fluid model 
is transferred to the structure domain at the interface, referred to 
as Neumann condition. 

 

Fig. 1. Fluid-Structure interaction model of a simple problem 
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Based on how the coupling conditions are enforced at the 
interface, coupling approaches of computational methods are 
categorized as a one-way or two-way coupled computational 
methods. Moreover, depending on the intensity of the coupling, 
the two-way coupling may also be stated as weak or strong. 
Apart from that, computational methods are broadly classified 
as monolithic or partitioned approach based on their temporal 
discretization scheme [8-10]. Available commercial codes often 
incorporate the partitioned based concept, for instance ANSYS 
utilizes immersed boundary and domain partitioned methods, for 
2D and 3D problems analysis respectively, for both one-way and 
two-way coupled FSI problems [11]. 

Most FSI computational techniques employ finite element 
method (FEM) to analyze and simulate the structural model as it 
is a well-developed tool. However, with the recent development 
on Isogeometric Analysis (IGA) method a considerable number 
of studies reported to show a better performance compared to 
FEM, especially IGA analysis results of FSI problems that 
involve large deformations [4, 12]. Similarly, finite volume (FV) 
based analysis methods are utilized mostly to solve the fluid 
model.  

In this article, concepts of FSI computational methods 
categorized based on temporal discretization scheme and 
coupling conditions are discussed. Moreover, simulation results 
of computational approaches on a benchmark problem utilizing 
ANSYS 17.0 and an open source codes (Open FOAM) are 
analyzed and discussed. In general, the paper is organized as 
follows. In the next section, mathematical models of governing 
kinematic equations are discussed followed by discussion of 
coupling conditions and computational techniques based on the 
spatial and temporal discretization approaches in Section III. In 
Section IV, the comparative simulation results are presented and 
analyzed. Finally, in Section V, the drawn conclusions are given. 

II. MATHEMATICAL MODELS: GOVERNING EQUATIONS IN 

FSI PROBLEMS 

Both the fluid and structural domains in any FSI numerical 
analysis processes are described by governing kinematic 
equations derived from the conservation laws, which highly 
determine the mathematical models.  

Moreover, the basic mesh motion formulations adopted to 
represent both in fluid and structural domains largely determine 
the performance of any computational approach. In most cases, 
either Eulerian or Lagrangian formulation techniques, which are 
the classical mesh motion formulations in continuum mechanics, 
are employed to describe mesh motions. The basic difference in 
the concept of Eulerian and Lagrangian formulation is that, in 
the Lagrangian formulation, the model equations are represented 
with respect to the reference frame of the original domain, i.e. 
with no deformation. In the Eulerian formulation, however, it is 
represented with respect to the reference frame of the deformed 
domain, by tracking the particles in the domain. Mostly, 
structural models are perfectly formulated using Lagrangian 
description while the fluid models are best formulated using 
Eulerian description for Lagrangian description does not 
constitute a convective term in it, which may lead to an element 
entanglement in cases of large flow deformation.  

Arbitrary Lagrangian-Eulerian (ALE) mesh motion 
formulation is introduced in order to benefit from the positive 
features of both formulations. This formulation approach 
incorporates the material, spatial and referential descriptions of 
the structure and fluid domains, which enables solving the 
discretized governing equations in structural and fluid dynamics 
[13]. The approach is formulated and applied in various 
incompressible and viscous hydrodynamic flow problems [14 - 
16]. This formulation technique is popular in numerical methods 
in the monolithic class and most other FSI computation 
techniques as well [8, 10].  

Depending on the problem that one is dealing with, the 
models of the governing kinematic equations will have different 
characteristics that the governing equations would have to be 
modified accordingly. For instance, based on the fluid flow 
condition the fluid could be modeled as either turbulent or 
laminar, and either viscous or inviscid based on the property of 
the fluid medium. Similarly, depending on the boundary and 
loading conditions, and the characteristic property of the 
material in the problem, structural models could be modeled as 
either rigid or flexible, static or moving, or a combination of any 
of the aforementioned characteristic models. 

