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Abstract

Aiming at the problem of time-varying signal pattern classification, a sparse auto-encoder deep process
neural network (SAE-DPNN) is proposed. The input of SAE-DPNN is time-varying process signal and
the output is pattern category. It combines the time-varying signal classification method of process neural
network (PNN) and the data feature extraction and hierarchical sparse representation mechanism of sparse
automatic encoder (SAE). Based on the feedforward PNN model, SAE-DPNN is constructed by stacking
the process neurons, SAE network and softmax classifier. It can maintain the time-sequence and structure
of the input signal, express and synthesize the process distribution characteristics of multidimensional
time-varying signals and their combinations. SAE-DPNN improves the identification of complex features
and distinguishes between different types of signals, realizes the direct classification of time-varying
signals. In this paper, the feature extraction and representation mechanism of time-varying signal in
SAE-DPNN are analyzed, and a specific learning algorithm is given. The experimental results verify the
effectiveness of the model and algorithm.

Keywords: time-varying signal classification, process neural network, deep learning, SAE, training algo-
rithm

1. Introduction

The classification of complex time-varying signals

in nonlinear systems has always been an important

issue in the field of signal processing and artificial

intelligence. In practical engineering, due to the

complexity of some nonlinear time-varying systems

and the sampling signals are often affected by ran-

dom factors, noise interference and some unknown

factors, the sampled time-varying signals have a

high degree of dependence on time changes, nonsta-

tionarity, high dimension, noise, modal features are

variable and irregular and so on.1 In particular, the

combination process features of multiple signals in

multi-variable systems exhibit a high degree of com-

plexity. To deal with this, signal processing tech-

niques such as dimensionality reduction techniques,

wavelet analysis or filtering can be applied.2 Exper-

tise is also needed in selection of features and pro-

cessing methods. The time-varying signal analysis
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model not only has to include more input nodes, but

also has to memorize the past inputs. The length

of the time-dependencies could be unknown, and

the same input may be associated with different

predictions.3 All of these problems present difficul-

ties and challenges in the analysis and modeling of

time-varying signal systems.

Some neural network models have been put for-

ward to solve the signal processing in this kind

of time-varying system, such as time delay neural

network,4 recursive network,5 recurrent network,6

partial feedback network7 etc. In recent years, with

the emergence of deep learning theory, some new

network models have been proposed. Sepp Hochre-

iter and Jrgen Schmidhuber proposed a gradient-

based long short-term memory (LSTM) in 1997.

LSTM can achieve constant error flow through con-

stant error carousels within special units. It is local

in space and time.8 LSTM solves the complex tasks

that the previous recurrent neural network (RNN)

can not solve. In 2003, Michael and Peter use the

dynamic behaviour of RNN to categorize input se-

quences into different specified classes. By adjust-

ing the internal structure to represent the main fea-

tures of the input sequence, so as to solve the clas-

sification problem. Its training speed and gener-

alization ability significantly improved.9 In 2007,

Sutskever and Hinton proposed a family of non-

linear sequence models. The idea is to use the undi-

rected model for the interaction between hidden and

visible variables. Multilevel representations of se-

quential data can be learned from the hidden layer,

capture the effective modeling laws, improve the ef-

fect of the model by adding additional hidden layers.

The model can be trained with high-dimensional,

non-linear data.10 In 2008, Sutskever and Hinton et

al. proposed a recurrent temporal restricted Boltz-

mann machine(RTRBM) for the modeling of natu-

ral data.11 TRBM is a probabilistic model for se-

quences that is able to accurately simulate com-

plex probability distributions on high dimensional

sequences. In 2010, Taylor and LeCun et al. pro-

posed a model for studying the potential character-

istics of image sequences from a pair of continuous

images in order to learn better features to understand

video data.12 The model can extract sensitive motion

features from paired images, capture static and dy-

namic content, and the convolution architecture in

the model can scale the model to the actual image

size with compact parameterization. Deep convolu-

tion neural network (DCNN)13 has been widely used

in image processing and speech recognition in recent

years. DCNN uses image and timing data as input,

through the multi-convolution, pooling, full connec-

tion operation, to achieve simplification, multilevel

feature extraction and classification of complex sam-

pling data.

Based on the above analysis, we can see that

most of the neural network models used for ana-

lyzing the time-series signal are based on the ex-

isting static model. These models implement the

input processing of the time-series signal by con-

verting the time relationship into a spatial relation

through extending the network input nodes (input

dimension). By setting the memory storage unit in

the network hidden layer, the recursive or cyclic in-

formation transmission and transformation strategy

is used to realize the extraction and comprehensive

analysis of the time characteristic. However, for

complex multi-variable systems, intensive sampling

data, or long time-series, this will make the network

input layer and hidden layer presents a high dimen-

sion. At the same time, the information transfer pro-

cess and the solving algorithm are also very com-

plex. It is difficult to characterize and maintain the

timing, relevance, and structural nature of the time-

series sample data.

