
Progressive CFM-Miner: An Algorithm to Mine CFM – Sequential Patterns from a 
Progressive Database 

Bhawna Mallick  
Department of Computer Science & Engineering 

Thapar University, Patiala, India 
bhawnamallickphd@gmail.com 

Deepak Garg 
Department of Computer Science & Engineering 

Thapar University, Patiala, India 

P. S. Grover
Department of Computer Science & Engineering 

Guru Tegh Bahadur Institute of Technology, Delhi, India 

 

 

Abstract 

Sequential pattern mining is a vital data mining task to discover the frequently occurring patterns in sequence 
databases. As databases develop, the problem of maintaining sequential patterns over an extensively long period of 
time turn into essential, since a large number of new records may be added to a database. To reflect the current state 
of the database where previous sequential patterns would become irrelevant and new sequential patterns might 
appear, there is a need for efficient algorithms to update, maintain and manage the information discovered. Several 
efficient algorithms for maintaining sequential patterns have been developed. Here, we have presented an efficient 
algorithm to handle the maintenance problem of CFM-sequential patterns (Compact, Frequent, Monetary-
constraints based sequential patterns). In order to efficiently capture the dynamic nature of data addition and 
deletion into the mining problem, initially, we construct the updated CFM-tree using the CFM patterns obtained 
from the static database. Then, the database gets updated from the distributed sources that have data which may be 
static, inserted, or deleted. Whenever the database is updated from the multiple sources, CFM tree is also updated 
by including the updated sequence. Then, the updated CFM-tree is used to mine the progressive CFM-patterns 
using the proposed tree pattern mining algorithm. Finally, the experimentation is carried out using the synthetic and 
real life distributed databases that are given to the progressive CFM-miner. The experimental results and analysis 
provides better results in terms of the generated number of sequential patterns, execution time and the memory 
usage over the existing IncSpan algorithm. 

Keywords: Sequential pattern mining, CFM-PrefixSpan, Progressive database, updated CFM-tree, progressive 
CFM patterns, algorithms. 

Abbreviations:  
CFM: Compactness, Frequency, Monetary; min_sup: minimum support; CFM-tree: Tree with Compact frequent 
monetary values of sequential pattern; CT: Compact threshold; Tm: Monetary threshold 

1. Introduction 

The  concern  in  the  discovery  of  hidden information 
has improved in the past decade as a result of  the  fast 
growth  of  stored  data  in  digital  form. Basket 
analysis which is based on identifying frequent 
associations between elements in sets is one 

approximation to the problem of discovery of hidden 
information [26, 27]. Application of this approach to the 
treatment of sequential data results in one important 
special case. The process of finding all sub-sequences 
that occur often on a specified sequence database and 
have minimum support threshold is known as sequential 

International Journal of Computational Intelligence Systems, Vol. 6, No. 2 (March, 2013), 209-222

Co-published by Atlantis Press and Taylor & Francis 
                       Copyright: the authors 
                                    209

Administrateur
Texte tapé à la machine
Received 27 January 2012

Administrateur
Texte tapé à la machine
Accepted 6 September 2012

Administrateur
Texte tapé à la machine

Administrateur
Texte tapé à la machine



Bhawna Mallick, Deepak Garg and P. S. Grover 

 

pattern mining [1]. Data is normally assumed to be 
centralized, memory-resident, and static by 
conventional methods for sequential mining. Ensuring 
system scalability and enabling knowledge discovery 
when data is dynamic and distributed necessitates 
efficient incorporation of incremental data mining 
techniques [2].  

Incremental mining algorithms efficiently calculate 
the new set of frequent item sets by fundamentally 
reusing beforehand mined information and attempting to 
merge this information with the fresh data. In fact, 
several application domains incrementally update the 
contents of databases. For instance, appending of newly 
bought items for existing customers for their later 
buying and/or inclusion of new shopping successions 
for new customers causes the shopping transaction 
database to grow on a daily basis [3]. This helps to 
reduce the computational and I/O expenses [4].    

Numerous algorithms are available today for 
incremental mining of sequential patterns [5], [6], [7], 
[8], and [9]. Generally, incremental growth exists in 
several real life sequence databases. The information 
discovered must be updated, maintained and managed 
by an efficient algorithm to reflect the current state of 
the database when previous sequential patterns would 
become irrelevant and new sequential patterns might 
appear [10].  

In this research, we have presented an efficient 
progressive CFM-miner algorithm to handle the 
maintenance problem of CFM-sequential patterns, 
which was introduced in our previous research work 
(explained in Section 4, Step 1) [11]. In order to 
efficiently confine the dynamic nature of data addition 
and deletion into the sequential pattern mining problem, 
we have constructed the updated CFM-tree using the 
CFM patterns obtained from the static database. Then, 
the database gets updated from the distributed sources. 
Whenever the database is updated from the multiple 
sources, CFM-tree is also updated by including the 
updated sequence. Then, the updated CFM-tree is used 
to mine the progressive CFM-patterns using the 
proposed tree pattern mining algorithm. The 
experimentation is carried out with the aid of synthetic 
and real life datasets that are given to the progressive 
CFM-miner using thread environment. 

The organization of the paper is as follows: The 
review of related research is given in section II. The 
problem statement is described in section III and the 

proposed algorithm for mining of CFM-sequential 
patterns is given in section IV. The experimental results 
and its discussion are presented in section V and the 
conclusions are summed up in section VI.  

2. Literature Survey 

The literature has presented with a huge number of 
approaches for constraint-based sequential pattern 
mining [12], [13], [14], [15] and incremental mining of 
sequential patterns. In recent times, developing 
approaches for incremental mining of sequential 
patterns has gained immense importance in real life 
applications. A concise review of some recent research 
work related to the incremental mining of sequential 
patterns is presented here. 