A. Governing Kinematic equations in structural mechanics 

Applying the conservation of momentum in continuum 
structural mechanics, based on the D’Alembert’s principle, the 
governing equation of the structure domain is defined. 
Considering a continuum solid model, shown in Fig 1, that 
occupy finite volume, Ω𝑠, bounded by a closed surface, Γ𝑠, the 
governing equation is expressed as 

         sssss rtrftrx 


 ;,,                        (1) 

where:  𝝈̿𝒔 is Cauchy stress tensor given by: 

 

                                              (2) 

 

And the strain tensor, 𝜺̿𝒔 is given by 

                                                  (3) 

where 𝜌𝑠- is density of the solid medium, 
sf


 -element force on 

the solid domain,
sx

  - double time derivative of displacement 

vector of the solid domain, 𝜆𝑠-Lame’s Constant for the solid 

medium, 𝑇𝑟-traction function, 𝐼-̿Identity matrix, 𝜇𝑠-poisons 
ratio of the solid material, 

sx


-displacement vector of the solid 

medium, and ),( trxs


- time dependent displacement vector of 

the solid medium. 

B. Governing Kinematic Equations in fluid dynamics 

Generally, fluid dynamics models can be expressed by the 
general transport equation (4). In this formulation, the equations 
from the conservation of mass (continuity equation) and 
momentum (Navier-Stokes equation), can be obtained, for both 
steady state and transient problems based on the problem type 
and the assumptions considered, by simply replacing 
corresponding variables.  

 σ̿s = λsTr ε̿s I̿ + 2μs ε̿s                          2 . 

 
𝜀𝑠̿ =

1

2
 ∇𝑥 𝑠
̿̿ ̿̿ ̿ +  ∇𝑥 𝑠

̿̿ ̿̿ ̿ 
𝑇

                                    (3) 
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The general transport equation in fluid dynamics is 
expressed by 
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    (4) 
As indicated in Eq. (4), the first and last terms in the left hand 

side of the equation are the transient and the convection terms 
respectively, while the right hand side of the equation contains 
the diffusion term and the source terms. The relations of the 
governing equations with the general transport equation are 
given by substituting some variables in the general equation. 
These substituting variables are given in Table I.  

The simplified continuity and Navier-Stokes equation for an 
incompressible fluid are expressed as: 

Continuity equation 

                                            0 v


                                 (5)  

Navier-Stokes equation 

       Pvvvvv
t







0                                (6) 

The Navier-Stokes equation can also be described in stress 
tensor form as a function of velocity and pressure as: 

                                        (7) 

For anisotropic Newtonian fluid, the viscous stress tensor of 
the fluid is expressed as: 

                                        (8) 

and the rate of strain tensor of the fluid domain,𝜀𝑓̿̇, is given by: 

                                                        (9) 

where 𝝈̿𝒇- is Cauchy stress gradient in the fluid domain, 𝜆𝑓- is 

Lame constant of the fluid medium, 𝜇𝑜- is viscosity of the fluid 

medium, p


 - applied pressure density ratio vector on the fluid 

domain, v


 - velocity vectors of the fluid particles, 𝜀𝑓̿̇- time 

derivative of strain vector of the fluid domain. 

TABLE I. RELATIONS BETWEEN GENERAL TRANSPORT EQUATIONS AND GOV-

ERNING EQUATIONS IN FLUID DYNAMICS 

Equation type Variables substitution 

Ψ Γ∅ 𝑆Ψ 

Continuity equation (mass 
conservation equation) 

1 0 0 

Navier-stokes equation 

(momentum equation) 
v


 𝝁𝒐   𝜕𝑝 𝜕𝑢      
 

 

The variables in the table are defined as follows: 

 𝜇𝑜 is the viscosity coefficient, 

p


is field pressure tensor and 

v


 is velocity vector of fluid particles. 