In 2000, in order to analyze the time-varying sig-

nal of nonlinear systems, He Xingui proposed14,15

a spatio-temporal information processing oriented

process neural network (PNN). The process neuron

structure differs from the traditional neuron in that

its input and connection weights can all be time-

varying functions, and an time-aggregation is added

to the neurons. These can simultaneously express

the interaction of multiple influencing factors and

the accumulation of time effect. PNN is a feedfor-

ward network model composed of process neurons

and the general non time-varying neurons according

to certain topology and information transmission re-

lationship. PNN represents and extracts the process

characteristics of the time-varying signal by the con-
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nection weight function between the input layer and

the hidden layer. It is an extension of the traditional

artificial neural network in the time domain. The-

oretical properties of PNN like the functional ap-

proximation ability of continuous time signal sys-

tem, the continuity of the model and the existence of

solution have been proved.4,16 PNN provides a new

method for the analysis of time signals. It has been

successfully applied in the field of time-varying sig-

nal classification,17,18 nonlinear time-varying sys-

tem process simulation,19 and system state predic-

tion and forecast20,21 etc. At present, some bottle-

neck problems still exist in the theoretical research

and application of PNN, which mainly includes: (1)

The existing PNN is a shallow structure model. Be-

cause of complexity of the process characteristics

of nonlinear time-varying system signals, existing

PNN models lack the ability of extraction, charac-

terization and high-level synthesization for signal

characteristics, which affects the accuracy of iden-

tification and discrimination of process characteris-

tic details of complex signals; (2)The PNN model

has many parameters. The selection of connection

weights function and threshold has high degree of

freedom. Under the condition that the training set

is small and the expression of the system transform-

ing characteristics is not complete, the generaliza-

tion ability may be unstable; (3) There is no general

method to design PNN algorithm, and the algorithm

complexity is higher. It is difficult to realize the

global optimization of many parameters based on

the gradient algorithm. However, the deep learning

theory provides an effective way to solve the above

problems.

Deep Neural Network (DNN) is an artificial neu-

ral network model based on deep learning theory,

put forward by G.Hinton, R.Salakhutdinov and other

scholars in 2006.22,23 Due to its excellent ability of

characteristic learning, training difficulty can be ef-

fectively overcome through layer-wise initialization

algorithm based on unsupervised learning. The ap-

proximation of complex functions can be achieved

by studying a deep nonlinear network structure.

DNN has a strong ability of learning the essential

features of the data set from a few samples, and

has received widespread attention. It has been suc-

cessfully applied in speech recognition24, machine

translation,25 image processing,26 face recognition27

and many other fields. Deep Auto Encoder (DAE) is

a typical model of deep learning structure, which is

applicable for high dimensional complex data pro-

cessing, and plays an important role in unsupervised

learning and nonlinear characteristic extraction etc.

In 1986, Rumelhart proposed the concept of Auto

Encoder (AE)28 for processing of high dimensional

complex data. In 2006, Hinton improved the pro-

totype structure of auto encoder, and built a deep

auto encoder model23, which firstly uses unsuper-

vised layer-by-layer greedy algorithm to realize the

pre-training of the hidden layer of DAE, and then

uses BP algorithm to fine-tune the parameters of the

whole neural network, which significantly improve

the learning property and generalization ability of

neural network. In 2007, Y.Benjio proposed Sparse

Auto Encoder (SAE)29, which further deepens the

research of deep auto encoder. It has a good prop-

erty of signal dimension reduction. In 2012, Tay-

lor deeply discussed the relationship between deep

auto encoder and unsupervised characteristic learn-

ing, and established a general method for construct-

ing different types of deep structure with auto en-

coder. In 2013, Telmo studied the performance of

the deep auto encoder trained by different cost func-

tion, and pointed out the direction for the develop-

ment of the optimization strategy of cost function.30

DAE can hierarchically present the learned features,

it laid the foundation for construction deep structure.

Therefore, a deep process neural network (DPNN)

model and algorithm can be established by combin-

ing the dynamic information classification method

of the process neuron network with the feature ex-

traction and sparse representation mechanism of the

deep automatic encoder. Problems in existing PNN

research and application can be effectively over-

come. At the same time, the information processing

capability of the existing deep neural network can be

extended to the time domain.

Aiming at the classification of nonlinear time-

varying signal, this paper proposed a sparse auto

encoder deep process neural network model (SAE-

DPNN). It is constructed by stacking the process

neuron hidden layer, McCulloch-Pitts neuron hid-
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den layer, SAE network unit and softmax classi-

fier. SAE-DPNN can not only express and synthe-

sis the distribution features and combination pro-

cess features of multi-variable nonlinear system in

mechanism, but also can reflect the cumulative im-

pact of process input. Under sparse constraint con-

ditions, it can obtain relatively sparser and conciser

feature matrix through deep learning, and increase

the discrimination of different categories of time-

varying signal samples, so as to realize direct clas-

sification of time-varying signal. In practice, due

to the randomness of process distribution charac-

teristics of the time-sampling signals, it is difficult

to express it in an explicit form. In this paper, an

implicit representation method based on orthogo-

nal function base expansion is proposed. Accord-

ing to the statistical rules and distribution charac-

teristics of the signal system, a set of appropriate

standard orthogonal function basis is selected. The

time-varying signal is expressed as a finite expan-

sion of the function basis at a given fitting precision.

