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Abstract — The paper presents the second part a study 

conducted on multi-criteria optimization of electromechanical 

modules. This part focuses on the use of RAZOR method, which 

is a multi-criteria optimization outranking method, based on the 

so-called Z-score in statistics. The conducted study is motivated 

by understanding the fact that the task for designing such 

modules, as well as the task for selecting an existing module for a 

given application are multivariate. This leads to the need for 

implementing optimization based decision-making on specified 

criteria. The used method offers a new approach to solving multi-

criteria optimization tasks and provides another tool to facilitate 

the decision-making process.  

Keywords — optimization, multi-criteria optimization, RAZOR, 

electromechanical modules, z-score, z-standardization 

I.  INTRODUCTION  

Electromechanical modules (EMM) are widely used in 

many different industrial applications as a basic part of 

machine/system drive [1]. Examples for usage of EMM 

include aircraft industry (all the flaps on the wings of planes 

are equipped with their own motor and gear reducer), hoisting 

equipment, automotive industry, robotics, textile machinery 

(for example a combination between AC squirrel cage motor 

and worm gear reducer), conveyer systems helical bevel 

geared motors (in belt conveyors), water treatment facilities, 

even automated garage doors, etc..  

  As the name indicates, an EMM represents the unification 

of the electrical and mechanical part of a drive. In most of the 

cases this is a combination between an electric motor and a 

gear reducer, also called geared-motor. Many companies 

manufacture geared motors that usually use adapters as 

connection elements. Where needed, a clutch may also be 

used. Figure 1 shows a general view of the structure of an 

EMM. 

 

Fig. 1. Structural scheme of EMM 

Because of the various possible applications of these 

modules, as well as the many different types of electric motors 

and gear reducers, a wide variety of EMM systems are 

available. Many different types of motors and gear reducers 

have been developed, some of which have been closely 

associated with a particular application [2]. In theory, every 

available type of electric motor and gear reducer can be used 

for the realization of different variants of  EMM. In practical 

application, however, there are number of requirements that 

need to be addressed such as [3], [4]: 

 unified mounting dimensions; 

 geometrical and constructive limitations; 

 adherence of the kinematic condition for two 

consecutively connected transmissions, for instance 

Tout(n) = Tin(n+1), where Tout(n) is the torque of the output 

shaft of the prior gear reducer and Tin(n+1) is the torque 

on the input shaft of the next gear reducer; 

 combinations of excessively large electric motor with a 

small gear unit that will overload the gear reducer; 

 combination of an excessively small motor with a large 

gear reducer that will not utilize the full capability of 

the gear reducer, etc.  

Although all these requirements limit the geared-motor 

combinations, there are still many possible variants. 

Depending on the type of components used (electric motor, 

gear reducer and clutch (if needed)) and the values for the 

input data, i.e. rotational speeds and torque, a significant 

number of modules to can be realized. When faced with such a 
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large number of alternatives, the task for designing new EMM 

and/or the task for selecting a suitable drive for any given 

application becomes very difficult. This justifies the need for 

conducting optimization.  

In this paper, the application principle of using RAZOR 

method and the standard score approach for conducting multi-

criteria optimization of existing electromechanical modules, 

part of the manufacturing program of the German company 

KEB Antriebstechnik GmbH is presented.  

The paper first provides the description of the problem in 

Section II. The approaches used to solve the problem are 

discussed in Section III. Then Section IV discusses the main 

part of the article, where the solution method is demonstrated 

using a numerical example. Finally, concluding remarks are 

given in Section V. 

II. DESCRIPTION OF THE PROBLEM 

An EMM consists of electric motor, gear reducer and/or a 

clutch. As part of this study, a database has been developed, 

which gives information about different types of electric 

motors, gear reducers and the possible combinations between 

them. It consists of three interconnected tables, i.e. tables for  

(1) electric motors, (2) gear reducers and (3) EMM. Using this 

interconnected tables, the decision supporting information can 

be extracted by the means of a query and the search results are 

presented in a user-friendly search form. The possible EMM 

combinations, entered in the database, correspond to particular 

values for the input data. There is a large number of variants 

of EMM, so in order for the user to be able to select a suitable 

electromechanical drive for a given application, optimization 

of the selected alternatives, based on predefined criteria, need 

be conducted.  

Optimization can be defined as a process or methodology 

for finding compromised solution to a given problem. In 

mathematics, optimization is defined as finding the minimum 

or the maximum of a given function. In practice, optimization 

finds application in many areas such as different 

manufacturing processes, parameter optimization, planning, 

system modeling, etc. as a method for solving different real-

life problems. Depending on the complexity of the task and 

the involved parameters, optimization can be single criteria or 

multi-criteria.  