III. FLUID-STRUCTURE INTERFACE COUPLING CONDITIONS 

AND NUMERICAL APPROACHES  

 Neumann and Dirichlet conditions are well-practiced 
interface conditions in solving FSI problems that are also known 
as explicit coupling schemes. These conditions are being 
adopted in most FSI computational methods in order to hold the 
no-slip conditions at the interface. They enable the fluid and 
structure models to not only share a common location but also 
hold the same velocity and normal stress at the interface. To 
advance the computational solutions the standard Dirichlet 
condition, most often, imposes the common velocity to the fluid 
field at the interface, which maintain the no-slip condition along 
the fluid structure interface. However, these conditions are 
known to be unconditionally unstable in problems with the fluid 
density close to the density of the structure, as it leads to large 
added mass effect [17, 18]. 

A. Coupling conditions  

Based on the Neumann-Dirichlet conditions, the nodal 
velocities of the fluid and structure at the interface, 
 in Fig 2, should be equal and are defined by 

                                                              (10) 

Therefore, through time integration of Eq. (10), the common 
interface location condition perhaps is imposed by 

                uxi


                                                           (11) 

On the other hand, the Neumann standard condition imposes 
the common normal stress equivalent to the static pressure to the 
structural field. Thus, the normal stresses at each nodes at the 
interface are equal, and given as 

                                                         (12) 

where 𝜎𝑖𝑗
𝑠 - and 𝜎𝑖𝑗

𝑓
 are stress components at 𝑖𝑗 location of the 

fluid interface, n is the normal vector at the interface and u


- is   

deformation vector of fluid particles at the interface. 

Considering Ω𝑓  ∈  𝑅𝑑 (𝑑 = 2, 3), Ω𝑠  ∈  𝑅𝑑  and Γ𝑓 , Γ𝑠  ∈

 𝑅𝑑, shown in Fig 2, for a time step  ∆𝑡 > 0, time size of𝑡𝑛 =
𝑛∆𝑡, 𝑤ℎ𝑒𝑟𝑒 𝑛 ∈ 𝑁, the first order backward difference in time 
denotes velocities as 

                            (13) 

 
Fig. 2. Simple fluid-structure interface model 

 𝜌𝑓 𝜕

𝜕𝑡
𝑣 − ∇. 𝝈̿𝒇(𝑣 , 𝑝 ) = 0   (7) 

 𝝈̿𝒇 = 2𝜇𝑜𝜀𝑓 ̿ + 𝜆𝑓  Tr [𝜀𝑓 ̿ ]I ̿    (8) 

 𝜀𝑓 ̿ =
1

2
(∇𝑣 + [∇𝑣 ]𝑇)    (9) 

 𝑥  𝑖(𝑥𝑖 , 𝑡) = 𝑣 𝑖                     (10) 

 𝜎𝑖𝑗
𝑠 . 𝒏 = 𝜎𝑖𝑗

𝑓
. 𝒏           (12) 

 𝑥 𝑛 = 𝑣𝑛 =
𝜕

𝜕𝑡
𝑥𝑛 =

𝑥𝑛−𝑥𝑛−1

∆𝑡
     (13) 
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Another interface condition known as Robin transmission 
condition [5], which is an implicit condition scheme, is 
introduced to replace the Dirichlet and Neumann’s individual 
conditions following the conventional block Gauss-Seidel 
scheme. The method is a weighted linear combination of the 
Dirichlet and Neumann conditions. While implementing this 
condition, the weighted coefficients should carefully be 
evaluated in order to hold the stability of the method. Robin-
Robin method was initially introduced as an alternative stable 
explicit coupling method [19]. Among many investigations 
carried out using the transmission conditions by researchers [5], 
on a simplified fluid-structure model, it is observed that best 
convergence property is achieved using the Robin-Neumann 
algorithm, which imposes the Robin transmission condition on 
the fluid field and the Neumann condition on the structure field.  

B. Numerical Approaches Based on Different Coupling 

Conditions and Discretization Schemes 

Various taxonomies of computational methods are available 
in FSI problem based on spatial and temporal discretization 
schemes, coupling conditions and others. Classification of 
approaches based on temporal discretization and coupling 
conditions are discussed in this subsection. 