Since each of the basis functions has definite mor-

phological distribution characteristics, the process

characteristics of the time signal function can be re-

garded as a linear combination of the basic charac-

teristics of the group basis function, so as to realize

the extraction and representation of the detail fea-

ture of the time-varying signals implicitly. Based on

the existing SAE learning algorithm, a comprehen-

sive training method based on orthogonal function

basis expansion is established. Using the gradient-

based algorithm with weight decay term to realize

the initial training of parameter of PNN informa-

tion unit in SAE-DPNN. Using unsupervised layer-

by-layer initialization combining with teacher teach-

ing to initialize the SAE parameters. And using

the supervised BP algorithm to fine-tune the SAE-

DPNN parameters. Unlike existing deep network

models, SAE-DPNN does not need to set the mem-

ory storage unit in the hidden layer. The input of the

SAE-DPNN can be time-series signals or continu-

ous time-varying functions. And the implicit expres-

sion of input time-varying signal is realized by using

the algorithm strategy based on orthogonal function

basis expansion. This method simplifies the network

structure and information processing flow, and real-

izes the direct classification of the time-varying sig-

nals. Based on the time signal classification problem

and the discrimination of reservoir water flooding

condition based on well logging curve in petroleum

geology research, simulation experiments were car-

ried out. The results show that the model and algo-

rithm are feasible and effective.

In this paper we review the challenges of time-

varying signal classification, the status of artificial

neural networks used for time-series signal process-

ing, and point out the idea and algorithm of SAE-

DPNN. The SAE-DPNN model is established in

Section 2, and its theoretical properties are analyzed.

The learning algorithm of SAE-DPNN is given in

Section 3. In Section 4, simulation experiments and

result analysis are carried out to verify the feasibil-

ity and effectiveness of SAE-DPNN model and al-

gorithm. Finally, conclusions are given in Section

5.

2. SAE-DPNN Model

In many time-varying signal processing problems,

the multi-dimensional process signal distribution

tends to be multi-modal, intersective, and complex

due to the effects of various nonlinear disturbances,

the coupling between signals, and the noise. Which

shows a certain degree of multi-solution or ambigu-

ity. It is difficult to identify the characteristics of the

process signal. New models are expected to solve

these problems. This new model should have a sig-

nificant distinction between different types of sig-

nal synthesis characteristics. And can directly deal

with a variety of time-varying process (function) sig-

nals. To solve these problems, this section estab-

lishes a sparse auto-encoder deep process neural net-

work model.

2.1. Process neural networks

2.1.1. Process neurons

The process neuron, shown in Fig.1, consists of

three parts, weighted sum of the input time-varying

signals, aggregation of the spatio-temporal informa-

tion, and the activation output. The inputs and con-

nection weights can be time-related functions. Ag-
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gregation operation includes spatial aggregation and

the accumulation of the time process effect of mul-

tiple input signals.

x2(t) y

x1(t)

xn(t)

w2(t)
w1(t)

wn(t)

, f ( )

Fig. 1. Model of process neuron.

In Fig.1, X(t) = (x1(t),x2(t), · · · ,xn(t))(t ∈
[0,T ]) denotes the input vector of time-varying func-

tion. [0,T ] denotes the interval of input signals.

W (t) = (w1(t),w2(t), · · · ,wn(t)) denotes the corre-

sponding connection weight functions. f denotes

activation function of the process neuron. θ denotes

the activation threshold. Σ denotes the spatial ag-

gregation operator, taking weighted sum of multiple

input signals.
∫

denotes the time aggregation opera-

tor for the process neurons, taking the integral oper-

ation of time. y denotes the output. The input/output

relationship of the process neuron can be written as:

y = f (
∫ T

0
(

n

∑
i=0

wi(t)xi(t))dt −θ) (1)

2.1.2. Process neural networks

The process neural networks is a feed-forward

network model which is composed of a num-

ber of process neurons and McCulloch-Pitts(MP)

neurons according to certain topological structure

and the information transmission relationship. For

conciseness, this paper only considers the multi-

input/single-output system with one process neuron

hidden layer. The networks topology is shown in

Fig. 2.

, , f

, , f

, , f

, g y

x1(t)

x2(t)

xn(t)

wij(t)
vj

Fig. 2. Model of process neuron networks.

By Fig.2, the input/output relationship of PNN

can be written as:

y= g(
m

∑
j=1

v j f (
∫ T

0
(

n

∑
i=0

wi j(t)xi(t))dt−θ (1)
j −θ) (2)

In Eq.(2), θ (1)
j is the activation threshold of the

j th hidden unit, g is the activation function of the

output unit, θ denotes the activation threshold of

the output neuron. f and g are nonlinear func-

tions. Therefore, this kind of process neural network

model expresses a very complex nonlinear transfor-

mation mechanism. It has a strong time-varying in-

formation processing capability and nonlinear map-

ping capability to express the relationship between

the input/output of time-varying system.

2.1.3. Double-hidden-layer process neural
networks

Considering the information transmission relation-

ship between PNN and SAE, a double-hidden-layer

process neural network with single output is de-

signed. The input layer and the first hidden layer

are process neurons. The second hidden layer is

MP neurons. The topology is as shown in Fig. 3.

The process neuron hidden layer complete opera-

tions like extraction of the process features of time-

varying input signals and spatio-temporal aggrega-

tion etc. The MP neuron hidden layer is mainly

used to improve the networks mapping ability of

the complex relationship between the input/output

of the system, and to increase the knowledge stor-

age capacity of the network.

, , f

, , f

, , f

x1(t)

x2(t)

xn(t)

wij(t)
k, g

vjk

, g

, g

y

Fig. 3. Double-hidden-layer process neural networks.