The single criteria optimization tasks are always very well 

defined and concrete, as they offer only one single solution. 

Most real world problems require the simultaneous 

optimization of multiple, often competing, criteria or 

objectives [5]. If these objectives are conflicting, then they do 

not share the same optimum value [6]. Moreover, there may 

not exist just one single solution, but rather several 

incomparable alternatives. Problems with multiple objectives 

(criteria) are generally known as multiple criteria optimization 

or multiple criteria decision-making problems.  

The general view of a single criteria optimization task is 

given as dependence (1): 

  ?:|)( 


RAkakExtr
Aa

           (1) 

where А – finite set of m vectors, which represent possible 

solution; k(.) – a function (criteria), which evaluates the 

elements of A, in a way that it presents itself as an image of A 

in Rn; Extr – substitutes Max (maximum) or Min (minimum) 

and means search of an extremum of the function k(.). 

The multi-criteria optimization task, on the other hand, can 

generally given as dependence (2): 

K} a|(a)k,…(a),k,…(a),k(a),Extr{kOpt{k(a)} nh21     (2) 

where Opt symbolizes the optimal alternative, which defines 

k(.) as the best criteria, kh(a), h=1, 2, …k is k criteria and Extr 

substitutes Max (maximum) or Min (minimum) and means 

search of an extremum for every component function ki (.) 

Multi-criteria decision analysis (MCDA) can be 
formulated as a general term for methods providing a 
systematic quantitative approach to support decision making 
in problems involving multiple criteria and alternatives [7]. 
The multi-criteria optimization process involves decision-
making with a number of factors (criteria) in order to find the 
most suitable solution among several alternatives. These 
alternatives are evaluated with respect to each criterion, as the 
criteria are weighted by the decision-maker’s assessment. 
Figure 2 shows a general view of a flowchart at solving multi-
criteria optimization problems. 

There are different classifications of the methods for 

solving multi-criteria optimization tasks. The classical MCDA 

methods can be divided into three main classes [8], [9]: 

1. Multi-attribute value theory – in which the global 

preferences of the decision maker are generalized based 

on the synthesis of one generalized criterion; 

2. Outranking methods - in which the global preferences 

of the decision maker are generalized based on the 

synthesis of one or several generalized relations of the 

preferences between the alternatives; 

3. Interactive methods – in which the local preferences of 

the decision maker are collected iteratively via direct or 

indirect comparison between two and more 

alternatives. 

The family of outranking methods use the so-called 

“outranking relations” to rank the given set of alternatives 

[10]. This is implemented by systematically comparing all 

pairs of alternatives (pairwise comparison) on each criterion 

and determining which alternatives are preferred to the others.  
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Fig. 2. Flow chart of multi-criteria optimization task solving 

Typical representatives of the outranking family of 

methods include: 

 ELECTRE - ELimination Et Choix Traduisant la 

REalité [11];  

 PROMETHEE - Preference Ranking Organization 

METHod for Enrichment Evaluations) [12];  

 MAPPACC - Multicriterion Analysis of Preferences by 

means of Pairwise Actions and Criterion Comparisons 

[13]. 

The RAZOR method is also part of the outranking 
methods family and is used in diverse applications including 
in combination with recent evolutionary techniques such as 
genetic algorithms [14], neural networks [15] and 
simplification of particle swarm optimization [16]. The 
methodology is based on the statistics Z-standardization 
approach. The basics of the method is the possibility to 
measure the distance to the arithmetic average by the means of 
the standard deviation, which has a special name Z-
standardization. The measured values using this method are 
called Z-values or most commonly referred to as standard 
score or Z-score. 

The standard score is a very useful statistic because it 
allows the probability of a score occurring within our normal 
distribution to be calculated and enables the comparison of 
two scores that are from different normal distributions [17]. 
This statistical approach finds application in various fields, 
such as medicine [18], financial and banking sector [19], 
computer technology [20] and the like. Main advantage of this 
approach is that it allows non-comparable distribution values 
to be equalized to one scale, so they can be compared.   

III. APPROACH TO SOLVING THE PROBLEM 

The first step in solving an optimization task is to define 
the target functions and their requirements and limitations. 
The optimization criteria as multi-criteria analysis of EMM 
can be differentiated into two main groups: (1) static criteria 
and (2) dynamic criteria.  