Computational approaches based on temporal discretization 
scheme: In computational analysis of FSI problems, 
computational approaches decide whether to solve the 
individual models separately in a separate time marching or 
solve the whole domain collectively as a single model in each 
time step throughout the entire time marching period. These 
choices have led to the classification of computational 
approaches based on temporal discretization, first introduced 
back in 1983 [20]. Thus, depending on the choice, computational 
methods are categorized under either monolithic or partitioned 
approach [8-10], which describes the broad classification under 
temporal discretization. Of the two approaches, the former urges 
one to deal with complex mathematical models that represent the 
entire domains. Numerically conquering FSI problems, 
however, has been developed since the early 1970th with the 
partitioned based approach [20]. This approach make use of the 
existing FEM and CFD codes to solve the structural and fluid 
parts respectively. Moreover, regardless of the growing 
computational power and development of different analysis 
techniques, the monolithic approach remained undeveloped due 
to the complexity in the mathematical modeling, especially at 
the interface. As it is shown in Fig. 3 (a), under the partitioned 
approach, the analysis of individual domain vectors  are 

undergone in a separate time marching (as 
f

nt ), where as in the 
monolithic approach, Fig. 3 (b), each domain vector is analyzed 
through a similar time marching (as 𝑡𝑛). 

Most introduced spatial discretization and interface 
treatment techniques employ the partitioned approach in order 
to utilize the well tested and developed separate computational 
methods from both fluid and structural dynamics. 

Computational approaches based on coupling scheme: 
Apart from the broad classifications discussed above, 
computational method in FSI are also broadly classified as a 
one-way coupled or two-way coupled methods [7, 10]. This 
classification is based on whether the analysis result from the 

structural domain is imposed on to the fluid domain at the 
interface, the Dirichlet condition, or not. In the one-way 
coupling approach, Fig. 4 (a), the responses from the structural 
analysis at the interface are not transferred to the fluid domain. 
However, in the two-way approach, Fig. 4 (b), responses from 
the analysis of each domains are transferred to one another at 
each time step.  

 

 

 

Fig. 3. Temporal discretization approaches (a) Partitioned approach and (b) 
Monolithic approach 

 

 
   (a) 

 
   (b) 

Fig. 4. (a) One-way and (b) Two-way coupled FSI solution algorithm flow 

charts, adapted from [7] 
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IV. COMPARATIVE STUDY ON A BENCHMARK 

CONFIGURATION  

Study results of various numerical approaches under the 
discretization and coupling schemes applied on a benchmark 
problem are presented and discussed in this section. The 
standard benchmark configuration with a proposed initial and 
boundary conditions and material properties as proposed by [21] 
serves as test tool for numerical methods in FSI. It is a channel 
flow of incompressible laminar fluid over an elastic object 
attached to a cylinder, whose configuration is shown in Fig. 5 
below.  The results of the computational methods are compared 
in a broader sense, but more focus is given on computational 
methods classified based on temporal discretization and 
interface coupling schemes. The values of the geometric and 
material parameters for this proposed FSI model are given in 
Table II and Table III respectively. The reference response 
values from the proposed benchmark [21] are also taken for 
comparison purpose. 

As an initial condition, a parabolic velocity profile has been 
applied at the left channel in flow of the configuration, with an 
empirical formulation of Eq. (14), which is a function of the y-
coordinate value along the height of the channel at the inlet. 
Furthermore, a stress free boundary condition at the outlet 
boundary, at the right side of the channel, is assumed in all 
analyses. 