By Fig. 3, the input/output relationship of the

double-hidden-layer process neural network can be
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written as:

y=
K

∑
k=1

μkg(
m

∑
j=1

v jk f (
∫ T

0
(

n

∑
i=1

wi j(t)xi(t))dt−θ (1)
j )−θ (2)

k )

(3)

In Eq. (3), v jk is the weight on the connection be-

tween the first hidden layer and the second hidden

layer, θ (2)
k is the activation threshold of the kth neu-

ron in the second hidden layer, μk is weight on the

connection between the second hidden layer and the

output layer, g is the activation function of the sec-

ond hidden layer, y is the output.

2.2. SAE-DPNN

The SAE-DPNN model is established by combining

the PNN model with the properties of time-varying

signal classification and the advantages of SAE net-

work in data feature extraction and high-level sparse

representation. Based on the double-hidden-layer

process neural network model, a deep process neu-

ral network model with four layers of information

units was constructed by stacking: time-varying pro-

cess signal input layer, process neuron hidden layer,

sparse deep auto encoder structure, and classifier as

output unit.

2.2.1. Auto-Encoder

The auto encoder (AE) is a symmetrical three-layer

neural network, which is composed of input layer,

hidden layer and output layer, as shown in Fig. 4.

First, the input data is encoded by the hidden layer,

then the input data is reconstructed by the hidden

layer, and the reconstruction error is minimized to

obtain the best expression and feature extraction of

data hidden layer.

h1(1)

h2(1)

h3(1)

+1

x1

x2

x3

x4

x5

x6

x1

x2

x3

x4

x5

x6

+1

^

^

^

^

^

^

input layer

output layer
hidden layer

Fig. 4. Structure of auto encoder.

The goal of auto encoder learning is to make

the output of the network as approximate as possi-

ble to the input, and the training process consists

of the encoding process and the decoding process.

In the encoding process, the input samples are lin-

early mapped and nonlinearly transformed to be ex-

pressed by the hidden layer. Suppose X = {xi}N
i=1 is

a sample set, expression of the input sample xi in the

hidden layer can be written as

hi = f (xi) = sigmoid(W1xi +b1) (4)

where, W1 and b1 represent the weight and bias be-

tween the input layer and the hidden layer, respec-

tively. Sigmoid(·) indicates the activation function

of the hidden layer.

The decoding process is to re-project the en-

coded data to the original signal space, and obtain

the decoded signal x̂i, which can be expressed as

x̂i = g(xi) = sigmoid(W2hi +b2) (5)

where, W2 and b2 represent the weight and bias be-

tween the input layer and the hidden layer, respec-

tively. Sigmoid(·) indicates the activation function

of the output layer.

The goal of auto encoder training is to make the

decoding output as approximate as possible to the

input before encoding. The network parameters are

optimized by minimizing the reconstructing error,
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and the cost function is defined as follows:

J(W1,W2,b1,b2) = arg min
W1,W2,b1,b2

=
N

∑
i=1

‖ xi − x̂i ‖2
2

(6)

After training of an auto encoder, the activation

value of the hidden layer is used as the input of the

next auto encoder. By this way, the multiple layers

of auto encoder are stacked up to form an stacked

auto-encoder.

2.2.2. Sparse Auto-Encoder

The Sparse Auto-Encoder uses the idea of sparse

coding, introducing sparse penalty term on the ba-

sis of auto encoder. It can obtain relatively sparser

and conciser data features through learning under

sparsely constrained conditions.

Based on the stacked auto-encoder model, a

sparse penalty term is added to the cost function to

control the number of activated neurons in the hid-

den layer. If the neuron’s output is approximate to

1, it is considered that the neuron is “active”; on the

contrary, it is considered as “inactive”. One of the

goals of the sparse encoder is to make the hidden

layer neurons to be “inactiv” in most of the time.

Assuming that a j(x) represents the j th activated unit

of the hidden layer. For the N training samples, in

the forward propagation process, the average activa-

tion of the j th unit of the hidden layer is

ρ j =
1

N

N

∑
i=1

[a j(xi)] (7)

Since it is desirable that most of the neurons are

“inactive” the average activation quantity ρ j should

approximate to a constant ρ , which approximates to

zero. ρ is a sparse parameter.

In order to achieve the sparse object, the penalty

term is added to the cost function of the encoder to

penalize ρ j so that it can not deviate from ρ . The

Kullback-Leibler (KL) divergence31 is used to de-

fine the penalty term PN, the expression is:

PN =
S2

∑
j=1

KL(ρ ‖ ρ j) (8)

where, S2 is the number of neurons in the hidden

layer. KL(ρ ‖ ρ j) is the divergence of KL. The di-

vergence of KL is mathematically expressed as

KL(ρ ‖ ρ j) = ρ log
ρ
ρ̂ j

+(1−ρ) log
1−ρ
1− ρ̂ j

(9)

Penalty term is determined according to the na-

ture of KL divergence: if ρ j = ρ,KL(ρ ‖ ρ j) = 0;

else the KL divergence value will gradually increase

with the deviation of ρ j from ρ . Therefore, when

the sparse penalty term is added, the network cost

function of the sparse auto-encoder can be defined

as:

Csparse(W,b) = J(W,b)+β
S2

∑
j=1

KL(ρ ‖ ρ j) (10)

where, β is the weight of the sparse penalty term.

