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Abstract 

In this research a genetic fuzzy system (GFS) is proposed that performs discretization parameter learning in the 
context of the Fuzzy Inductive Reasoning (FIR) methodology and the Linguistic Rule FIR (LR-FIR) algorithm. The 
main goal of the GFS is to take advantage of the potentialities of GAs to learn the fuzzification parameters of the 
FIR and LR-FIR approaches in order to obtain reliable and useful predictive (FIR) models and decision support 
(LR-FIR) models. The GFS is evaluated in an e-learning context. 
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1. Introduction 

Initially, e-learning was presented as the best solution to 
cover the needs and requirements of remote students, 
but also as a helping tool in the teaching-learning 
process, reinforcing or replacing face-to-face education. 
However, the undisguised truth is that many real 
projects have failed, or at least they have performed 
below expectations, due to the fact that a huge amount 
of time is required just in the process of providing 
feedback to the virtual learners, resulting in an 
increasing demand of teachers and, therefore, of the 
educational costs.  

On top of that, one of the most difficult and time 
consuming activities for teachers in distance education 
courses is the evaluation process, due to the fact that the 
reviewing process in this kind of courses is better 
accomplished through collaborative resources such as e-
mail, discussion forums, chats, etc. As a result, this 
evaluation usually has to be done according to a large 
number of factors, whose influence in the final mark is 
not always well defined and/or understood. Therefore, it 
would be helpful in order to reduce the intrinsic system 
evaluation dimensionality to identify the factors that are 
highly relevant for the students’ evaluation. This will 
help teachers to provide feedback to students in function 
of their learning behaviour in real time. 
 The use of data mining methods to extract 
knowledge from the e-learning system available 
information can be an adequate approach to follow, so 
that the obtained knowledge can be used to fit the 
educational proposal better to the students’ needs and 
requirements. 

Several research projects have dealt with the 
integration of data mining methods focusing on e-
learning systems improvement. For a deeper inside into 
these projects the authors recommend Refs. 1-3, where 
an extensive and profound analysis of different learning 
platforms is performed, including LON-CAPA,4 AHA!,5 
ALFANET,6 etc. Commonly, the existing platforms 
perform students’ classification (using supervised neural 
networks, decision trees, fuzzy methods, association 
rules, etc.), and/or students’ clustering (using 
Kohonen’s self-organizing maps, EM, etc.), however 
students’ performance has not been addressed from the 
prediction of their learning behaviour point of view, i.e. 
predictive models are not included in the platforms.  

 The authors are currently developing a 
platform, based on the Fuzzy Inductive Reasoning (FIR) 
methodology that includes as part of its skills the 
identification of students’ learning behaviour models 
that allow both, students and teachers, to know the 
future performance of the student based on the current 
learning behaviour, allowing teachers to give feedback 
to those students that need it. The platform also provides 
functionalities to determine the most relevant features 
involved in the evaluation process. Finally, it allows 
extracting linguistic rules that are easily understandable 
by experts in an educative domain and that help them to 
understand students’ learning behaviour. This is 
performed by means of the Linguistic Rules extraction 
algorithm (LR-FIR) that is an extension of the FIR 
methodology.  

In this paper a genetic fuzzy system (GFS) is 
presented that allows enhancing the performance of the 
above mentioned functionalities. The main goal of the 
GFS presented in this research is to take advantage of 
the potentialities of GAs to learn the fuzzification 
parameters of the FIR methodology, i.e. the membership 
functions associated to each variable. Due to the fact 
that it is a methodology based on fuzzy logic, FIR 
modelling and prediction performance is influenced by 
these discretization parameters.  
There exists some studies on evolutionary fuzzy rule 
based systems (EFRBS) focused on prediction.7-11 
However, EFRBS are mainly focused on control12-14 and 
classification.15,16 Research developed in Refs. 7 to 11 
are related to the approach proposed in this paper. In 
Ref. 7 the authors propose an interesting index, that is 
the aggregation of three metrics, that preserves the 
original meanings of the membership functions as much 
as possible while tuning their associated parameters. 
Ref. 8 and 9 propose a new post-processing method for 
the lateral and amplitude tuning of membership 
functions. Ref. 10 presents a fuzzy expert system trained 
by different genetic algorithms. In Ref. 11 a multi-
objective evolutionary algorithm based on embedded 
genetic data base learning, is proposed, that allows the 
fast learning of simple and quite accurate linguistic 
models. These research were tested in a large set of  
different application areas such are weather forecasting, 
plastic strength, stock prices, maintenance cost of an 
electrical network, wind speed at a wind energy 
conversion system, etc., but no one is related to e-
learning.  
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 The remaining of the paper is organized as follows: 
section 2 presents the basics of the FIR methodology 
and the LR-FIR extension. The GFS developed is 
presented in section 3. A description of the experiments 
performed when the proposed GFS is applied to the 
CECTE didactic planning course is presented and 
discussed in section 4. Finally, section 5 wraps up the 
paper with some conclusions. 

2. The Fuzzy Inductive Reasoning Methodology 

The conceptualization of the Fuzzy Inductive Reasoning 
(FIR) methodology arises from the General System 
Problem Solving approach (GSPS) proposed by Klir.17 
This methodology of modeling and qualitative 
simulation is based on systems behavior rather than on 
structural knowledge. It is able to obtain good 
qualitative relations between the variables that compose 
the system and to infer the future behavior of that 
system. It has the ability to describe systems that cannot 
easily be described by classical mathematics (e.g. 
differential equations), i.e. systems for which the 
underlying physical laws are not well understood.  

2.1 Introduction to the FIR methodology 

FIR is composed of four main processes, namely: 
fuzzification, qualitative model identification, fuzzy 
forecasting and defuzzification.  

The fuzzification process converts quantitative data 
stemming from the system into fuzzy data, i.e. 
qualitative triples.  The qualitative model identification 
process is the responsible for finding causal and 
temporal relations between variables and therefore of 
obtaining the model that best represents the system.  

 

 
Once the FIR model is available, the prediction 

system can take place using the FIR inference engine. 
This process is called fuzzy forecast. FIR inference 
engine is a specialization of the k-nearest neighbor rule, 
commonly used in the pattern recognition field.  
Defuzzification is the inverse process of fuzzification. It 
allows to convert the qualitative predicted output into 
quantitative values that can then be used as input to an 
external quantitative model.  

2.1.1 Fuzzification 

Figure 1 illustrates the process of fuzzification by means 
of an example. As mentioned earlier, a quantitative 
value is fuzzified into a qualitative triple. The first 
element of the triple is the class value, the second 
element is the fuzzy membership value, and the third 
element is the side value. The side value indicates 
whether the qualitative value is to the left or to the right 
of the peak value of the associated membership 
function.  