The empirical equation for the inlet velocity condition is 
given by, 

                         (14) 

 
Fig. 5. HronTurek fluid-structure interaction benchmark configuration (a) the 

computational domain (b) Magnified detail of the structural part 

TABLE II. THE GEOMETRIC CONFIGURATION PARAMETER VALUES 

Geometric parameters  Value [m] 

Channel length  L 2.5 

Channel width  H 0.41 

Cylinder center position  C (0.2, 0.2) 

Cylinder radius r 0.05 

Elastic structure length  l 0.35 

Elastic structure thickness  h 0.02 

Reference point (at t = 0) A (0.6, 0.2) 

Reference point  B (0.15, 0.2) 

In order to induce vibration on the structure body the inflow 
velocity is applied to increase gradually with time. Thus, the 
general inlet condition is given by equation (15) below, as 

                  (15) 

A. Computational techniques applied  

For the test purpose, simulation of one-way and strongly 
coupled two-way partitioned based approaches are applied on 
the benchmark configuration, which is a one cell thickness 3D 
model. For the one-way coupled approaches analysis an ANSYS 
17.0 Inc. code is utilized, CFD (Fluent) and Transient Structure 
tools for the fluid and structure respectively. A laminar transient 
incompressible fluid flow model with fluid cell number of 973 
is solved applying a SIMPLE solver algorithm for the pressure 
velocity coupling. Least square cell based method for gradient 
discretization and second order UPWIND method for moment 
discretization techniques are applied in all one-way testes. Time 
step size of 0.00001 is set over the 6 s test period. For the 
structural part, a transient structure model with varying 
nonlinear solver and material properties are simulated on a 
structured meshing type and total number of 20 cells. The 
traction load from the fluid analysis is transferred to the 
structural model.  

The results of the strongly coupled two-way partitioned 
approach are obtained utilizing the model in an open source code 
of Open FOAM’s fsiFoam solver on the benchmark HronTurek 
FSI case in foam-extended 3.1 platform. In this analysis, a one 
cell thickness structured mesh model with spline curve setting 
of the lateral edge of the structure is employed. The total mesh 
cell number for the fluid domain is 4706 and for the structure is    
630. Time step size of 0.01 is used over the 6 s simulation period. 

B. Results and discussion 

 Responses in the local x-and y- axis direction at point A, 
from the geometric configuration are examined for one-way 
coupled and two-way strongly coupled partitioned numerical 
approaches as shown in Fig 6 (a) & (b) respectively. As it can be 
seen from Fig 6 (a), the y-response graph from the one-way 
coupled approach simulation is less realistic than the strongly 
coupled two-way approach. 

TABLE III. PROPERTIES OF MATERIAL USED IN THE PROPOSED BENCHMARK 

FSI MODEL WITH TWO DIFFERENT INFLOW SPEED INITIAL CONDITIONS 

Parameter  Values 

Solid density  𝜌𝑠[103 𝑘𝑔 𝑚3 ] 
 

1 

Poison’s ratio 𝑣𝑠 
 

0.4 

Shear Modulus 𝜇𝑠[106 𝑘𝑔 𝑚𝑠2 ] 
 

2 

Fluid density  𝜌𝑓[103 𝑘𝑔 𝑚3 ] 
 

1 

Kinematic viscosity  𝑣𝑓[10−3 𝑚2 𝑠 ] 
 

1 

Mean velocity 𝑈 (𝑚 𝑠 ) 
 

2 

 

 𝑣𝑓 0, 𝑦 = 1.5𝑈 𝑦 𝐻 − 𝑦  𝐻 2  2               (14) 

 𝑣𝑓 𝑡, 0, 𝑦 

=  
𝑣𝑓 0, 𝑦  1 − cos 𝜋𝑡 2   2      𝑖𝑓 𝑡 < 2.0

𝑣𝑓 0, 𝑦                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
         15 . 
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(a) 

 

(b) 

Fig. 6. Responses at point A along the (a) x and, (b) y- local coordinate axes of 

two coupling techniques 

Given the intensity of the initial condition, which is time 
dependent that only reaches its maximum from zero at (t = 2 s), 
the response behaved unrealistic unlike the response from the 
other approach. Similarly, the method’s x-response also 
demonstrate unrealistic behavior. The maximum and minimum 
values of the responses are also depicted for comparison purpose 
in Table IV. 