Enhong Chen et al. [16] have proposed a well-
organized method to address tough aggregate 
constraints. First they have shown that two typical types 
of constraints could be converted into the same form 
and therefore could be manipulated in a reliable manner 
by means of a concept of total contribution of sequences 
based theoretical examination of the hard aggregate 
constraints. Then, the cost of using tough aggregate 
constraints has been decreased by proposing an 
algorithm incorporating two efficient strategies called 
PTAC (sequential frequent Patterns mining with Tough 
Aggregate Constraints). One has utilized the potential 
features shown by some other items and validity of the 
corresponding prefix to avoid inspecting data items. The 
other has successfully pruned those unpromising new 
patterns which may otherwise function as new prefixes 
to avoid constructing an unnecessary projected 
database. 

Ming-Yen et al. [17] have proposed a method called 
DELISP (Delimited Sequential Pattern) to provide the 
amenities existing in the pattern-growth methodology. 
DELISP has scale down the size of proposed databases 
utilizing bounded and windowed projection methods. 
Time-gap valid subsequences have been preserved by 
bounded projection and redundant subsequences 
fulfilling the sliding time-window constraint has been 
saved by windowed projection. In addition, constraint-
satisfactory patterns have been directly produced by the 
subtended growth technique and the pace of the pattern 
growing process has been increased. The good 
scalability and superior performance of DELISP over 
prominent GSP (Generalized Sequential Pattern) 
algorithm has been proved by the comprehensive 

Co-published by Atlantis Press and Taylor & Francis 
                       Copyright: the authors 
                                    210



Progressive CFM-Miner 

  
     

experiments. 
Jong Bum Lee et al. [18] have proposed an 

incremental frequent pattern mining algorithm based on 
Apriori-TFP (Total-from-Partial) for efficiently 
searching subjected to restriction of memory and the 
additional categorization work based on those patterns. 
Particularly, the problem of mining frequent patterns 
from incrementally increased, large size of data sets has 
been made possible through the concept of pre-
infrequent patterns pruning and utilization of two 
distinct minimum supports. Ming-Yen Lin et al. [19] 
have developed a technique for efficient incremental 
pattern discovery, called backward mining that takes 
into account the incremental characteristics of sequence-
merging. They have used a backward mining strategy in 
their proposed algorithm, called BSPinc, for incremental 
mining of sequential patterns. They have detected and 
removed those stable sequences that have constant 
support counts in the updated database, from the support 
counting process. Mining of backward extensions 
produced candidate sequences could be performed 
recursively inside the ever-shrinking space of the 
projected sequences.  

Jen-Wei Huang et al. [20] have presented an all-
purpose model of sequential pattern mining to secure 
the dynamic nature of data addition and deletion in a 
progressive database. In addition, they have 
progressively identified sequential patterns in specified 
time interval of interest (POI) by a proposed progressive 
algorithm called progressive mining of sequential 
patterns (Pisa). The POI has been a sliding window that 
constantly progresses with the passage of time. The 
most recent data sequences have been efficiently 
maintained, entire collection of up-to-date sequential 
patterns have been detected and obsolete data and 
patterns have been removed by Pisa by employing a 
progressive sequential tree. The memory required by 
Pisa has been remarkably smaller than that of the 
optional method, namely, direct appending (DirApp) as 
height of the sequential pattern tree proposed bounded 
by the length of POI effectively restricts the memory 
space needed by Pisa.  

L. Vinceslas et al. [21] have proposed an on-line 
algorithm called SPAMS, to handle the sequential 
patterns mining problem in data streams. Their 
algorithm has preserved the set of frequent sequential 
patterns using an automaton-based structure called SPA 
(Sequential Pattern Automaton). The problem of 

combinatorial explosion of sequential patterns has been 
permitted by the sequential pattern automaton which is 
smaller than the set of frequent sequential patterns by 
two or more orders of magnitude.  

Yue Chen et al. [22] have demonstrated that all 
sequential patterns cannot be fully mined by existing 
incremental mining algorithm based on PrefixSpan, 
namely IncSpan+ which was proposed in PAKDD’05. 
Then, using prefix tree, they have proposed an 
incremental mining algorithm of sequential patterns. 
Their algorithm has continuously scanned the 
incremental element set to remove the search space by 
maintaining the tree structure by means of width 
pruning and depth pruning after creating a prefix tree to 
signify the sequential patterns. The algorithm has been 
proved to achieve good performance by experiment. Lei 
Chang et al. [23] have analyzed the incremental mining 
problem of closed sequential patterns. The closed 
sequential patterns have been retained by a designed 
compact structure CSTree and an efficient algorithm 
IMCS (Incremental Mining of Closed Sequential 
Patterns) has been constructed to maintain the CSTree 
when the sequence database is updated incrementally.  

The major differences of progressive CFM-miner 
with the existing works are discussed here. In [16, 17], 
the constraints such as aggregate and time gap are 
incorporated into the sequential pattern mining. But, in 
the proposed work, the super market scenario-based 
three constraints are identified and incorporated into the 
sequential pattern mining work. In [18] and [19], the 
incremental sequences are mined through the help of 
candidate-pruning procedure. But, the proposed 
progressive CFM-miner considered the projection-based 
mining procedure so that the efficiency of the algorithm 
will be improved. In [20, 21], the progressive database 
[20] and data streams [21] are used for mining the 
sequence without considering the constraints that is 
handled in our work based on the real scenarios. In [22], 
the incremental procedure is applied to projection-based 
mining and the incremental closed patterns are mined in 
[23]. Overall, the proposed algorithm considered the 
progressive database or incremental database along with 
the real scenarios-based constraints for obtaining the 
significant and useful sequential pattern.  