The side value, that is not commonly used in fuzzy 
logic, is responsible for preserving, in the qualitative 
triple, the complete knowledge contained in the original 
quantitative value. 

In Figure 1 a temperature of 23 degrees centigrade 
would hence be fuzzified into the class normal with a 
side value right and a fuzzy membership value of 0.755.  

The point where two neighboring classes match with 
a membership value of 0.5 is named landmark. In the 
example of Figure 1 the membership function of the 
class normal is defined by landmarks {13,27}, being 
this pair the temperature values that specify the limits 
between the class normal and its adjacent classes, fresh 
and warm, respectively. 

The result of the fuzzification process are three 
matrices of identical size named qualitative data 
matrices, one containing the class values, the second 
storing the membership information, and the third 
recording the side values. Each column represents one 
of the observed variables and each row denotes one time 
point, i.e. one recording of all variables or one recorded 
state. 

2.1.2. Qualitative model identification 

A FIR model is composed by a structure, called mask, 
and a pattern rule base, named behaviour matrix. A 
mask denotes a dynamic relationship among qualitative 
variables. An example of a mask is presented in Table 1. 

 

 Fig. 1.  FIR fuzzification process of ambient temperature 
variable. 
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Each negative element in the mask is called a m-
input (mask input). It denotes a causal relation with the 
output, i.e. it influences the output up to a certain 
degree.  The enumeration of the m-inputs is immaterial 
and has no relevance. The single positive value denotes 
the output. 

Table 1. Example of a FIR mask. 

 u1 u2 u3 u4 y1 

t-2t 
t-t 

t 

-1 
0 
0 

0 
0 
-4 

0 
0 
0 

-2 
0 
0 

0 
-3 
+1 

 

The mask of Table 1 contains four m-inputs. In this 
example, the first and second m-inputs, i1 and i2, 
correspond to the input variables u1 and u4 two sampling 
intervals back, u1(t - 2δt) and u4(t - 2δt), whereas the 
third m-input, i3, refers to the output variable  y1  one 
sampling interval into  the  past,  y1(t-δt), etc. It could be 
expressed as described in Eq. (1).  

 

y1(t)= (u1(t-2δt), u4(t-2δt), y1(t-δt), u2(t))          (1) 
 

where  denotes a qualitative relationship. How is a 
mask found that, within the framework of all allowable 
masks, represents the most deterministic state transition 
matrix, i.e., optimizes the predictiveness of the model?  
In FIR, the concept of a mask candidate matrix is 
introduced.  A mask candidate matrix is an ensemble of 
all possible masks from which the best is chosen by 
either a mechanism of exhaustive search of exponential 
complexity or by one of various suboptimal search 
strategies of polynomial complexity as described in Ref. 
18. The mask candidate matrix contains -1 elements 
where the mask has a potential m-input, a +1 element 
where the mask has its m-output, and 0 elements to 
denote forbidden connections. Thus, a good mask 
candidate matrix to start the search for the best mask 
shown in Table 1 might be the one shown in Table 2.  
 

Table 2. Example of a FIR candidate matrix. 

 u1 u2 u3 u4 y1 

t-2t 
t-t 

t 

-1 
-1 
-1 

-1 
-1 
-1 

-1 
-1 
-1 

-1 
-1 
-1 

-1 
-1 
+1 

 
Each of the possible masks is compared to the others 
with respect to its potential merit, i.e., the degree of 
determinism associated with the state transition matrix 

constructed from it. The optimality of the mask is 
evaluated with respect to the maximization of its 
forecasting power. The Shannon entropy measure is 
used to determine the uncertainty associated with 
forecasting a particular output state given any legal 
input state. The Shannon entropy relative to one input 
state is calculated from Eq. (2): 





o

i iopiopH )|(log)|( 2
        (2) 

where p(o|i) is the conditional probability of a certain 
m-output state o to occur, given that the m-input state i 
has already occurred. The term probability is meant in a 
statistical rather than in a true probabilistic sense. It 
denotes the quotient of the observed frequency of a 
particular state divided by the highest possible 
frequency of that state. The overall entropy of the mask 
is then computed as the sum given in Eq. (3). 





i

im HipH )(                (3) 

where p(i) is the probability of that input state to occur. 
The highest possible entropy Hmax is obtained when all 
probabilities are equal, and a zero entropy is 
encountered for relationships that are totally 
deterministic. A normalized overall entropy reduction 
Hr is defined as described in Eq. (4). 
 

max

1.0 m
r

H
H

H

 
  

 
                     (4) 

Hr is obviously a real-valued number in the range 
between 0.0 and 1.0, where high values usually indicate 
an improved forecasting power. The masks with highest 
entropy reduction values generate forecasts with the 
smallest amounts of uncertainty. 

One problem still remains.  The size of the pattern 
rule base increases as the complexity of the mask grows, 
and consequently, the number of legal states of the 
model grows fast.  Since the total number of observed 
data records remains constant, the frequency of 
observation of each state shrinks rapidly, and so does 
the predictiveness of the model. The entropy reduction 
measure does not account for this problem. With 
increasing complexity, Hr simply keeps growing.  Very 
soon, a situation is encountered where every state that 
has ever been observed has been observed precisely 
once. This obviously leads to a totally deterministic 
state transition matrix, and Hr assumes a value of 1.0. 
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Yet the predictiveness of the model will be dismal, since 
in all likelihood already the next predicted state has 
never before been observed, and that means the end of 
forecasting.  Thus, this consideration must be included 
in the overall quality measure. 

From a statistical point of view, every state should 
be observed at least five times.19 Therefore, an 
observation ratio, Or, is introduced as an additional 
contributor to the overall quality measure, as described 
in Eq. (5), 

 

leg

xxxxx
r n

nnnnn
O





5

2345 12345  (5) 

where: nleg is the number of legal m-input states, n1x is 
the number of m-input states observed only once, n2x is 
the number of m-inputs states observed twice, etc. 

If every legal m-input state has been observed at 
least five times, Or is equal to 1.0. If no m-input state 
has been observed at all (no data are available), Or is 
equal to 0.0.  Thus, Or can also be used as a quality 
measure. The overall quality of a mask, Q, is then 
defined as the product of its uncertainty reduction 
measure, Hr, and its observation ratio, Or, as shown in 
Eq. (6). 

 

rr OHQ              (6) 

 
The optimal mask is the mask with the largest Q 

value. Let us now address the second issue. How is the 
pattern rule based obtained from the mask? This process 
is illustrated in Figure 2. The mask can be used to 
‘flatten’ dynamic relationships into pseudo-static 
relationships. The left side of Figure 2 shows an excerpt 
of the qualitative data matrix that stores the class values.  