The static criteria represent some geometrical, energy and 
economical characteristics of the EMM, such as: 

 V∑ - total volume of the EMM, including the volume of 

the electric motor, of the clutch and of the gear reducer: 

V∑ = Vmot +Vgear + Vclutch, [mm3]; 

 L x B x H - overall dimensions of the EMM, [mm3]; 

 ηtotal - total efficiency of the EMM, including the 

efficiency of the electric motor, of the clutch and of the 

gear reducer: ηtotal = ηmot * ηgear * ηclutch, [-]; 

 mtotal - total weight of the EMM, [kg]; 

 w - comparative value assessment, [-]; 

 aw - center distance of the gear reducer, [mm], etc. 

The dynamic criteria, on the other hand, represent some of 

the EMM dynamic characteristics, such as: 

 fast performance – the time needed for reaching a 

stationary regime; 

 degree of uniformity in starting regime – evaluation of 

the maximal amplitude of the deviation of the speed of 

its stationary values; 

 coefficient of dynamic overload in starting regime; 

 the deviation of the torque - the amplitude of the 

deviation of the torque in stationary regime compared 

to its nominal values, etc.  

After the decision maker has defined the alternatives, 

which will be optimized and has selected the needed criteria, 

the RAZOR method can be applied. The method consists of 

several steps, the sequence of which is shown in Fig. 3.   

The multi-criteria optimization task, given as dependence 

(2) is considered. As depicted in Fig. 3, the first step is to 

define the arithmetic average for the criteria (.)ik : 






m

i
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m
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1
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1

)(   ns ,...2,1               (3) 

where m is the number of the selected criteria. 

Based on the calculated value for the arithmetic average, 

the standard deviation for the criteria (.)ik is calculated in 

step 2 (Eq. (4)): 
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At step 3 of the procedure the Z-values are calculated, 

according to the following equation: 



xx
zx


    (5) 

 

Multi-criteria 

optimization 

problem 

Criteria 

Alternatives  

Weights  

Selection of 

optimization method 
Evaluation of 

alternatives Decision  
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where x  is a concrete value from the distribution (the data 

row), x is the arithmetic average of this distribution, and σ is 

the standard deviation of the same distribution.  

 

Fig. 3. Steps for implementing RAZOR method 

Based on these values, the so-called Z-matrix is 

created })({ iskz : 
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Then in step 5, the extremum above A of the criteria 

(.)ik is registered: 

)}(),...,(),({ 21 mssss akakakExtrk   ns ,...2,1      (7) 

Тhe so-called “Ideal alternative” vector is obtained, which 

is built from the extremums of the components (.)ik of the 

criteria (.)k : 

 nkkkAK ...,,,)( 21        (8) 

At step 6, the so called d-matrix is constructed. It is a 

matrix with the distances from each alternative to the “Ideal 

alternative”: 
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The final, i.e. step 7, is to define the ranking of the 

alternatives using the following expression: 






n

s

is
n dR
i

1

   (10) 

 

While conducted the calculations according to the above 

outlined steps, the alternative ai dominates the alternative aj 

regarding the optimality on the n criteria if  n

j

n

i RR  .  

IV. DEMONSTRATIVE EXAMPLE 

A multi-criteria optimization of EMM is conducted using 
RAZOR method. To demonstrate the method, the following 
input data are used: nout = 12 min-1 and Mout = 510 Nm. Based 
on these values the input power Pin and the output power Pout 
are calculated as Pin = 0.67 kW, Pout = 0.64 kW respectively. 
An electric motor with nominal power Pnom = 0.75 kW will be 
able to ensure that the values of the input data can be 
achieved.  

Existing geared motors, produced by the company KEB 
are used as a case study in this example. Their structural 
components are 0.75 kW asynchronous squirrel cage motor (2-
, 4-, 6- and 8-pole motors are available) and a gear reducer 
(helical, bevel, worm, with parallel shafts and combined gear 
units). The above-given values for the input data are achieved 
with 52 different combinations.  

To conduct the optimization, the following static criteria 

are used:  

 the total volume of the EMM VΣ in [cm3]; 

 the overall dimensions of the EMM LxBxH in [cm3]; 

 the total efficiency of the module ηtotal; 

 the total weight of the module m in [kg].  

Following the RAZOR methodology, after the arithmetic 
average and the standard deviation of the alternatives for all 
four criteria are calculated, the Z-matrix can be constructed. 
Based on the defined extremums for every criteria and on the 
calculated standard deviations, the d-matrix can then be 
constructed. The technical data of the EMM, as well as the 
results from the optimization are presented in Table I. 