3. Contribution of the Paper 

In this article, we have presented an efficient 
progressive CFM-miner algorithm to handle the 

Co-published by Atlantis Press and Taylor & Francis 
                       Copyright: the authors 
                                    211



Bhawna Mallick, Deepak Garg and P. S. Grover 

 

maintenance problem of CFM-sequential patterns. The 
constraints used are compactness, frequency and 
monetary constraints that are incorporated in the well 
known pattern growth algorithm Prefixspan to extract 
sequential patterns. The paper contributes to the field of 
sequential pattern mining due to following features: 

1. Handle efficiently the dynamic nature of data 
addition and deletion into the sequential pattern 
mining problem. 

2. The first simple algorithm (to the best extent of 
our knowledge) that use tree data structure to 
consider constraint based sequential pattern 
mining from progressive databases. 

3. The algorithm can handle the database that gets 
updated from the distributed sources using the 
thread environment.  

4.  The experimentation is carried out with the 
synthetic and real life datasets that are given to 
the progressive CFM-miner. The empirical 
evaluation performed shows that the proposed 
algorithm gives good performance as 
compared to IncSpan algorithm. 

5. Various news terms are defined like 
progressive compact sequence, precious CFM 
node, incompact node that could used for 
further research. 

6. The algorithm gives good results for execution 
time, memory usages and number of sequential 
patterns extracted when compared with 
different values of minimum support 
thresholds. 

4. Problem Definition 

Let I = { i1, i2, …….., im } be a set of literals, called 
items. An item set ‘X’ is a set of items hence, X 1.  A 
sequence S = (s1, s2, ….., sn) is an ordered set of item 
sets. Consider two sequences S1 = (a1, a2, ……, ak) and  
S2 = (b1, b2, ……, bl). We say that S1 contains S2, or 
equivalently, S2 is a subsequence of S1 if there exist 
integers j1, j2, …..jl such that 1 < j1 < j2 < …..< jl < k and  
b1 aj1, b2  aj2, …, bl  ajl, represented as S2 S1. 
A sequence S is said to be constraint (in terms of 
monetary and compactness) if a sequence S should 
follow the specified constraint, C such that, C → {(M1 + 
M2 + ….+ Mn) / n} ≥ Tm  and C → tn – t1 < CT, where, 
Mn represents the monetary value. For the incremental 
update problem, we consider that the constraint 
sequential pattern mining can be executed on a database 
D to find the constraint sequences. But, the database D 
is then updated by inserting a set of sequences ∆D. Let 
us denote the updated database D’ such that D’ = (D) υ 

∆D.  Here, the incremental update problem is to find all 
constraint frequent sequences in the database D’ for 
each next time intervals without scanning the whole 
database D’. Given, a user-specified compact length CT 
, monetary value Tm and a user defined minimum 
support threshold  min_sup, the progressive CFM-
patterns whose, occurrence frequencies, compact length 
and monetary value are greater than or equal to the user 
specified thresholds should be mined from the 
progressive database, ‘D’  that gets updated from the 
distributed sources. 

Based on this problem statement, we define the 
important terms used in the proposed approach to mine 
the progressive CFM patterns.  

Definition 1 (CFM-tree):  For a sequence database 
D, we can construct a CFM-tree after mining the CFM 
patterns from it. Here, every node ‘n’ in the CFM-tree 
contains items and its relevant information, represented 
as, n= [(p {t1, tn}), (M, F)], where, ‘p’ is the item, t1 is 
the starting time interval, tn is the ending time interval, 
M is monetary and F is frequency. Here, the depth of 
the CFM-tree,‘d’ is equivalent to the larger length of the 
CFM-sequential patterns.  

Definition 2 (Empty node): A node in the CFM-tree 
is called as empty node only if (i) t1 and tn is filled with 
zero, (ii) ‘p’ should contain the item information and 
(iii) M and F have the zero value. This node is necessary 
for building the CFM-tree after mining the sequences 
from the static database because the CFM-miner does 
not satisfy the downward closure property. So, some of 
the sequential patterns are frequent but, their subsets 
may not be frequent. These types of subsets are stored 
in the empty nodes, but their supersets are stored in the 
precious CFM-node that is frequent.  

Definition3 (Precious CFM-node): A node in the 
CFM-tree is called as precious CFM-node only if (i) t1 
and tn contains the information of time occurrence, (ii) 
‘p’ should contain the item and, (iii) M and F have the 
valuable information about its monetary and frequency.  

Definition4 (updated CFM tree):  After inserting 
some nodes in CFM-tree on behalf of updated database, 
then it is called as, updated CFM-tree, in which some 
nodal information may be updated or some new nodes 
may be included. 

Definition5 (Incompact node):  A node in the 
updated CFM-tree is known as, incompact node only if, 
tn value is less than T, where, T is the user specified 
threshold. 

Co-published by Atlantis Press and Taylor & Francis 
                       Copyright: the authors 
                                    212



Progressive CFM-Miner 

  
     

Definition6 (Non-zero infrequent node): A node in 
an updated CFM Tree is said to be a non-zero infrequent 
node if the following conditions are satisfied: (i) the 
frequent value, F should be less than the ‘min_sup’, ii) 
should not be updated and (iii) the monetary constraint 
should be satisfied.  

Definition7 (Progressive compact sequence):  Let S 
= {(p1, t1, M1), (p2, t2, M2),.….., (pn, tn, Mn)} be a data 
sequence of database D and a sequence Su = {(qm, tn+1, 
Mm)} be an updated sequence, where pj is an item, mj is 
a purchasing money and tj signifies the time at which pj 
occurs, 1  ≤ j ≤  n and tj-1 ≤ tj for 2 ≤ j ≤ n. ‘P’ denotes a 
set of items in the database D. A sequence Ss = 
{(q1,t1,M1),(q2,t2,M2),….,(qm,tm,Mm)} is said to be a 
progressive compact sequence only if, (a) item set Ss is 
a subsequence of S||Su,  (b) Ss should have item, qm, and 
(c) the compactness constraint is satisfied, i.e. tm – t1 ≤ 
CT.   