From the qualitative results obtained from both coupling 
approaches, it is clear to see that the unrealistic behavior of the 
one way coupling response graph is due to the fact that the fluid 
is solved throughout the time period without considering the 
deformation at the interface and fail to undergo re-meshing 
when necessary. On the contrary the two-way method do 
consider the deformation, hence shows expected response 
behavior.  

 

TABLE 4: ONE-WAY COUPLED ANALYSIS RESULT, ANSYS 17.0, USING CDD 

(FLUENT) AND TRANSIENT STRUCTURE TOOLS 

Structure 

Shear 
modulus  

Fluid 

cell no  

Structure 

cell 

Max/min 

y-responses at 
the tip (A),  

Max/min  

x-responses at the 
tip (A) 

2E+6 974 150 0.23243, -

0.2541 

-5.422E-7, -

0.7771 

2E+7 974 150 0.3009, -
8.661E-2  

-4.463E-7, -
0.61799 

2E+8 974 150 -3.838E-7, -

2.522E-3 

8.403E-5, -

2.346E-5 

2E+6 4706 630 0.03591,  
-0.03196 

0.000309,  
-0.00881 

 The y-responses’ graphs behavior of the one-way approach 
from slightly changing the value of one of the material property 
parameter of the structure have been closely examined as shown 
in Fig. 7. From the qualitative comparison, the amplitude of the 
vibration reduces as the material stiffness property improves, 
which is realistic. However, the deformation of the second test, 
with modulus value of 20, demonstrated unexpected results at 
the beginning and also along the whole simulation period as it 
should be having a mean response close to zero. But, one can see 
from the graphs that varying the material property would not 
shed the effects from manifesting drawbacks of the coupling 
techniques.  

Moreover, from the study results of the one-way coupling 
approach by setting different nonlinear solvers in the transient 
structure tool, as shown in Fig. 8, the Modified Newton Rapson 
and Full Newton Rapson (with line search method on) solver 
algorithms give similar results than the Full Newton Rapson 
method with line search method set program controlled. The first 
two methods converged by far faster than the other. However, 
the later method gives a response value closer to the two-way 
approach at the upper boundary for the period roughly 3.5 to 5 
than the other two methods. 

 
Fig. 7. One-way coupling approach y-response at point A of the FSI model with 

varying values of a material property parameter. 
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Fig. 8. Y-responses of one-way coupling approach with varying nonlinear 

solver of the structural analysis tool 

V. SUMMARY AND CONCLUSION  

Solving FSI problems is challenging because two distinct 
domains with different governing kinematic equations are 
involved. Often, the challenge arises in relation to how the 
interfaces at the two domains are treated about applying the 
appropriate coupling and discretization (both spatial and 
temporal) techniques. However, Regardless of the interaction 
problem large range of methods have been emerging to solve 
FSI problems. Based on the review and study in this article, 
development of FSI analysis methods flow in two broad classes 
of approaches, the Monolithic and Partitioned approach. In the 
first approach, an integrated mathematical model has to be 
developed in order to solve both domains as a single continuum 
model and it enables a strong coupling of the domains at the 
interface. Majority of the computational techniques developed 
in the monolithic approach domain utilize the ALE formulation 
so as to benefit from the positive features of both Lagrangian 
and Eulerian techniques. However, the approach is relatively 
complex, inefficient and computationally expensive compared 
to the partitioned approach. On the other hand, the later approach 
benefits from utilizing the existing developed computational 
codes. Nevertheless, coupling the solvers at the interface needs 
an additional coupling code; hence, this limits a strong coupling 
capability. Apart from that, the study results on one-way coupled 
partitioned approaches on the benchmark problem demonstrates 
unrealistic results because it fails to consider the structural 
deformation at the interface regardless of the material property 
or nonlinear solver techniques employed at the interface. 
However, the strongly coupled two-way partitioned approach 
result on the benchmark demonstrates very realistic result due to 
its consideration of the structural deformation at the interface 
and re-meshing algorithm employed.  
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