It shows the numerical rather than the symbolic class 
values. In the example shown in Figure 2, all the 
variables were discretized into three classes, except 
variable y1, that was discretized into two classes. The 
dashed box symbolizes the mask that is shifted 
downwards along the class value matrix.  The round 
shaded ‘holes’ in the mask denote the positions of the 
m-inputs, whereas the square shaded ‘hole’ indicates the 
position of the m-output.  The class values are read out 
from the class value matrix through the ‘holes’ of the 
mask, and are placed next to each other in the behavior 
matrix that is shown on the right side of Figure 2.   

Here, each row represents one position of the mask 
along the class value matrix.  It is lined up with the 

bottom row of the mask.  Each row of the behavior 
matrix represents one pseudo-static qualitative state or 
qualitative rule (also called pattern rule). For example, 
the shaded rule of Figure 2 can be read as follows: ‘If all 
the m-inputs (i1, i2, i3, i4,) have a value of 2 
(corresponding to medium) then the m-output, O1, 
assumes a value of 1 (corresponding to high)’. 

The qualitative rules can be invoked during 
qualitative simulation to predict new qualitative outputs.  
Clearly, these rules can be written in any order, i.e., the 
sequencing of the rows of the behavior matrix has 
become irrelevant. They can be sorted 
alphanumerically.  The sorted behavior matrix is called 
state transition matrix. 

 

Fig. 2. Process of flattening dynamic relationships into 

pseudo-static relationships using a mask. 

2.1.3. Fuzzy forecasting   

Once the best model is obtained by means of computing 
the quality measure presented above, future output 
states can be predicted using the inference engine that is 
at the heart of the qualitative simulation module inside 
FIR. This process is described in Figure 3.  

Using the five-nearest-neighbors (5NN) fuzzy 
inferencing algorithm the membership and side 
functions of the new input are compared with those of 
all previous recordings of the same qualitative input. 
The input with the most similar membership and side 
functions is identified. For this purpose, a normalized 
defuzzification is computed for every input variable of 
the new input set, using Eq. (7).  

 

 

Optimal 
Mask 

m-imput m-output 

System
Inputs 

System 
Output 

Behavior Matrix 
(Pattern Rule Base)

   i1    i2     i3    i4        O1 
 
   3    3    1    2       2 
   1    2    2    2       1 
   2    1    1    2       1 
   3    3    1    3       2 
   2    2    2    2       1 
   2    1    1    1       2 
   3    2    2    3       1 

. 

. 

. 

Qualitative Data Matrix 
(Classes) 

        u1   u2   u3  u4     y1  
 
  0       3    2    2    3      2 

 t       1    2    2    2      1 

2t      2    2    3    1      2 

3t      3    2    1    3      1 

4t      2    2    2    2      1 

5t      2    3    3    1       2 

6t      3    2    2    1       1 

7t       1    1    3    1       2 

  .         3    3    1    3       1 
  .                    . 
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)1.( iiii Membsideclasspos   (7) 

The posi values are stored in a vector, pos. The index i 
represents the ith input variable in the input state of the 
current observation. Membi, is the membership value, 
and classi and sidei are the numeric class and side values 
associated to those inputs, respectively. 

 

 
 

Fig. 3. Fuzzy forecasting FIR Process. 
 
The position value, posi, can be interpreted as a 
normalized defuzzification of the ith input variable. 
Irrespective of the original values of the input variable, 
posi assumes values in the range (1.0-1.5) for the lowest 
class, (1.5-2.5) for the next higher class, etc. The 
defuzzification is repeated for all previous recordings of 
the same input state, as shown in Eq. (8). 
 

)1.( ijijijij Membsideclasspos    (8) 

 
where the index j denotes the jth previous observation of 
the same input state. Also the posij values are stored in a 
vector, posj. Then, the L2 norms of the difference 
between the pos vector of the new input state and the 
posj vectors of all previous recordings of the same input 
state are computed following Eq. (9), 
 





N

i
ijij posposdis

1

2)(   (9) 

 
where N is the number of m-inputs. Finally, the previous 
recording with the smallest L2 norm is identified. The 
class and side values of the output state associated with 
this input state are then used as forecasts for the class 

and side values of the new output state. Forecasting of 
the new membership function is done a little differently. 
Here, the five previous recordings with the smallest L2 

norms are used (if at least five such recordings are 
found in the input/output matrix), and a distance 
weighted average of their fuzzy membership functions 
is computed and used as the forecast for the fuzzy 
membership function of the current state.  

2.1.4. Defuzzification   

The defuzzification engine of the FIR methodology is 
responsible for converting each qualitative predicted 
output triple back to a quantitative output value. It is the 
inverse operation of the previously described 
fuzzification engine.  

For a deeper and more detailed insight into the FIR 
methodology, the reader is referred to Ref. 20. 

2.2 Linguistic rules extraction from FIR models: 
LR-FIR 

The LR-FIR algorithm was developed with the goal to 
be a useful tool for decision makers. With this purpose 
in mind the ultimate goal of LR-FIR is to obtain 
interpretable, realistic and efficient behavioural rules, 
describing complex systems.   

Previous efforts have been made in this direction 
giving major attention to the interpretability associated 
to the fuzzy rule-base systems, mainly in linguistic ones.  
Some examples of these works are Ref. 21 to 23.  
 LR-FIR performs an iterative process that compact 
the pattern rule base, i.e. input/output relationships, 
obtained by FIR. In order to obtain a set of rules 
congruent with the model previously identified by FIR, 
LR-FIR is based on its initial discretization (performed 
in the fuzzification process). Figure 4 shows, in a 
schematic way, the main phases of the LR-FIR 
algorithm. In the rule extraction process, the mask 
features and the pattern rule base obtained are used. The 
algorithm can be summarized as a set of ordered steps: 

2.2.1.  Basic compaction 

The main goal of this step is to transform the pattern 
rule base, R, into a reduced set of rules, R’. Notice that 
R, is usually very large being almost as large as the 
number of training data available. Consist on an 
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iterative step that evaluates one at a time, all the rules 
and each of their premises in a pattern rule base. The 
pattern rule base, R, is compacted on the basis of the 
“knowledge” obtained by FIR. A specific subset of 
rules, Rc, can be transformed in the form of a compacted 
rule rc, when all premises P but one (Pa), as well as the 
consequence C share the same values. Premises, in this 
context, represent the input features, whereas 
consequence is the output feature in a rule. If the subset 
contains all legal values LVa of Pa, all these rules can be 
replaced by a single rule, rc, that has a value of -1 in the 
premise Pa. A -1 value in a variable means that this 
variable is not relevant in the rule and, therefore, it is 
not considered. Let see this concept by means of an 
example. Assume that we have the subset Rc of three 
rules presented in Table 3, and that the algorithm is 
working with the third premise, i.e. vj = 3.  