Definition8 (Progressive compact monetary 
sequence): Let S = {( p1, t1, M1), (p2, t2, M2), …, (pn, tn, 
Mn)} be a data sequence of database D and a sequence 
Su = {(qm,tn+1, Mm)} be an updated sequence, where pj is 
an item, mj is a purchasing money and tj signifies the 
time at which pj occurs, 1 ≤ j ≤ n  and t j-1 ≤  tj  for 2 ≤ j 
≤ n. ‘P’ denotes a set of items in the database D. A 
sequence Ss ={(q1,t1,M1),(q2,t2,M2),….,(qm,tm,Mm)} is 
said to be a progressive compact monetary sequence 
only if, (a) item set Ss is a subsequence of S||Su, (b) Ss 
should have item qm, (c) the compactness constraint is 
satisfied, i.e.    tm – t1 ≤ CT and (d) the monetary 
constraint is satisfied, i.e. {(M1 + M2 + ….+ Mm) / m} ≥ 
Tm. 

5. An Algorithm to Mine CFM –Sequential 
Patterns from a Progressive Database 

In reality, sequence databases are updated 
incrementally. The changes on the database may 
invalidate some existing sequential patterns and 
introduce new ones. Instead of re-computing the 
database each time, the incremental mining algorithms 
target efficiently maintaining the sequential patterns in 
the dynamically changing database. With the evolution 
of databases, some existing sequential patterns would be 
invalid and some new sequential patterns might be 
introduced. Thus, maintaining sequential patterns (over 
a significantly long period) becomes essential for 
sequential pattern mining. Generally, the change on a 
sequential database can be categorized as (a) deleting 

records, (b) inserting new records and (c) appending 
new items on the existing records. By handling these 
issues, the proposed algorithm was designed with the 
aid of five major steps.  

1. Mining of CFM sequential patterns from the 
static database 

2. Building up the CFM-tree from the CFM 
patterns 

3. Handling the update operation  
4. Handling the node deletion operation in the 

updated CFM-tree 
5. Mining of progressive CFM patterns from the 

progressive database 
 
Step 1: Mining of CFM Sequential Patterns from the 
Static Database 

In this, CFM patterns from the static database are 
efficiently mined using the CFM algorithm proposed in 
our previous work [11]. The relevant part of the CFM 
algorithm that is based on PrefixSpan [24] is presented 
here for the completeness of this article. We have used 
two concepts namely, monetary and compactness that 
are derived from the aggregate and duration constraints 
which are presented in the available literature. To begin 
with, the proposed algorithm discovered the 1-length 
compact frequent patterns (1-CF) by considering the 
compactness threshold (CT) and support threshold 
(min_sup). Then, we filtered the 1-length compact 
frequent monetary sequential patterns (1-CFM) from the 
mined 1-CF patterns by inputting the monetary 
constraint (Tm). Subsequently, we built the projected 
database corresponding to the mined 1-CF patterns and 
2- CF patterns that are mined from the projected 
database. Again, we found the 2-CFM sequential 
patterns from it and the process was applied recursively 
until all length CFM sequential patterns were mined. 

Example: The sample database is given in Table 1 in 
which the timestamps T1 to T5 are static set of data, 
whereas the timestamps T6 to T7 are the updated set of 
data. The corresponding monetary values of all the 
items are given in Table 2 and the mined CFM-
sequential patterns using our previous algorithm for the 
input thresholds, (min_sup >=2, CT <= 3, Tm >=10) are 
shown in Table 3. 
 
 
 
 
 

Co-published by Atlantis Press and Taylor & Francis 
                       Copyright: the authors 
                                    213



Bhawna Mallick, Deepak Garg and P. S. Grover 

 

Table 1. Sample Database 

Seq. Id T1 T2 T3 T4 T5 T6 T7 
01 a abc ac d cf   
02 ad c bc ae  h  
03 f ab c df cb   
04  g af c b   
05      cb  
06       ab 

    Table 2. Monetary Table 

Item Monetary value 
a 2 
b 10 
c 20 
d 20 
e 5 
f 15 
g 25 
h 2 

Table 3. Mined CFM-Sequential Patterns 

CFM-Sequential Patterns 
a <ac>,<acb>,<acc> 
b <b>,<bc>,<bcc>,<bcd>,<bcdc> 
c <c>,<ca>,<cc> 

(ab) <(ab)>,<(ab)c>,<(ab)cc>,<(ab)cd>,<(ab)cdc> 
(bc) <(bc)>,<(bc)a>  

d <d> 

f <f>,<fc> 
 
Step 2: Building up the CFM-tree from the CFM 
Patterns 

After the mining process of the CFM-sequential 
patterns, we have built the CFM- tree from the mined 
CFM-sequential patterns. The process of building up the 

CFM- tree is explained as follows. The monetary value 
and the frequency value of each of the patterns should 
be maintained properly. The CFM tree that contains all 
the sequential patterns are building up, by which mines 
the progressive CFM-patterns without candidate 
generation, requires the less database scans to achieve a 
highly compact frequency and the monetary tree 
structure. According to the frequency and monetary list, 
it produces a CFM-pattern tree, which can store 
compact information on transactions involving 
sequential patterns. At first, transactions are inserted 
into the CFM-tree according to a predefined order one 
by one. The order of all the patterns of a CFM-tree is 
maintained by a list, which maintains the current 
frequency value and the monetary value with the 
timestamp of each item. Here, each level refers to the 
length of sequential patterns so the depth of the CFM-
tree is identical to the maximum length of the sequential 
patterns.   

Example: The first insertion phase begins with the 
root node by taking all the mined patterns. By taking the 
patterns that has prefix ‘a’, the obtained sequential 
patterns from the CFM-mining algorithm are <ac>, 
<acb>, <acc>. Initially, the empty node ‘a’ is appended 
with the root node of the tree by giving the 
corresponding monetary value and the frequency value. 
When we take the obtained sequential pattern <ac>, 
here the precious CFM-node ‘c’ is added to the node ‘a’ 
to achieve the building process of <ac>. The monetary 
value of ‘ac’ is considered as 11, which is found to 
compute the average of their monetary values. 
Likewise, all the remaining patterns are utilized to build 
the CFM-pattern tree. The final CFM-tree for the static 
database is shown in Fig. 1. 