2.2.3. SAE-DPNN model

Based on double-hidden-layer process neural net-

work, a generalized 4-layer deep process neural net-

work model composed of time-varying signal input

layer, the hidden layer of process neurons, SAE deep

structure unit, and softmax classifier was given, as

shown in Fig. 5.

y

wij(t)

vj

PN hidden layer

output layer

PN PN PN

...

... ...

... ...

.

.

.
reconstruct

reconstructconstruct

construct

1st AE

2nd AE

hth AE
.
.
.

,g

x1(t) x2(t) xn(t)

...

...

... ... ...

Fig. 5. Model of SAE-DPNN
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In Fig.5, there are n input nodes, m nodes in the

process neuron hidden layer , and K nodes in the

MP neuron hidden layer. The part from the input

layer to the MP neurons hidden layer is the infor-

mation processing unit of PNN. It is used to com-

plete the input of n-dimensional time-varying sig-

nals x1(t),x2(t), · · · ,xn(t)(t ∈ [0,T ]) to the network,

and spatial and temporal weighted aggregation of

the input signals, it’s outputs are h(1)1 ,h(1)2 , · · · ,h(1)K .

The number of input nodes in the SAE structure unit

is K. The inputs are h(1)1 ,h(1)2 , · · · ,h(1)n , and the out-

puts are h(2)1 ,h(2)2 , · · · ,h(2)K . The inputs of softmax

classifier are h(2)1 ,h(2)2 , · · · ,h(2)n , and the output is sig-

nal category label y.

According to Fig.5, the input/output relationship

of SAE-DPNN can be written as follows:

(1) The input/output relationship of the double-

hidden-layer PNN

Input: x1(t),x2(t), · · · ,xn(t)t ∈ [0,T ]
Output: h(1)k ,k = 1,2, · · · ,K

h(1)k = f2(
m

∑
j=1

v jk f1(
∫ T

0
(

n

∑
i=1

wi j(t)xi(t))dt−θ (1)
j )−θ (2)

k )

(11)

where, f1 and f2 are activation functions of process

neurons and MP neurons, respectively. θ (1)
j and θ (2)

k
are thresholds respectively.

(2) The input/output relationship of SAE

Input: h(1)k ,k = 1,2, · · · ,K
Output: h(2)k ,k = 1,2, · · · ,K
(3)The input/output relationship of the softmax

classifier units

y = f3(
K

∑
j=1

μk ·h(2)k −θ) (12)

where, f3 is the activation function of the softmax

classifier. θ is the threshold.

Comprehensive above all, the input/output rela-

tionship of SAE-DPNN can be written as:

y = f3(
K

∑
k=1

(μk(SAEk( f2(
m

∑
j=1

v jk( f1(
∫ T

0
(

n

∑
i=1

wi j(t)xi(t))dt−

θ (1)
j )−θ (2)

k )))−θ)
(13)

SAEk(·) is the output of the kth node of the SAE

output layer. In Eq.(13), using the learning abil-

ity of deep learning framework, form abstract high

level category representation through combining the

lower level characteristics of process signals, im-

prove the discrimination of time-varying signal sam-

ples, so as to realize the recognition and classifica-

tion of the characteristics of time-varying process

signals.

In the application, the number of hidden layers

of PNN and SAE structural units can be selected ac-

cording to the dimension of time-varying input sig-

nal, the size of training sample set and the complex-

ity of signal system.

3. Learning Algorithm of SAE-DPNN

Since the inputs of SAE-DPNN can be multidimen-

sional process signals, the process neuron includes

space-weighted aggregation and time effect cumu-

lative two kinds of operators, the computation is

of high complexity. In this paper, considering the

signal transmission relationship between the infor-

mation units of PNN and SAE network, the time-

varying input signals and the connection weight

functions are expressed by a set of orthogonal func-

tion bases. This method can reduce the complexity

of process neuron space-time aggregation, and real-

ize the implicit representation of time-varying signal

process features based on function basis.

The learning process of SAE-DPNN is divided

into 4 stages. The first stage is pre-processing. Se-

lect an appropriate set of standard orthogonal func-

tion basis and expansion method in time-varying

function space. Finitely expand the sample func-

tions in training set under the given fitting accuracy.

At the same time, express the connection weight

functions as a linear combinations of the same set

of function basis. In stage 2, the initial values of

connection weights between hidden layers of the

double-hidden-layer PNN in Fig. 3 are trained. And

use the results as the initial values of PNN infor-

mation unit parameters in SAE-DPNN. In stage 3,

use the output of the second hidden layer of double-

hidden-layer PNN as the input of SAE. Based on un-

supervised layer-by-layer initialization strategy and
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teacher teaching, initialize the parameters of SAE

and softmax classifier. In stage 4, use BP algorithm

to fine-tune the SAE-DPNN parameters.