Table 3: Example 1: Set of candidate rules to be compacted. 

Rule Premises Consequent 
1 1 2 2 1 

2 1 2 1 1 

3 1 2 3 1 

 
As the third premise is discretized into only 3 classes 
and all of them are represented in Rc, it can be 
concluded that this variable is not relevant in this set of 
rules and therefore Rc can be compacted to the rule rc=1 
2 -1 1. 

Notice that the algorithm performs two iterations, an 
external that deals with each one of the premises and an 
internal that deals with each rule of the pattern rule 
base.  Several considerations to this algorithm should be 
mentioned here. 
 When more than one -1 value is present in a 

compacted rule rc, it is compulsory to evaluate the 
existence of conflicts by expanding all the premises to 
all their legal values LVa, and comparing the resultant 
rules with the original pattern rules R. If conflicts 
exist, the compacted rule rc is rejected, and otherwise 
accepted. In the latter case, the previous subset, Rc is 
replaced by the compacted one rc. Conflicts occur 
when one or more extended rules have the same 
values in all its premises but different values in the 
consequence. 

 When a -1 value appears in any of the variables that 
are not the one evaluated at this moment (vj), the -1 
takes in the class values of the other rules in that 

premise. Assume that we have the subset Rc of three 
rules presented in Table 4, and that the algorithm is 
working with the third premise, i.e. vj = 3. 
  

Table 4: Example 2: Set of candidate rules to be compacted 
when a premise has a -1 value. 
 

Rule  Premises Consequent

1 1  2   1 1 

2 -1   2   2 1 

3 1   2   3 1 

In this case, the -1 value of the first premise of rule #2 
takes in class 1 of rules #1 and #3, and therefore, all 
three rules are compacted into the rule: -1 2 -1 1. 
Notice that in this case, the algorithm will check for 
conflicts before the compacted rule is accepted.  

Remove few
 represented behaviours 

   Basic compaction 

  FIR pattern rule base

Improved compaction:
All possible beliefs

Improved compaction:
Ratio of beliefs 

Remove  duplicated and conflicting rules

Unification of similar rules

R

R' R'

RbRb

RfRu

R

Filtering bad quality rules

RdRd

Ru/f

Fig. 4.  Main steps of the LR-FIR algorithm. 

2.2.2.  Improved compaction 

Whereas the previous step only structures the available 
knowledge and represents it in a more compact form, 
the improved compaction step extends the knowledge 
base R to cases that have not been previously used to 
build the model: Rb. Thus, whereas the step 1 leads to a 
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compacted data base that only contains knowledge; the 
enhanced algorithm contains undisputed knowledge and 
uncontested belief. Two options are studied: all possible 
beliefs and ratio of beliefs. In the first option, improved 
compaction with all possible beliefs, using the 
compacted rule base R’ obtained in step 1, all input 
features P (premises) are visited once more in all the 
rules r that have nonnegative vales (not compacted),  
and their  values are replaced  by -1. An expansion to all 
possible full sets of rules Xr and their comparison with 
the original rules R are carried out. If no conflicts, Cf, 
are found, the compacted rule, rc, is accepted, and 
otherwise, rejected.  

The second option, improved compaction with a ratio 
of beliefs, is an extension of the basic compaction, 
where a consistent minimal ratio, MR, of the legal 
values LVa should be present in the candidate subset Rc, 
in order to compact it in the form of a single rule rc. 
This latter option seems more suitable because, although 
a consistent ratio was used to compact Rc in a single rule 
rc, the assumed beliefs are minimal and do not 
compromise the model previously identified by FIR. 
Instead, in option 1, beliefs are assumed to be consistent 
with the original rules; nevertheless, this could 
compromise the agreement with model identified, 
especially when the training data are poor and do not 
describe well all possible behaviours. 

2.2.3 Remove duplicated and conflicting rules 

In this step all duplicated rules are removed. It can be 
found, also, in Rb, ambiguous or conflicting rules, i.e. 
rules with the same values in all its premises but 
different value in the consequent. In this case, the rules 
that are involved in conflicts are analyzed, and those 
with lower quality, Qr, are eliminated. The quality of a 
rule is assessed using the well known specificity and 
sensitivity measures that are standard metrics often 
applied in the machine learning field. Specificity and 
sensitivity measures are in the range [0..1]. High quality 
means high values (closer to 1) of specificity and 
sensitivity measures; therefore the rule with highest Qr 
remains and the other conflicting rules are eliminated. 
In order to maintain a robust and consistent set of rules, 
those conflicting rules sharing contiguous input space 
(adjacent classes) in the consequent are not removed 
since these rules should be unified in the next step of the 
algorithm. 

2.2.4. Rule unification 

The rule unification step can be performed before or 
after rules filtering. If it is done before, rules with low 
quality are usually unified with rules of better quality 
deriving, more often than not, to a set of rules that 
preserve as much as possible the full behaviour of the 
system but with a large level of generalization, not 
really useful for decision support systems. Contrarily, if 
it is done after, low quality rules that have conflicts with 
better quality rules are eliminated and therefore, the 
resulting set of rules explain in a more synthesized and 
clear way the more often behaviours of the system. 
Although, obviously, some information is lost, the set of 
rules obtained is usually more suitable for decision 
support. The user should decide in which order these 
two steps are executed depending on the goals of his/her 
research.  

Rule unification is an iterative process that 
evaluates, one at a time, each rule with respect to the 
remaining ones to find similar candidate rules to be 
unified in a single one Ru. This is carried out in two 
phases. In the first phase the rules that share, in a same 
variable (premise or consequent), contiguous input 
spaces and the same values in the remaining ones 
should be unified in a unique rule Ru. In order to 
maintain a consistent set of rules and do not 
compromise the previous steps a subset of rules, Rd, 
should not be unified when the contiguous input space 
of the candidate rules Rd, cover all the legal values of 
that variable. This condition is included because when 
this happens a conflict surely exist, otherwise these 
candidate rules Rd, would have been compacted in the 
basic or improved compaction steps.  

There are four options to perform this step: wise: a 
subset of rules Rd, is unified in a unique rule Ru, if and 
only if the quality Qr, of the unified rule Ru, is higher 
than the best quality of the candidate rules; blind: a 
subset of candidate rules Rd, is unified without verifying 
the quality Qr of the unified rule Ru.  