TABLE I. TECHNICAL DATA OF THE EMM AND THEIR RANKING 

MR_ID Gear_ID MotID i calc (-) V∑ (cm3) LxHxB (cm3) ηtotal (-) m (kg) 
n

i
R  rank 

MR0001 G33G12 DM80K2 250.00 17670.40 23 242.53 0.73 29.40 0.00616 6 

MR0002 G43G22 DM80K2 250.00 24872.02 34 582.60 0.73 42.40 0.01516 25 

MR0003 G53G22 DM80K2 250.00 39339.66 54 428. 98 0.73 67.40 0.03213 42 

MR0004 K43G12 DM80K2 250.00 22803.36 24 478.44 0.73 40.40 0.01090 16 

MR0005 K53G22 DM80K2 250.00 35247.69 40 788.35 0.73 61.40 0.02517 36 

MR0006 K63G22 DM80K2 250.00 51933.89 60 350.16 0.73 87.40 0.04318 48 

MR0007 S32G12 DM80K2 250.00 21494.26 28 197.08 0.67 38.40 0.01203 18 

MR0008 S42 DM80K2 250.00 24082.40 34 496.55 0.70 51.40 0.01713 26 

Step 1 

Defining the 

arithmetic  

average 

Step 2 

Defining the 

standard  

deviation  

Step 3 

Defining the  

Z-values 

Step 4 

Constructing  

the Z-matrix 

Step 5 

Registering the 

extremum of  

the criteria 

Step 6 

Constructing  

the d-matrix 

Step 7 

Ranking of the 

alternatives 

mi ,...2,1

ns ,...2,1

160



MR_ID Gear_ID MotID i calc (-) V∑ (cm3) LxHxB (cm3) ηtotal (-) m (kg) 
n

i
R  rank 

MR0009 S42G22 DM80K2 250.00 34206.64 44 428.89 0.67 57.40 0.02597 37 

MR0010 F33G12 DM80K2 250.00 20915.55 28 718.26 0.76 33.40 0.00946 13 

MR0011 F43G12 DM80K2 250.00 29529.66 43 189.86 0.76 46.40 0.01996 30 

MR0012 F53G22 DM80K2 250.00 47364.12 70 669.55 0.76 72.40 0.04079 46 

MR0013 F63 DM80K2 250.00 56223.13 78 157.67 0.76 99.40 0.05219 50 

MR0014 F63G22 DM80K2 250.00 73634.06 104 617.75 0.76 104.40 0.06825 52 

MR0015 G33 DM80GC4 125.00 13394.31 16 429.14 0.76 26.00 0.00120 2 

MR0016 G43 DM80GC4 125.00 17650.88 31 491.62 0.76 37.00 0.00966 14 

MR0017 G53 DM80GC4 125.00 28130.08 42 076.16 0.76 64.00 0.02265 33 

MR0018 K43 DM80GC4 125.00 17915.40 23 896.30 0.77 38.00 0.00757 9 

MR0019 K43G12 DM80GC4 125.00 22803.36 29 799.84 0.74 42.00 0.01264 20 

MR0020 K53 DM80GC4 125.00 26714.91 37 691.84 0.77 56.00 0.01897 28 

MR0021 K63 DM80GC4 125.00 40088.26 54 667.83 0.77 84.00 0.03525 44 

MR0022 S22 DM80GC4 125.00 12403.06 15 009.48 0.72 25.00 0.00081 1 

MR0023 S32 DM80GC4 125.00 16616.93 22 304.10 0.72 36.00 0.00696 7 

MR0024 S42 DM80GC4 125.00 24082.40 34 496.55 0.71 53.00 0.01729 27 

MR0025 F33 DM80GC4 125.00 14850.91 21 595.22 0.77 30.00 0.00398 4 

MR0026 F43 DM80GC4 125.00 20471.00 32 885.06 0.77 43.00 0.01230 19 

MR0027 F53 DM80GC4 125.00 30866.40 52 212.47 0.77 67.00 0.02723 39 

MR0028 G33 DM90SC6 83.33 14275.58 18 916.88 0.72 28.90 0.00354 3 

MR0029 G43 DM90SC6 83.33 18532.15 27 311.65 0.72 39.90 0.01003 15 

MR0030 G53 DM90SC6 83.33 29011.35 43 228.91 0.72 66.90 0.02459 34 

MR0031 G63 DM90SC6 83.33 45228.35 65 054.39 0.72 97.90 0.04410 49 

MR0032 K43 DM90SC6 83.33 18796.67 24 437.28 0.73 40.90 0.00933 12 

MR0033 K53 DM90SC6 83.33 27596.18 38 607.30 0.73 58.90 0.02084 32 

MR0034 K63 DM90SC6 83.33 40969.53 41 724.76 0.73 86.90 0.03303 43 

MR0035 K73 DM90SC6 83.33 65196.54 86 413.39 0.73 138.90 0.06690 51 

MR0036 S32 DM90SC6 83.33 17498.20 23 089.29 0.68 38.90 0.00880 11 

MR0037 S42 DM90SC6 83.33 24963.67 35 718.25 0.68 55.90 0.01910 29 

MR0038 F33 DM90SC6 83.33 15732.18 22 741.15 0.73 32.90 0.00593 5 

MR0039 F43 DM90SC6 83.33 21352.27 34 478.22 0.73 45.90 0.01438 22 

MR0040 F53 DM90SC6 83.33 31747.67 54 742.79 0.74 69.90 0.02942 40 

MR0041 G33 DM100L8 62.50 16656.69 21 529.66 0.67 40.00 0.00838 10 