 

Co-published by Atlantis Press and Taylor & Francis 
                       Copyright: the authors 
                                    214



Progressive CFM-Miner 

  
     

 

Fig.1. CFM-Pattern Tree for the Static Database 

Step 3: Handling the Update Operation  
After building up the CFM-tree from the static 

database, we have to build the tree structure of the 
updated sequences. After inserting some of the 
transactions, if the items order of the list deviates from 
the current frequency and monetary to a specified 
degree, the CFM-tree is dynamically restructured by the 
current frequency and monetary and the list updates the 
pattern order with the current list. The sequential 
patterns obtained from the updated sequences are 
incremented based on the timestamps, monetary value 
and the frequency of each patterns. While updating the 
tree structure, CFM-tree constantly maintains the initial 
sort order of the sequential patterns with their 
information. Thus, it adds the new frequent items at the 
end of a list and it constructs to maintain the frequency 
of each item and in the tree structure as new nodes. The 
information about the frequency and the monetary value 
should be updated in a timely manner. The timestamp of 
the sequence in the child node should be updated as the 
new one. This is reasonable because for every element 
between the old timestamp and the new one, they are 
already appended to this node as a candidate sequential 
pattern with the old timestamp. Thus, the sequential 
patterns between the old timestamp and the new one can 
be found. Additionally, for the elements after the new 
timestamp, appending them to the node having the 

sequence with the new timestamp is the only way to 
find up-to-date sequential patterns beginning at the new 
timestamp. 

Example: By considering the updating nodes of the 
CFM-tree, the newly inserted items are arrived in a 
periodic manner. Here, in timestamp T6, the items 
‘<h>’ and ‘<cb>’ are the new set of items. We have to 
update these into the existing CFM-tree dynamically. 
While updating ‘<h>’, the progressive compact 
sequence obtained are <ch>, <(bc)h>, <c(bc)h>, 
<(bc)(ae)h>, <cbh>, <cch>, <ccah>, <cceh>. These 
patterns are updated sequentially into the CFM-pattern 
tree along with the information about the frequency and 
the monetary value of the updated nodes. Similarly, the 
other updated sequence, ‘<cb>’ is also updated in the 
CFM-pattern tree and form the updated CFM-tree. The 
updated CFM-tree with timestamp T6 is given in Fig. 2. 
In the CFM-tree, the newly updated node to the root 
node is marked as in dotted line, whereas the update 
process is done in the existing nodes is indicated as a 
thin line and the dark line represents the nodes in which 
there is no update is carried out. For mining the 
progressive CFM patterns, we have used the user 
specified thresholds, (min_sup >= 1, CT <= 4, Tm>=10). 
 
 
 

Co-published by Atlantis Press and Taylor & Francis 
                       Copyright: the authors 
                                    215



Bhawna Mallick, Deepak Garg and P. S. Grover 

 

Step 4: Handling the Node Deletion Operation in the 
Updated CFM-tree 

On mining progressive CFM sequential patterns, the 
newly arrived patterns may not be identified as frequent 
one if the static database is a larger one. It is noted that 
users are usually more interested in the recent data than 
the old ones.  

So, the deletion of an item from the CFM-tree is 
carried out utilizing the time information stored in every 
node. Thus, the incompact nodes and the non-zero 
infrequent nodes should be deleted from the final 
updated CFM-tree. 

Example: While deleting the obsolete sequences, the 
timestamp of the nodes which couldn’t satisfy the time 
sequences as the updating process is carried out. We 
have deleted the incompact nodes, which don’t satisfy 
the user specified threshold, where there is no update 
process are carried out. As well, we have removed the 
non-zero infrequent nodes in which the frequent value is 
less than the threshold. The CFM-tree with no 
incompact nodes is shown in Fig. 3. The final CFM tree 
without non-zero infrequent nodes is shown in Fig. 4. 

 

 

Fig. 2. Updated CFM-tree 

Co-published by Atlantis Press and Taylor & Francis 
                       Copyright: the authors 
                                    216



Progressive CFM-Miner 

  
     

 

Fig. 3. Updated CFM -tree with no Incompact Nodes 

 
Step 5: Mining of Progressive CFM Patterns from 
the Progressive Database using proposed tree 
Pattern Mining Algorithm 

After the construction of updated CFM-tree, the 
progressive CFM patterns are mined from it based on 
the user specified thresholds. Here, we have designed 
tree pattern mining algorithm that uses the top-down 
process to mine the CFM-patterns. We start with the 
mining process from the top nodes of the CFM-tree and 
their corresponding paths are extracted from it. Then, by 
combining the nodes of each level, the progressive CFM 
patterns are obtained. 

Example: From the final updated CFM-Tree shown 
in Fig.4, one of the top node <bc> and its corresponding 
paths are extracted. From the paths, we have combined 
each level of nodes so that the progressive CFM 

patterns, {<(bc)>, <(bc)h> <(bc)(ae)h}  are obtained. 
Fig. 5 (a)  

Shows the extracted path for the node <bc> and we 
combine each level with the previous level so that the 
CFM patterns can be achieved, shown in Fig. 5 (b), 5 (c) 
and 5 (d). The mined sequential CFM-patterns for all 
the top nodes are given in the below Table 4. 