These two alternatives can be combined with 
repetitions and without repetitions options. In the first 
one, a rule can be unified with several rules, i.e. 
whenever possible, whereas in the second one, a rule 
can be unified only once. Optionally, those rules not 
unified in the first stage are evaluated with the goal to 
discover new unifications with the already unified rules. 
The unification is performed only in the consequent 
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value. In this step the default option is without 
repetitions, i.e. a rule can be unified only once.  

2.2.5 Rule filtering 

The obtained set of rules Rd or Ru is evaluated using 
the Sensitivity and Specificity metrics. These metrics 
allow an objective and realistic assessment of the 
resulting rules. A parameter, chosen by the user, 
determines the minimum quality value to be accepted. 
The rules that have associated lower qualities for, at 
least, one of the metrics are eliminated. These standard 
metrics that assess the quality of the obtained rules are 
explained in section 4. For a deeper insight into LR-
FIR, the reader is referred to Ref. 24. 

3. The GFS Proposed (GA+FIR+LR-FIR) 

The GFS proposed in this research is presented in Fig. 
5. A genetic algorithm (GA)25,26 is used to obtain the 
membership functions associated to the classes for each 
system variable. These parameters are used in the 
fuzzification process of FIR methodology, and have 
direct influence in the identification process of the FIR 
predictive model. Depending on the membership 
functions defined, the model structure (mask) obtained 
changes and the pattern rules derived from it change as 
well.  
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.  Scheme of the GFS. 

The optimization performed by the GA is based on the 
prediction power of the FIR model obtained. The 
pattern rules that compose (together with the mask) the 
FIR model are then use to derive a set of linguistic rules, 
by means of the LR-FIR algorithm. The set of linguistic 
rules constitutes a decision support model that helps 
teachers and students to understand student’s learning 
behaviour. Due to the fact that the LR-FIR algorithm 

has as input the pattern rules of the predictive model, 
variations in the fuzzification parameters affect directly 
the decision support model, i.e. the set of linguistic 
rules. Therefore, it is of great importance to determine 
in an automatic and reliable way good fuzzification 
parameters in order to maximize the powerfulness of 
both predictive and decision support models. 

3.1. Determination of the membership functions  

3.1.1. Genetic representation 

The genetic representation chosen takes into account the 
number of samples registered for each variable. A 
specific variable is represented by the proportion of data 
samples that contains each class, codified in the range 
[0..1]. An example of chromosome representation for a 
unique variable that has 4 classes could be 
(0.2,0.3,0.4,0.1), meaning that the membership function 
of the first class contains the 20% of the data samples 
available for this variable, and the second, third and 
forth membership functions contain 30%, 40% and 10% 
of the data records, respectively. Obviously, the sum of 
the proportions for each class must be 1. Therefore, if 
we denote by Dij the data proportion of the variable i 
and class j, and C2i the information of the data 
proportion for all the classes of the variable i, the 
membership representation, C2, for a system of N 
variables (including inputs and outputs), is defined by: 
C2 = (C21,C22,…,C2N), where C2i = (Di1...DiEi).  Note that 
each time the distribution of the landmarks changes due 
to the action of the genetic operators, it is mandatory to 
re-compute the proportions of the new distribution. A 
clear advantage of this representation is the facility to 
compute the landmarks from it.  

3.1.2.  Fitness or objective function 

In order to evaluate a chromosome, the following steps 
are considered: 
 
 Decode the information of the chromosome, building 
the associated fuzzy partition in the FIR structures. 
 Execute the qualitative model identification process of 
FIR methodology with the training data set, using the 
partition built in the previous step. Therefore, the mask 
associated to that partition with the highest quality 
measure is obtained. 
 Compute an objective function. The cost function is 
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defined as the prediction error of a portion of the 
training data set, called validation data set. The 
normalized mean square error in percentage (MSE), 
given in Eq. (10), is used for this purpose,  
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where ŷ (t) is the predicted output,  y(t) the system 
output and yvar denotes the variance of y(t). The idea is 
to use part of the training data set to identify the model 
and the rest of the data set (validation set) to evaluate 
the prediction performance of that model. It is important 
to remember that the FIR model is composed of the 
optimal mask and the pattern rule base (behaviour 
matrix). Therefore, both must be generated in the 
evaluation process of a certain fuzzy partition for this 
cost function. The size of the validation data set used for 
cost function evaluation purposes is defined with 
respect to the size of the whole training data set. 

3.1.3.  Genetic operators and parameters 

In this work, the same genetic operators presented in 
Ref. 27 are used. The genetic parameters are described 
in section 4. The initial population is composed by an 
individual distributed using the equal frequency 
partition (EFP) method, and the rest of the 
chromosomes have their values chosen randomly. No 
repeated chromosomes are allowed. As known, the EFP 
algorithm defines the classes in such a way that the 
same number of data records is included in each 
membership function. 

4. E-Learning Models 

The Centre of Studies in Communication and 
Educational Technologies (CECTE: Spanish acronym) 
is a partially virtual campus, offering postgraduate 
courses and continuous education (graduate, workshops 
and specific courses) to Latin-American students. The 
CECTE is part of the international Latin-American 
Institute of Educative Communication (ILCE: Spanish 
acronym), whose main goal is to offer postgraduate 
courses. 

The most demanded CECTE courses follow a hybrid, 
semi-presential model, in which students take courses 
online (WCECTE) but also attend weekly TV sessions 

through the National System of Educative Television 
(EDUSAT). Through WCECTE, students can access the 
course materials and communicate and interact with 
each other through an e-mail system and a discussion 
forum. The environment also includes an agenda, a 
news system, virtual classrooms, a digital library, 
interactive tutorials, and other related tools.  

In the CECTE educational model the tutor is a very 
relevant actor, as he or she interacts directly with 
students, assigning learning activities, answering 
doubts, opening topics in discussion forums, evaluating 
the activities performed by learners, and verifying that 
the teaching-learning process be adequate, taking 
advantage of all the tools provided by WCECTE. 
In this section the didactic planning CECTE course is 
studied. The obtained results were evaluated and 
validated by educative experts of the CECTE.  

For the experiments in this study, a set of 700 
students, enrolled in the “Didactic Planning” graduate 
course, was selected. The course is addressed to second 
term high school teachers offering specialized subjects, 
namely Mathematics, Chemistry, Mexican History, 
Computer Science, English, as well as Reading and 
Writing, Ethics and Values. The students are meant to 
perform a set of activities throughout the course with 
the main purpose of learning new methods and 
strategies for planning the classes that they teach. This 
is the reason why these activities are centred on the so-
called “class plan”. 

A class plan is a document where a set of strategies 
are suggested to develop a teaching-learning session, 
taking into account different factors that appear in the 
educational process, such as students’ characteristics, 
teaching style, teachers’ experience, etc. The data 
features available for this study are detailed in Table 5. 