MR0042 G43 DM100L8 62.50 20913.26 30 740.27 0.67 51.00 0.01511 24 

MR0043 G53 DM100L8 62.50 31392.46 48 257.12 0.67 78.00 0.03014 41 

MR0044 K43 DM100L8 62.50 21177.78 27 306.72 0.67 52.00 0.01441 23 

MR0045 K53 DM100L8 62.50 29977.29 42 542.26 0.67 70.00 0.02623 38 

MR0046 K63 DM100L8 62.50 43350.64 61 110.02 0.67 98.00 0.04298 47 

MR0047 S22 DM100L8 62.50 15665.44 18 016.02 0.63 39.00 0.00737 8 

MR0048 S32 DM100L8 62.50 19879.31 26 306.28 0.63 50.00 0.01381 21 

MR0049 S42 DM100L8 62.50 27344.78 40 070.08 0.62 67.00 0.02461 35 

MR0050 F33 DM100L8 62.50 18113.29 26 218.92 0.67 44.00 0.01118 17 

MR0051 F43 DM100L8 62.50 23733.38 39 483.68 0.67 57.00 0.02009 31 

MR0052 F53 DM100L8 62.50 34128.78 61 974.96 0.67 81.00 0.03595 45 

 
In the above table, the following designations are used:  

 MR_ID – identification for every alternative, used as primary key in 

the database 

 Gear_ID – gear reducer identification 

 Mot_ID – electric motor identification 

 i calc (-) – calculated gear reducer ratio 

 G33 – helical gear unit coaxial, size 3, 3-stage 

 K43 – helical bevel gear unit, size 4, 3-stage 

 F33 – helical gear unit with parallel shafts, size 3, 3-stage 

 S22 – helical worm gear unit, size 2, 2-stage 

 DM100L8 – asynchronous squirrel cage motor series DM, size 100L, 

8-pole. 

The results show that alternative a22 (MR0022- 

S22DM80GC4 – helical worm geared motor with 4-pole 

asynchronous squirrel cage motor) is the optimal solution 

among all alternatives, according to the predefined criteria. As 

seen from Table I, the difference in the values of the 

calculated sum 
n

i
R  for the alternatives ranked from 1st to 14th 

is not significant. Therefore, if after the conducted 

optimization, the decision maker is still not convinced on  

which one of the alternatives to select for a given application, 

further optimization of the selected alternatives can be done. 

In such a case, other criteria can be introduced into the 

optimization process. For example, another optimization 

procedure can be run for the 14 alternatives, which have 

values for the sum
n

i
R  in the range between 0.0008 ÷ 0.001, at 

which not only other criteria can be introduced, but also 

another multi-criteria optimization method can be used.  
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V. CONCLUSION 

While most of the other outranking methods require for the 
decision maker to have prior detailed knowledge about their 
methodology, the RAZOR method can be mastered and 
applied very easily without such a priori. When conducting 
optimization for example with PROMETHEE method, the 
decision maker has to select suitable preference functions and 
values for the so-called indifference and preference thresholds, 
which directly influences the final ranking of the alternatives. 
The RAZOR method does not have these disadvantages.  

Another advantage of the optimization method presented 
in this paper is that the usage of the Z-score for forming the 
ranking of the alternatives allows the realization of the idea for 
visualization of the multidimensional data in the two-
dimensional space by which the better alternatives can be 
geometrically visualized.   

In short, the RAZOR method can be easily applied at 
solving multi-criteria optimization tasks and permits 
automation of the optimization process by means of a different 
software programs. 
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