Table 4. Final progressive CFM-patterns 

CFM-patterns 
<b> <b> 

<c> 
<c>, <cc>, <ch> , <cb>, <c(bc)h>, 

<cbh>, <ccah>, <cch>, <cceh> 
<(ab)> <(ab)> 
<(bc)> <(bc)>, <(bc)h> <(bc)(ae)h> 
<(cb)> <(cb)> 

Co-published by Atlantis Press and Taylor & Francis 
                       Copyright: the authors 
                                    217



Bhawna Mallick, Deepak Garg and P. S. Grover 

 

 

Fig.4. Final updated CFM-tree 

 

Fig.5. Mining of progressive CFM Patterns from the Updated CFM-tree 

The pseudo code for the proposed procedure for 
mining the progressive CFM-patterns is given as 
follows. 
 
Pseudo Code 
Input:     CFM-tree, min_sup, Tm  
Output:  A complete set of Progressive CFM patterns  
Assumptions 
m  Number of nodes (next to the root node) in the        
constructed CFM-tree 
min_sup  Minimum support threshold 
S_pat Sequential pattern 
PCFM_pat Progressive CFM-patterns 
k Number of distinct paths 
D Depth of the path 

pi Item information in the node 
 
Begin  

ein CFM tremnodeeachfor           
     )    ;     ;  1  (   jkjjfor   
        treeath.CFMdistinct pd    [j]  
 )  [j]   (  ddo_miner  

)    &    supmin_    ])[_(  (  mTlpatSsupportif   
_pat  _ SpatPCFM      

ifend    
        forend   
    forend   

 end  
 

Co-published by Atlantis Press and Taylor & Francis 
                       Copyright: the authors 
                                    218



Progressive CFM-Miner 

  
     

) [j] (    ddo_miner:routine  sub  
Begin  

 [j]top node.dp.1   
p.1S_pat    

)    ;   i  ;  1i  (   iDfor  
)1(||.)1.(  ip.ipip  

)( 1ip.S_pat   
              forend   

 end  

6. Empirical Evaluation 

The experimental results of the proposed algorithm for 
mining of progressive CFM-sequential patterns from a 
progressive database are described in this section. The 
experimental results and analysis of the CFM-sequential 
patterns are done with the aid of the well-known 
incremental IncSpan Algorithm [25].  

6.1 Experimental Design 

We used synthetic dataset and real life dataset to 
evaluate the performance of our proposed algorithm. 
The progressive CFM-Miner and IncSpan algorithms 
were implemented using Java language (jdk 1.6). The 
experimentation has been carried out on a 2.9 GHz, dual 
core PC machine with 1 GB main memory running a 
32-bit version of Windows XP. The proposed algorithm 
execute in a distributed environment that means the 
updation of data records can be done from the multiple 
sources. So, we run the algorithm in thread 
environment, in which the updation of data records is 
done in various threads. Synthetic data set: We have 
generated a set of synthetic data sequence by a data 
generator similar in spirit to the IBM data generator 
designed for testing sequential pattern mining 
algorithms. Each data sequence contains a sequence of 
item sets. However, we assign different time values to 
the items in different item sets but the same time values 
to those in the same item sets. Real life datasets: We 
make use of the UCI machine learning repository 
(http://archive.ics.uci.edu/ml/datasets). This data 
describes the page visits of users who visited 
msnbc.com on September 28, 1999. Visits are recorded 
at the level of URL category ("frontpage", "news", 
"tech", "local", "opinion", "on-air", "misc", "weather", 
"health", "living", "business", "sports", "summary", 
"bbs" (bulletin board service), "travel", "msn-news", 
and "msn-sports") and are recorded in time order.  

6.2 Comparison of Incspan and Progressive CFM 
– Miner in Mining Meaningful Rules 

Table 5. Comparison of algorithms in mining of 
meaningful sequences 

CFM-patterns 

<b> <b> 

<c> 

<c>, <cc>, <ch> , 
<cb>, <c(bc)h>, 
<cbh>, <ccah>, 
<cch>, <cceh> 

<(ab)> <(ab)> 

c)> 
<(bc)>, <(bc)h> 

<(bc)(ae)h> 

<(cb)> <(cb)> 
 

Incspan 
<a> (ab), ab, ac, (ac), 

ad, af, (ab)c, (ab)d, 
(ab)f,  aba, aca, 

acc, adc, 
<b> (ba), ba, (bc), bc, 

bd, bf, (ba)c, 
(ba)d, (ba)f,   

(bc)a,  bcd, bcc, 
bcf, bdc. 

<c> ca, cb, cd, cf, cdc.
<d> db, dc. 
<f> fc, fb, fcb. 

 

 
The above table shows the patterns mined by the 

proposed algorithm and the Incspan algorithm. The 
Incspan algorithm produced the rules based on the 
frequency of the items. But, the proposed algorithm 
mines the most utility sequences compared with the 
previous algorithm. From the table, we can identify that 
most of the sequences containing the 1-length patterns 
such as <b> and <c> are mined from the database using 
proposed algorithm. But, the previous algorithm mined 
the sequences of having the patterns of <a>, <d>, <g> 
and <e>. When analyzing these patterns, we can prove 
that <h> and <a> have less monetary value. On the 
other hand, <d>, <g> and <e> are not recently frequent 
items.  

6.3 The Comparison between Algorithms Incspan 
and Progressive CFM – Miner 

The performance of the proposed CFM-Miner algorithm 
for sequential pattern mining from the progressive 
database is evaluated by three standard evaluation 
measures. They are (a) Number of sequential patterns, 
i.e., the significant number of sequential patterns 
generated based upon the given minimum support 
threshold, (b) Execution time, i.e., the time taken to 
execute the computer program and it characteristically 
depends with the input size and the (c) Memory usage, 
i.e., the memory utilized by the current jobs present in 
the particular system. We have analyzed our proposed 
algorithm with the well known incremental algorithm, 
IncSpan using both the synthetic and the real life 
datasets.  
 