In the didactic planning course, two novel evaluation 
topics, not often used in e-learning environments, were 
incorporated: co-evaluation and experience report. In 
co-evaluation, the advisor grades how well the student 
evaluates the class plans of his/her course mates. The 
experience report is a student description of his/her 
perception of the course. It can be viewed as a self-
evaluation of the student’s own learning process. 

The aim of this study is to analyze the usefulness of 
the GFS proposed with two main focuses: FIR models 
that are capable of predicting student’s performance and 
LR-FIR models that help to understand student’s 
learning behaviour patterns.  
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In the didactic planning course, two novel evaluation 
topics, not often used in e-learning environments, were 
incorporated: co-evaluation and experience report. In 
co-evaluation, the advisor grades how well the student 
evaluates the class plans of his/her course mates. The 
experience report is a student description of his/her 
perception of the course. It can be viewed as a self-
evaluation of the student’s own learning process. 
The aim of this study is to analyze the usefulness of the 
GFS proposed with two main focuses: FIR models that 
are capable of predicting student’s performance and LR-
FIR models that help to understand student’s learning 
behaviour patterns.  

Table 5. Data features collected for the didactic planning 
course. 

 

4.1. Previous work 

In Ref. 24 FIR and LR-FIR models of the Didactic 
Planning course were identified with the main goal to 
provide valuable knowledge to teachers about the 
course performance and student’s learning behaviour 
understanding. To this end, the FIR platform and the 
LR-FIR algorithm used the discretization parameters 
defined by the experts, i.e. course teachers. These 
parameters are described in Table 6. ACT, ASS, IC and 
BR variables were discretized into two classes whereas 
the rest of the variables were discretized into 3 classes. 
C1, C2 and C3 refer to classes 1, 2 and 3 of that 

variable, respectively. As has been explained in section 
2, the landmarks define the membership functions. 

In this research 7-fold cross-validation was used. 
Each test set was composed of 100 samples whereas the 
training sets contained 600 samples. The optimal mask 
obtained by the FIR model identification process is 
presented in Table 7. Notice that in this case the mask 
has only one row meaning that no temporal relation is 
allowed. This is due to the fact that we are dealing with 
students, i.e. each data sample contains information of a 
specific student. 

The best model identified for the didactic planning 
course includes the average marks of the co-evaluation 
(COEV), the initial class plan (IC), and the experience 
report (ER) features as the most relevant features to 
predict the final mark of the course (MARK) for each 
student. 

 
Table 6. Fuzzification parameters defined by experts.  

Feature Landmarks Granularity 
ACT C1:[24-42]; C2:(42-66] 2 
ASS C1:[13-55]; C2:(55-100] 2 
MAIL, 
COEV,F,  
FCP, FC 

C1:[0-4.9]; C2:(4.9-7.9]; C3:(7.9-10] 3 

IC C1:[0-5.1]; C2:(5.1-10] 2 
ER C1:[0-6.9]; C2:(6.9-8.9]; C3:(8.9-10] 3 
BR C1:[0-8.1]; C2:(8.1-10] 2 
MARK C1:[0-4.9]; C2:(4.9-7.9]; C3:(7.9-10] 3 

 
An interesting result is the selection of the co-

evaluation variable as a relevant feature for the 
prediction of a student final mark. In COEV the advisor 
grades how well the student evaluates the class plans of 
his/her course mates. A student that is able to evaluate 
the work of other people is capable to evaluate correctly 
his/her own work and, therefore, to execute a good 
work, i.e. a good final class plan. Therefore, the 
information conveyed by this feature is fundamental to 
predict the final performance of the student in the 
course. This conclusion has been corroborated by the 
advisors responsible for the course. It is also interesting 
to point out that co-evaluation normally is not a feature 
used in the e-learning environment. However, in this 
experiment, its high level of predictive power has been 
shown. On the other hand the experience report (ER) is 
also a relevant feature for the prediction of the students’ 
final mark. The experience report can be viewed as a 
self-evaluation of his/her own learning process. 

 

Feature Description 

ACT Percentage of the activities performed by the student with 
respect to the total activities of the course. 

ASS Percentage of student’s session assistance with respect to 
the total number of sessions of the course. 

MAIL Average mark obtained by the student in the activities sent 
by e-mail. 

COEV Average mark of the co-evaluation performed by the 
student of the class plan of other students.  

F Average mark of the student’s forum participation 
(referring to topics related to the course). 

FCP Average mark of the forum class plan (referring only to 
topics related to the class plan exclusively). 

FC Average mark obtained by the student in his/her final class 
plan. 

IC Average mark obtained by the student in his/her initial 
class plan. 

ER Average mark obtained by the student in the experience 
report. In this report the student evaluates his/her learning 
process and describes the main concepts learned.  

BR Average mark of the work (activities) performed in the 
branch. 

MARK Final mark obtained by the student in the course. 
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Table 7. FIR optimal mask  (fuzzification parameters defined 
by experts). 

ACT ASS MAIL COEV F FCP FC IC ER BR MARK 

0 0 0 -1 0 0 0 -2 -3 0 +1 

 
The root mean square error (RMS) described in Eq. 

(11) is used to determine the validity of the model.  
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where ŷ (t) is the predicted output, y(t) the system 
output and N the number of samples. The RMS errors 
obtained for each fold are summarized in Table 8. 

 
Table 8. RMS errors for the 7 folds (fuzzification parameters 
defined by experts). 

FOLD1 FOLD2 FOLD3 FOLD4 FOLD5 FOLD6 FOLD7 MEAN 

0.364 0.343 0.544 0.498 0.311 0.340 0.436 0.405 

 
The set of pattern rules derived form the FIR model is 
then used as input to the LR-FIR algorithm which 
obtains the set of linguistic rules presented in Table 9.  
 
Table 9. Lingustic rules FIR model and its metrics 
(fuzzification parameters defined by experts). 