3.1. Spatio-temporal aggregate operations of
process neuron based on orthogonal
function basis expansion

Suppose the input space of the process neural net-

work is (C[0,T ])n. b1(t),b2(t), · · · ,bl(t) is a set

of standard orthonormal function basis in C[0,T ].
X(t) = (x1(t),x2(t), · · · ,xn(t)) is the time-varying

signal function in C[0,T ]. Given the fitting accu-

racy, xi(t) can be expressed as the finite expansion

of the function basis:

xi(t) =
L

∑
l=1

ailbl(t) (14)

where, L is the number of items that satisfy the

fitting accuracy. The connection weight function

wi j(t) can be written as:

wi j(t) =
L

∑
l=1

w(l)
i j bl(t) (15)

In Eq.(15), w(l)
i j is the connection weight between the

input units and the hidden units relative to bl(t). It

is an adjustable non time-varying parameter. Sub-

stituting the function basis expansion forms of xi(t)
and wi j(t) into Eq.(3), the output h j, j = 1,2, · · · ,m
of the j th process node in the second hidden layer of

PNN can be written as:

h j = f (
n

∑
i=0

∫ T

0
(

L

∑
l=1

w(l)
i j bl(t))(

L

∑
s=1

aisbs(t))dt −θ (1)
j )

That is,

h j = f (
n

∑
i=1

L

∑
l=1

L

∑
s=1

aisw
(l)
i j

∫ T

0
bl(t)bs(t)dt −θ (1)

j )

(16)

As b1(t),b2(t), · · · ,bL(t) is a set of standard orthog-

onal basis functions in [0,T ], Eq.(16) can be simpli-

fied as

h j = f (
n

∑
i=1

L

∑
l=1

ailw
(l)
i j −θ (1)

j ) (17)

3.2. Initialization training of PNN connection
weight parameters

Substituting Eq.(17) into Eq.(3), the input/output re-

lationship of the double-hidden-layer PNN can be

expressed as:

y =
K

∑
k=1

μkg(
m

∑
j=1

v jk f (
n

∑
i=1

L

∑
l=1

w(l)
i j ail −θ (1)

j )−θ (2)
k )

(18)

Given P learning sample functions:(xp1(t),xp2(t), · · · ,
xpn(t),dp), p = 1,2, · · · ,P. The first sub p of

xp1(t) represents the sequence number of the learn-

ing sample, and the second sub i denotes the

component number of the input function vec-

tor. dp is the expected output corresponding to

the input xp1(t),xp2(t), · · · ,xpn(t). Suppose yp
is the actual output corresponding to the input

xp1(t),xp2(t), · · · ,xpn(t). Seen from Eq.(3), the

learning error function can be defined as

E(WWW ,,,VVV ,,,ηηη ,,,θθθ 111,,,θθθ 222) =
P

∑
p=1

(yp −dp)
2

=
P

∑
p=1

(
K

∑
k=1

μkg(
m

∑
j=1

v jk f (
n

∑
i=1

L

∑
l=1

w(l)
i j a(p)

il −θ (1)
j )

−θ (2)
k )−dp)

2

(19)

In Eq.(19), a(p)
il is the coefficient corresponding to

basis function bl(t) in the expansion of xpi(t). WWW
is the connection matrix from the input layer of

double-hidden-layer PNN to the hidden layer of pro-

cess neurons. vvv is the connection matrix from the

hidden layer of process neurons to the hidden layer

of MP neurons. ηηη is the connection weight vector

from the hidden layer to the output layer of MP neu-

rons. θθθ 111 and θθθ 222 are respectively the threshold vector

of the first hidden layer and the second hidden layer

neurons.

The gradient-based algorithm with weighted de-

cay term is applied to the initialization training of

the connection weights and threshold parameters of

the double-hidden-layer PNN. The cost function is

defined as:

J(WWW ,,,VVV ,,,ηηη ,,,θθθ 111,,,θθθ 222) = E(WWW ,,,VVV ,,,ηηη ,,,θθθ 111,,,θθθ 222)+
γ
2
(‖WWW‖2

2 +‖VVV‖2
2)

(20)
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where, γ is weight attenuation coefficient, to prevent

over fitting.

The correction formulas of the connection

weights and activation threshold of double-hidden-

layer PNN are as follows:

w(l)
i j = w(l)

i j +α
∂

∂w(l)
i j

J(WWW ,,,VVV ,,,ηηη ,,,θθθ 111,,,θθθ 222)(21)

v jk = v jk +β
∂

∂v jk
J(WWW ,,,VVV ,,,ηηη ,,,θθθ 111,,,θθθ 222) (22)

μk = μk +η
∂

∂ μk
J(WWW ,,,VVV ,,,ηηη ,,,θθθ 111,,,θθθ 222) (23)

θ (1)
j = θ (1)

j +ρ
∂

∂θ (1)
j

J(WWW ,,,VVV ,,,ηηη ,,,θθθ 111,,,θθθ 222)(24)

θ (2)
k = θ (2)

k +λ
∂

∂θ (2)
k

J(WWW ,,,VVV ,,,ηηη ,,,θθθ 111,,,θθθ 222)(25)

where, α,β ,η ,ρ,λ are learning efficiency con-

stants.

3.3. Pre-training of SAE units

According to the cost function of SAE defined by

Eq. (10), the pre-training of SAE units will eventu-

ally need to obtain optimized connection weights WWW
and the bias bbb. And the sparse cost function Csparse
is a function with WWW and bbb as parameters, the opti-

mal WWW and bbb are obtained by minimizing the sparse

cost function through back propagation algorithm.26

Using the batch training method, the gradient is used

to update the weights once in each iteration. The up-

date equations are as follows:

Wi j(l) = Wi j(l)− ε
∂

∂Wi j(l)
Csparse(W,b)(26)

bi(l) = bi(l)− ε
∂

∂bi(l)
Csparse(W,b) (27)

where, ε is learning rate.

In this way, by calculating the average activation,

the penalty term in the cost function is obtained. By

optimizing the sparse cost function to get a better

sparse representation of the hidden layer.