Co-published by Atlantis Press and Taylor & Francis 
                       Copyright: the authors 
                                    219



Bhawna Mallick, Deepak Garg and P. S. Grover 

 

1) Synthetic Dataset 
With the help of the synthetic dataset, we have 

analyzed the mined CFM-sequential patterns with the 
IncSpan algorithm using three evaluation measures with 
diverse support values. We have done the analysis and 
plotted as a graph by computing the generated number 
of sequences, execution time and the memory usage 
with different minimum support threshold. By analyzing 
the plotted graphs of Fig. 6, 7 and 8 using the synthetic 
datasets, we have found that the proposed progressive 
CFM-Miner algorithm efficiently mined the sequential 
patterns than the incremental IncSpan algorithm. Here, 
the input sequences have been varied in certain time 
intervals. The generated number of sequences shows 
better results in our proposed approach is given in Fig. 
6. But in Fig 7, the corresponding execution time of the 
CFM-Miner gets slightly slipped down in some cases 
than the IncSpan algorithm. The effective usage of the 
memory in the proposed algorithm is shown in Fig. 8. 

 

 

Fig.6. Generated Sequential Patterns with Different Support 
Values 

 

Fig.7. Execution Time Required With Different Support 
Values 

 

Fig.8. Memory Usages with Different Support Values 

2) Real life dataset 
With the aid of the Real life dataset, we have 

analyzed the mined CFM-sequential patterns with the 
IncSpan algorithm by three ways of evaluation 
measures with diverse support values. We have done the 
analysis and plotted as a graph by computing the 
generated number of sequences, execution time and the 
memory usage with different minimum support 
threshold. By analyzing the plotted graphs of Fig. 9, 10 
and 11 using the real life datasets, we have find that the 
proposed progressive CFM-Miner algorithm efficiently 
mined the sequential patterns than the incremental 
IncSpan algorithm. Here, the input sequences have been 
varied in certain time intervals. The generated number 
of sequences shows better results in our proposed 
approach is given in Fig. 9. In Fig. 10, the 
corresponding execution time of the CFM-Miner shows 
better results than the IncSpan algorithm. The effective 
usage of the memory in the proposed algorithm is 
shown in Fig. 11.   
 

 

Fig.9. Generated Sequential Patterns with Different Support 
Values 

Co-published by Atlantis Press and Taylor & Francis 
                       Copyright: the authors 
                                    220



Progressive CFM-Miner 

  
     

 

Fig.10. Execution Time Required With Different Support 
Values 

 

Fig.11. Memory Usages with Different Support Values 

7. Conclusion 

We have presented an efficient progressive CFM-miner 
algorithm to handle the maintenance problem of CFM-
sequential patterns. We have built an updated CFM-tree 
using the CFM- sequential patterns obtained from the 
static database to control the dynamic nature of data 
updating process and deletion process into the 
sequential pattern mining problem. Subsequently, the 
database gets updated from the distributed database that 
may be static, inserted, or deleted. Whenever the 
database is updated from the multiple sources, CFM tree 
is also updated by including the updated sequence. 
Then, the updated CFM-tree is used to mine the 
progressive CFM-patterns using the proposed tree 
pattern mining algorithm. Eventually, the 
experimentation is carried out using the synthetic and 
real life datasets that are given to the progressive CFM-
miner using thread environment. The experimental 
results and analysis provides better results in terms of 
the evaluation measures over IncSpan algorithm. The 
paper can be extended in two directions such as, 1) a 
method for solving the accessing of database to find the 

progressive compact sequence, 2) the extensive analysis 
with the different kind of datasets. 

Acknowledgement 

The authors would like to thank the Editor and 
anonymous referees for providing valuable comments 
and constructive suggestions. We express our gratitude 
towards the Galgotias College of Engineering and 
Technology, Greater Noida for the support being 
provided to complete this research work. 

References 

1. Cláudia Antunes, Arlindo L. Oliveira, "Generalization of 
Pattern-growth Methods for Sequential Pattern Mining 
with Gap Constraints", Machine Learning and Data 
Mining in Pattern Recognition, Lecture Notes in 
Computer Science, Vol: 2734, pp: 239-251, 2003. 

2. M. J. Zaki, “Efficient enumeration of frequent 
sequences,” In Proceedings of the 7th International 
Conference on Information and Knowledge Management, 
Washington, USA, pp. 68-75, 1998. 

3. Jianyong Wang, Yuzhou Zhang, Lizhu Zhou, George 
Karypis, Charu C. Aggarwal, "Discriminating 
Subsequence Discovery for Sequence Clustering.", 
Proceedings of the Seventh SIAM International 
Conference on Data Mining, April 26-28, 2007, 
Minneapolis, Minnesota, USA 2007. 

4. Jinlin Chen ,Terry Cook , "Mining contiguous sequential 
patterns from web logs", In Proceedings of the 16th 
international conference on World Wide Web, Banff, 
Alberta, Canada, pp: 1177 - 1178 , 2007. 

5. Florent Masseglia, Pascal Poncelet and Maguelonne 
Teisseire, "Incremental mining of sequential patterns in 
large databases", Data & Knowledge Engineering, Vol. 
46, No.1, pp. 97-121, 2003.  

6. Ming-Yen Lin and Suh-Yin Lee, "Interactive Sequence 
Discovery by Incremental Mining", An International 
Journal of Information Sciences-Informatics and 
Computer Science, vol. 165, No. 3-4 , pp.187 - 205, 
October 2004. 

7. Jian Pei, Jiawei Han and Wei Wang, "Constraint-based 
sequential pattern mining: the pattern-growth methods", 
Journal of Intelligent Information Systems, Vol: 28, No: 
2, pp: 133-160, 2007. 

8. Rong She, Fei Chen, Ke Wang ,Martin Ester, Jennifer L. 
Gardy, Fiona S. L. Brinkman, "Frequent-subsequence-
based prediction of outer membrane proteins", In 
Proceedings of the ninth ACM SIGKDD international 
conference on Knowledge discovery and data mining, pp: 
436 - 445, 2003. 