Rule Spec. Sens. Acc. 
IF IC IN 2 AND ER IN 1 THEN MARK IN 1 0.97 0.56 0.91 
IF IC IN 1 AND ER IN 1 THEN MARK IN  1 1 0.19 0.88 
JOINT QUALITY CLASS 1 0.97 0.75 0.94 
IF IC IN 2 AND ER IN 3 THEN MARK IN 2 0.29 0.38 0.32 
IF COEV  IN 3 AND ER IN 2 THEN MARK 
IN 2 

 
0.91 

 
0.32 

 
0.72 

IF COEV  IN 3 AND IC IN 1 AND ER  IN 3 
THEN MARK IN 2 

 
0.99 

 
0.17 

 
0.73 

JOINT QUALITYCLASS 2 0.18 0.87 0.40 
IF COEV IN 3 AND IC IN 2 AND ER IN 2-3 
THEN MARK IN 3 

 
0.60 

 
0.99 

 
0.81 

JOINT QUALITY CLASS 3 0.60 0.99 0.81 
JOINT QUALITY ALL RULES 0.56 0.92 0.69 

 
The rules are described in class notation. The range of 

values for each class is defined in Table 6.  
For example the first rule that defines class 1 can be 

also written as: IF IC IN [5.1..10] AND ER IN [0..6.9] THEN 
MARK IN [0...4.9] 

The second, third and fourth columns show the 
specificity, sensitivity and accuracy measures for each 
rule. Specificity is defined as one minus the ratio of the 
number of out-of-class data records that the rule 

identifies to the total number of out-of-class data. 
Sensitivity is the ratio of the number of in-class data that 
the rule identifies to the total number of in-class data. 
Accuracy is defined as the number of correct results to 
the total number of data points evaluated. The set of 
rules obtained were validated by the course coordinator, 
teachers and educative experts and conclude that the 
obtained results were consistent with their own 
perception of course student’s learning behaviour. The 
number of linguistic rules extracted from the set of 600 
pattern rules is 6. Therefore, a huge reduction has been 
obtained giving comprehensible explanation to the 
educative actors, making easiest the understanding of 
student’s learning behaviour. 

4.2. Optimization of the membership functions  

The GA described in section 3 is used to obtain the 
membership functions (landmarks) given as 
granularities the ones listed in the third column of Table 
6. The GA uses a population size of 50 individuals, a 
crossover probability of 0.6, a mutation probability of 
0.1 and as stop criteria a number of chromosome 
evaluations of 1000 and 1500. Thirty executions have 
been performed for each stop criteria. A summary of the 
results is shown in Table 10. The first column contains a 
‘B’ or a ‘W’. B stands for best and W for worse, 
meaning that the membership function shown in that 
row is one of the best or one of the worse obtained by 
the GA. The second column shows these membership 
functions in data proportion notation. The data 
proportion notation is described in section 3.1.1. The 
third column presents the optimal mask, in position 
notation, encountered by FIR for these fuzzification 
parameters. Finally, the fourth column contains the 
value of the objective function.   

As can be seen from Table 10, the MSEval obtained for 
the best and worse solutions are not very far away (14.5 
vs. 16.6), meaning that the GA is able to obtain good 
suboptimal solutions.  

An interesting outcome is that almost all the FIR 
models obtained have the same optimal mask, i.e. 
(4,6,7,9,11), that corresponds to the mask shown in 
Table 11. 

Notice that in this case COEV and ER variables are 
found relevant, as in the case when the discretization 
parameters where defined by experts (see section 4.1). 
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Table 10. Membership functions results obtained by the GA. 

Res. Data Proportion Opt. Mask  MSEval 
 

B 

COEV:(0.47,0.21,0.32);FCP:(0.34,0.
23,0.43);FC:(0.51,0.28,0.21);ER:(0.2

7,0.73);MARK:(0.45,0.24,0.31) 

 
(4,6,7,9,11) 

 
14.4 

 
B 

COEV:(0.47,0.21,0.32);FCP:(0.38,0.
21,0.41);FC:(0.50,0.26,0.24);ER:(0.3

2,0.68);MARK:(0.43,0.42,0.15) 

 
(4,6,7,9,11) 

 
14.5 

 
W 

COEV:(0.36,0.47,0.17);FCP:(0.31,0.
27,0.42);FC:(0.36,0.19,0.45);ER:(0.5,

0.5);MARK:(0.60,0.25,0.15) 

 
(4,6,7,9,11) 

 
16.5 

 
W 

COEV:(0.35,0.25,0.40);FCP:(0.26,0.
27,0.47);FC:(0.39,0.28,0.33);ER:(0.4

6,0.54);MARK:(0.58,0.24,0.18) 

 
(4,6,7,9,11) 

 
16.6 

 
 
Table 11. FIR optimal mask (fuzzification parameters defined 
by the GA). 

ACT ASS MAIL COEV F FCP FC IC ER BR MARK 

0 0 0 -1 0 -2 -3 0 -4 0 +1 

 
Therefore, it is once again established that these 

variables are the more relevant ones. The initial class 
plan (IC) is now replaced by the forum class plan (FCP) 
and the final class plan (FC). It seems that IC and 
FCP/FC contain similar information related to the class 
plan being, probably, redundant.  

4.3. New FIR models  

The discretization proposed by the GA with a MSEval of 
14.5 and the optimal mask presented in Table 11 are 
used in this section to obtain FIR models for each fold 
as was done in previous work (section 4.1). The 
prediction errors obtained for each of the seven folds are 
shown in Table 12. 

If we compare Tables 12 and 8 it can be seen that the 
mean RMS error is lower (0.342 vs. 0.405) when the 
discretization parameters are proposed by the GA. 
However, the membership functions obtained for the 
output variable (MARK) are not intuitive for educative 
actors, and will probably reduce the usefulness of the set 
of linguistic rules.  

The experts discretized the variable MARK in the 
following way: [0-4.9] for class 1 (fail), (4.9-7.9] for 
class 2 (pass) and (7.9-10] for class 3 (excellent). The 
GA obtained the following discretization: [0-8.9] for 
class 1, (8.9-9.8] for class 2 and (9.8-10] for class 3. It is 
clear that the meaning that the experts give to the 
variable (fail, pass, excellent) is not preserved in the GA 
discretization. However, the GA gets a better 
discretization from the prediction performance point of 
view and the discretization is coherent with the 

distribution of the data. In the course under study only a 
7% of the students have a MARK lower or equal than 
4.9; a 15% have a MARK between 5 and 7.9 and a 78% 
have a MARK higher or equal than 8.   
 
Table 12. RMS errors for the 7 folds (fuzzification parameters 
defined by the GA). 

FOLD1 FOLD2 FOLD3 FOLD4 FOLD5 FOLD6 FOLD7 MEAN 

0.7 0.152 0.222 0.327 0.309 0.226 0.462 0.342 

 
Trying to preserve the meaning of the MARK variable 
given by the experts, the following experiment is 
performed: the discretization parameters of the MARK 
variable are fixed and the GA is used only to obtain the 
discretization parameters of the input variables. The 
same GA parameters described in section 4.2 are used in 
this case. The optimal mask obtained in almost all the 
executions is the one shown in Table 11.  

The prediction errors obtained for each of the seven 
folds when the best discretization found is used are 
shown in Table 13. 

 
Table 13. RMS errors for the 7 folds (fuzzification parameters 
defined by the GA with variable MARK Fixed). 