3.4. Training steps of SAE-DPNN

SAE-DPNN training includes four main steps: ini-

tialization training of double-hidden layer PNN

based on gradient descent algorithm; layer-by-layer

initialization training of SAE based on unsupervised

greedy learning; initialization softmax classifier; ac-

cording to the category labels in training set samples

function, fine-tune the parameters in SAE-DPNN by

using BP algorithm. The algorithm steps are as fol-

lows:

step 1: initialization training of PNN;

step 1.1: set the error accuracy ε1 > 0, the

cumulative learning number s1, the

maximum learning number M1, select

the standard orthogonal basis function

b1(t),b2(t), · · · ,bL(t), express the time-

varying input function xi(t) and the con-

nection weight function wi j(t) as the ex-

pansion of the function basis;

step 1.2: initialize weights and threshold pa-

rameters, w(t)
i j ,v jk,μk,θ (1),θ (2);

step 1.3: calculate error function E defined

by Eq.(9), if E < ε1 or s1 > M1, then

goto step1.5;

step 1.4: correct weights and thresholds ac-

cording to Eq.(10)-(19), s1 = s1+1, goto

step1.3;

step 1.5: output learning result, end.

step 2: use error control or iterative number control

strategy to initialize the SAE;

step 2.1: set K the hidden layer number of the

SAE deep structure unit, m1 the number

of input/output layer nodes for a single

SAE unit, number of hidden nodes m2,

the error accuracy ε2 > 0, and the maxi-

mum learning number M2;

step 2.2: take the output of the second hid-

den layer of the PNN that completes the

initialization training as the input of the

first SAE unit;

step 2.3: A single SAE unit is trained accord-

ing to Eq.(6) and (10);
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step 2.4: If the training stop condition is sat-

isfied, then goto step 2.5; else goto step

2.3;

step 2.5: store the learning results, and pro-

ceed to the next SAE unit training until

the deep SAE training is completed.

step 3: initialize softmax classifier parameter;

step 4: Given the training error ε3 or the maximum

number of iterations M3, the BP algorithm

is used to fine-tune the overall parameters of

SAE-DPNN.

4. Simulation Experiments and Result Analysis

Example 1 Nonlinear time-varying function clas-
sification problem

Consider the pattern classification problems of

the following 4 classes of time-varying functions.

The sample functions are respectively defined as:

class 1:

{
x1(t) = eλ t sin(λ tπ)

x2(t) = e−λ t sin(λ tπ)
, t ∈ [−π,π]

class 2:

{
x1(t) = eλ t sin(λ tπ)

x2(t) = e−λ t cos(λ tπ)
, t ∈ [−π,π]

class 3:

{
x1(t) = eλ t cos(λ tπ)

x2(t) = e−λ t sin(λ tπ)
, t ∈ [−π,π]

class 4:

{
x1(t) = eλ t cos(λ tπ)

x2(t) = e−λ t cos(λ tπ)
, t ∈ [−π,π]

When λ = 0.85,the typical sample function

curves and the characteristic distribution are shown

in Fig. 6.

Fig. 6. Curves of 4 classes sample functions.

In each class, the value of λ is respectively

0.05,0.1,0.15,0.2, · · · ,1.0. Each class can get 20

function samples, forming a sample set contain-

ing 80 samples. The expected outputs of the

4 kinds of sample functions are respectively set

as 0,1,2,3. Chose trigonometric function ba-

sis {1,cos t,sin t,cos2t,sin3t, · · · ,cosnt,sinnt, · · ·}
as the basis expansion function system. The orthog-

onal interval is [−π,π]. Expand the 80 sample func-

tions under the fitting precision of 0.01. When the

number of expansion terms is 33, it meets the fitting

accuracy. Using a 4-fold cross-fold validation exper-

iment, 80 sample functions were randomly divided

into 4 groups, 3 groups as training set and 1 group as

test set. Four sets of training and test samples were

obtained. And take the average of 4 training and

test results as the evaluation index. Structure and

learning parameters of SAE-DPNN are selected as

follows: Time-varying signal system has two vari-

ables, so SAE-DPNN take two input nodes. Other

parameters were determined by experimental com-

parative analysis. Of which, 20 process neurons in

the first hidden layer, 130 non-time-varying neurons

in the second hidden layer; SAE information unit

is constructed by stacking 4 SAE components, the

number of units in input layer and output layer are

both 130, and the number of hidden units are both

30; sparse penalty term weight β takes 0.035, SAE

pre-training learning rate ε takes 0.55, other learning

parameters take 0.5; 1 output node in softmax clas-

sifier. The structural parameters of SAE-DPNN are

shown in Table 1. Use the algorithm constructed in

section 3 to train SAE-DPNN. According to the al-

gorithm given in section 3.2, the initialization train-

ing of the double-hidden-layer PNN unites are con-

ducted under the accuracy of 0.05, and its conver-
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gent after 1022 times of iteration. Use the output of

the second hidden layer units of the double-hidden-

layer PNN as the inputs the information units of

SAE; the number of SAE training times is 1000; the

SAE-DPNN global tuning training iteration number

is set to 1200 times; training error accuracy takes

0.05. The computer is configured to Intel Core i5-

3470, CPU@3.2GHz, 4GB memory, WIN7 32 bit

operating system in this experiment; simulation en-

vironment is Maltlab 2012. Through the learning of

function samples in the training set, the classifica-

tion model of SAE-DPNN is established, the error

curve of training is shown in Fig. 7. The results are

as follows: for 60 training samples, the training time

was 37.623s, the average approximation error of the

60 samples in training set is 0.00972, discriminant

accuracy rate is 100%; for 20 test samples, average

approximation error is 0.01563, the correct recogni-

tion rate is100%.