9. Bhawna Mallick, Deepak Garg and P. S. Grover, 
"Incremental Mining of Sequential Patterns- Progress and 
Challenges", Intelligent Data Analysis – An International 
Journal, Vol. 17, No. 3, 2013, accepted for publication. 

Co-published by Atlantis Press and Taylor & Francis 
                       Copyright: the authors 
                                    221



Bhawna Mallick, Deepak Garg and P. S. Grover 

 

10. David Lo and Siau-Cheng Khoo., "SMArTIC: towards 
building an  accurate, robust and scalable specification 
miner.", In Proceedings of the 14th ACM SIGSOFT 
International Symposium on Foundations of Software 
Engineering, FSE 2005, Portland, Oregon, USA, 
November 5-11, 2006. 

11. Bhawna Mallick, Deepak Garg and P.S. Grover, "CFM- 
PrefixSpan: A pattern growth algorithm incorporating 
compactness and monetary", International Journal of 
Innovative Computing, Information and Control, ISSN 
1349-4198, Volume 8, Number 7(A), July 2012, pp 4509 
– 4520. 

12. Ming-Yen, Lin ,Suh-Yin Lee, “Efficient mining of 
sequential patterns with time constraints by delimited 
pattern growth”, Knowledge and Information Systems, 
Vol.7 ,  No. 4, pp.499 - 514 , 2005. 

13. Jian Pei, Jiawei Han and Wei Wang, "Constraint-based 
sequential pattern mining: the pattern-growth methods", 
Journal of Intelligent Information Systems, Vol. 28, No: 
2, pp: 133-160, 2007. 

14. Tarek Sobh, "Innovations and Advanced Techniques in 
Computer and Information Sciences”, Springer, 2007, 
ISBN 978-1-4020-6268-1. 

15. Jigyasa Bisaria, Namita Srivastav, Kamal Raj Pardasani, 
“A Rough Set Model for Sequential Pattern Mining with 
Constraints”, In Proceedings of the (IJCNS) International 
Journal of Computer and Network Security, Vol. 1, No. 
2, November 2009. 

16. Enhong Chen, Huanhuan Cao , Qing Li ,  and Tieyun 
Qian, “Efficient strategies for tough aggregate constraint-
based sequential pattern mining”, Information Sciences, 
Vol. 178, No.6,  pp.1498-1518, 15 March 2008. 

17. Ming-Yen, Lin, Suh-Yin Lee, “Efficient mining of 
sequential patterns with time constraints by delimited 
pattern growth”, Knowledge and Information Systems, 
Vol.7, No. 4, pp.499 - 514, 2005. 

18. Jong Bum Lee, Minghao Piao,  Jin-ho Shin, Hi-Seok 
Kim; Keun Ho Ryu, "ITFP: Incremental TFP for mining 
frequent patterns from large data sets", In proceedings of 
the 2nd International Conference on Computer 
Engineering and Technology (ICCET), Chengdu, pp: V2-
181 - V2-185, 2010 . 

19. Ming-Yen Lin, Sue-Chen Hsueh, Chih-Chen Chan, 
"Incremental Discovery of Sequential Patterns Using a 
Backward Mining Approach", In proceedings of the 
International Conference on Computational Science and 
Engineering, Vancouver, BC, pp: 64 - 70, 2009. 

20. Jen-Wei Huang, Chi-Yao Tseng, Jian-Chih Ou, Ming-
Syan Chen, "A General Model for Sequential Pattern 
Mining with a Progressive Database", IEEE Transactions 
on Knowledge and Data Engineering, Vol. 20, No: 9, pp: 
1153 - 1167, 2008. 

21. Lionel Vinceslas, Jean-Emile Symphor, Alban 
Mancheron and Pascal Poncelet, "SPAMS: a novel 
Incremental Approach for Sequential Pattern Mining in 
Data Streams", Advances in Knowledge Discovery and 

Management, Studies in Computational Intelligence, Vol: 
292, pp: 201-216, 2010. 

22. Yue Chen, Jiankui Guo, Yaqin Wang, Yun Xiong and 
Yangyong Zhu, "Incremental Mining of Sequential 
Patterns Using Prefix Tree", Advances in Knowledge 
Discovery and Data Mining, Lecture Notes in Computer 
Science, Vol: 4426 pp: 433-440, 2007. 

23. Lei Chang, Dongqing Yang, Tengjiao Wang and Shiwei 
Tang, "IMCS: Incremental Mining of Closed Sequential 
Patterns", Advances in Data and Web Management, 
Lecture Notes in Computer Science, Vol: 4505, pp: 50-
61, 2007. 

24. Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Jianyong 
Wang, Helen Pinto, Qiming Chen, Umeshwar Dayal and 
Mei-Chun Hsu, “Mining Sequential Patterns by Pattern-
Growth: The PrefixSpan Approach”, IEEE transactions 
on Knowledge and Data Engineering, Vol. 16, No. 10, 
October 2004. 

25. Hong Cheng, Xifeng Yan, Jiawei Han, "IncSpan: 
incremental mining of sequential patterns in large 
database", In Proceedings of the tenth ACM SIGKDD 
international conference on Knowledge discovery and 
data mining, 2004. 

26. Maragatham G & Lakshmi M, (2011), “A weighted 
Particle Swarm Optimization Technique for optimizing 
association rules “, 4th International Conference on 
Recent trends in Computing, communication and 
information technologies, Dec 9 -11, 2011. Proceedings 
published by Springer (LNCS) - Communications in 
Computer and Information Science (CCIS) Series part II, 
pp: 675-684. 

27. George Aloysius, D. Binu, "An approach to products 
placement in supermarkets using PrefixSpan algorithm", 
Journal of King Saud University - Computer and 
Information Sciences, in press, July 2012. 

Co-published by Atlantis Press and Taylor & Francis 
                       Copyright: the authors 
                                    222