FOLD1 FOLD2 FOLD3 FOLD4 FOLD5 FOLD6 FOLD7 MEAN 

0.693 0.211 0.302 0.259 0.342 0.229 0.397 0.347 

 
Notice that the mean error is in between the error 

obtained when fuzzification parameters are defined by 
experts, 0.405 (Table 8), and the error obtained when 
the GA is used without restrictions, 0.342 (Table 12), 
being much closer to the last one. This makes sense 
since in this case an optimization of the inputs is 
performed.  

4.4. New LR-FIR models  

The discretizations proposed by the GA and the GA 
with the variable MARK fixed are here used to obtain 
LR-FIR models. As in section 4.1 an improved 
compaction based on the minimal ratio is chosen. Also, 
a filtering threshold of 0.1 is applied before and after 
unification, which means that the rules with specificity 
or sensitivity values lower or equal to 0.1 were deleted. 
The same filtering procedure has been applied in the 
rules presented in Table 9. The set of rules obtained 
when the fuzzification parameters proposed by the GA 
and the GA with MARK fixed are used, are shown in 
Tables 14 and 15, respectively.  
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Analyzing the joint quality of all rules shown in 
Tables 9, 14 and 15 (last row), it is quite clear that the 
LR-FIR models that use the discretization parameters 
given by the GA are able to define more reliable rules, 
due to the fact that the associated metrics are balanced. 
This is not the case for the set of rules obtained when 
the discretization parameters are defined by experts. In 
that case (Table 9) specificity (0.56), sensitivity (0.92) 
and accuracy (0.69) are clearly unbalanced, reducing the 
consistency of the set of rules.   

 
Table 14. Linguistic rules FIR model and its metrics 
(fuzzification parameters defined by the GA). 

Rule Spec. Sens. Acc. 
IF COEV IN 1 AND ER IN 1 THEN MARK IN 1 1 0.26 0.69 
IF FCP IN 1 AND ER IN 1 THEN MASK IN 1 
IF FCP IN 1 AND FC IN 2 AND ER  IN 2 THEN 
MARK IN 1 
IF FCP IN 1 AND FC IN 1 AND ER IN 2 THEN 
MARK IN 1 

1 
 
0.88 
 
0.97 

0.25 
 
0.19 
 
0.14 

0.68 
 
0.59 
 
0.64 

JOINT QUALITY CLASS 1 0.85 0.68 0.78 
IF FCP IN 3 AND FC IN 2 AND ER IN 2 THEN 
MASK IN 2 

 
0.64 

 
0.46 

 
0.57 

IF FCP IN 1 AND FC IN 2 AND ER IN 2 THEN 
MARK IN 2 

 
0.87 

 
0.17 

 
0.59 

IF FCP IN 3 AND FC IN 1 AND ER IN 2 THEN 
MARK IN 2 
IF FCP IN 2 AND FC IN 2 AND ER IN 2 THEN 
MARK IN 2 

 
0.93 
 
0.96 

 
0.15 
 
0.13 

 
0.61 
 
0.62 

JOINT QUALITYCLASS 2 0.41 0.90 0.51 
IF COEV IN 3 AND FCP IN 3 AND FC IN 2 AND ER 
IN 2 THEN MARK IN 3 

 
0.91 

 
0.91 

 
0.91 

JOINT QUALITY CLASS 3 0.91 0.91 0.91 
JOINT QUALITY ALL RULES 0.66 0.81 0.72 

 
Moreover, the specificity measure is rather low, 0.56, 

meaning that there are a quite large number of students 
that do not fit in the set of rules that define his/her 
MARK.  

The linguistic rules shown in Table 15 are the more 
consistent and reliable ones, being also the more useful 
for decision support purposes because the output 
(MARK) discretization preserves the meaning defined 
by the experts. 

The set of rules obtained when the discretization 
parameters are learned (Tables 14 and 15) have quite 
good metrics, however higher metrics would be 
desirable. To this end, future work is focused on the 
development of a GFS that uses as GA objective 
function a combination of the three metrics used in this 
work, i.e. specificity, sensitivity and accuracy. 
Moreover, it would be interesting to use a 

multiobjective GA to perform this task. It is also crucial 
that the objective function takes into account not only 
the accuracy but also the linguistic quality of the 
discretization, in order to allow the MARK variable be 
tuned by the GFS.  

 
Table 15. Linguistic rules FIR model and its metrics 
(fuzzification parameters defined by the GA with variable 
MARK Fixed). 

Rule Spec. Sens. Acc. 
IF COEV IN 1 AND FC IN 1 AND ER IN 1 
THEN MARK IN 1 

 
0.97 

 
0.78 

 
0.96 

JOINT QUALITY CLASS 1 0.97 0.78 0.96 
IF FCP IN 1 AND FC IN 1 AND ER IN 2 
THEN MARK IN 2 

 
0.94 

 
0.19 

 
0.83 

IF FCP IN 1 AND FC IN 1 AND ER IN 1 
THEN MARK IN 2 

 
0.95 

 
0.17 

 
0.83 

IF FCP IN 1 AND FC IN 2 AND ER IN 1 
THEN MARK IN 2 
IF FCP IN 1 AND FC IN 2 AND ER IN 2 
THEN MARK IN 2 

 
0.99 
 
0.85 

 
0.16 
 
0.13 

 
0.86 
 
0.74 

JOINT QUALITYCLASS 2 0.73 0.65 0.72 
IF FCP IN 3 AND FC IN 2 AND ER IN 2 
THEN MARK IN 3 
IF FCP IN 1 AND FC IN 2 AND ER IN 2 
THEN MARK IN 3 
IF FCP IN 3 AND FC IN 1 AND ER IN 2 
THEN MARK IN 3 

 
0.97 
 
0.90 
 
0.93 

 
0.50 
 
0.16 
 
0.11 

 
0.61 
 
0.33 
 
0.30 

JOINT QUALITY CLASS 3 0.80 0.78 0.78 
JOINT QUALITY ALL RULES 0.77 0.76 0.77 

 

5. Conclusions 

A GFS in which a GA learns fuzzification parameters 
within the Fuzzy Inductive Reasoning (FIR) 
methodology with the goal to enhance predictive (FIR) 
and decision support (LR-FIR) models identification is 
presented in this paper. The GFS is used to obtain FIR 
and LR-FIR models in an e-learning application, i.e. 
Didactic Planning graduate course, with the goal of 
predicting students’ performance and to understand 
students’ learning behaviour. The results obtained are 
encouraging, because better predictive and decision 
support models are obtained when discretization 
parameters are learned by GAs. The next step is the 
development of GFSs with objective functions based on 
specificity, sensitivity and/or accuracy, in such a way 
that a better learning could be performed for decision 
support models. The objective function should also take 
into account the linguistic quality of the discretization.  
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