Fig. 7. Error curve of SAE-DPNN fine-tune training.

As a comparison, process neural networks(PNN),32

double-hidden-layer PNN(DH-PNN),33 radial ba-

sis function process neural network RFBPNN34(the

kernel function is Gauss function), the network

structure parameter setting is shown in Table 2. And

the SAE-DPNN model and algorithm established in

this paper are used to conduct 10 times of initializa-

tion comparison experiments. The training error is

set to 0.05. The results are shown in Table 3.

In Table 3, the average approximation error is

calculated by the following formula:

T REavg =
1

m1N

N

∑
n=1

m1

∑
i=1

|ŷi − yi| (28)

where, ŷi is the expected output of the ith sample,

and yi is the actual output of the sample. m1 is the

total number of samples in the training set, and m2

is the total number of samples in the test set. N is

repeated training times.

Known from Table 3, the average approximation

error of test set and training set, the correct recog-

nition of the training set of SAE-DPNN model and

algorithm established in this paper is much better

than the other three models and algorithms. This

is because the combination of the two input func-

tions of each sample in the training set is similar,

and the sample set is small and incomplete. PNN,

DH-PNN and RBFPNN are shallow models. Their

small sample modeling capabilities, generalization

capabilities, and distinguishing the characteristics of

the sample category are not as good as SAE-DPNN.

So, SAE-DPNN achieved better results. However,

the SAE-DPNN algorithm is of high complexity and

takes longer training time, but its time cost is worthy

comparing with the obvious increasing of approxi-

mation error and correct recognition rate.

Example 2 Identification of logging flooded
layer in petroleum development geology re-
search.

Reservoir water flooding condition identification

is a very important and complicated work in oilfield

development. At present, the interpretation of water

flooding layer is mostly based on the corresponding

relationship between the electrochemical character-

istics of the flooded reservoir, physical properties of

rocks and logging response curve. When the reser-

voir is flooded, its physical properties, underground

fluid properties and pore structure parameters will

be complicatedly changed, its difficult to get the ac-

curate value. In the existing automatic identification

method, there are many problems such as the low

coincidence rate of the discriminant model and the

actual situation, and the difficulty of extracting the

characteristics of the logging curve pattern.35 The

author uses SEA-DPNN as the discriminator, au-

tomatically identify the reservoir flooded condition

based on the characteristics of logging curve.

The identification of sublayer water flooding

condition in well logging is based on the morphol-

ogy and amplitude distribution of multiple logging

curves which reflect the deep continuous sampling
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Table 1. Structural parameters of SAE-DPNN.

PN unit SAE unit Softmax classifier

input PN hidden MP hidden input hidden output hidden input output

nodes nodes nodes nodes nodes nodes layers nodes nodes

2 20 130 130 30 130 9 130 1

Table 2. Structural parameters of the networks.

PNN DH-PNN RBFPNN

input hidden output input hidden layer second hidden output input hidden output

nodes nodes nodes nodes nodes layer nodes nodes nodes nodes nodes

2 20 1 2 20 130 1 2 20 1

of drilling profile and reflecting the physical proper-

ties change of rock and fluid of drilling section, and

the combinations among them. Different sedimen-

tary units and fluid properties have different physical

properties, which reflect different model characteris-

tics of logging curves. This experiment studies oil-

field geological block of fluvial delta deposit. Self

potential SP, 2.5m resistivity R25, the microelec-

trode difference (Rmt-Rmd), natural gamma GR,

acoustic AC, and the thickness of sand body h are

selected as features to identify water flooding con-

dition. Water flooding degree is divided into four

levels, strong water flooding, medium water flood-

ing, weak water flooding and non water flooding.

According to the results of the analysis of the core

wells and the results of expert interpretation, 4 kinds

of 300 well logging flooding pattern samples were

selected in proportion as the training set. Typical

sample curves are shown in Fig. 8.

When SAE-DPNN is used to identify the reser-

voir flooding condition, the input process interval

must be uniformed and the logging data must be

standardized. In the actual data processing pro-

cess, generally each sublayer’s thickness is differ-

ent, so the input process interval is not consolidated.

Rounded the maximum thickness of all the small

layers of the well to be treated, and add 1 to con-

stitute a consolidated process interval. In this way,

the thickness variable of the sublayers has been im-

plied in other input functions, so the thickness pa-

rameter can be removed. At the same time, the

logging indexes are different in dimension, and the

magnitude difference is large. The formula: x1(t) =

x(t)−minx(t)
maxx(t)−minx(t) is used to carry out the normalization

processing. In this formula, minx(t) is the minimum

value of logging indexes in the well logging section,

and maxx(t) is the maximum.

The training set is consists of 300 reservoir log-

ging flooded samples selected from coring wells,

SAE-DPNN as classifier, the normalized reservoir

logging curves are used as network inputs, the out-

put is the water flooding level. Leyrand function ba-

sis is used to fit the data of sublayer well logging,

and the precision is set to 0.01. When the number

of Legendre function basis terms is 7, the fitting ac-

curacy is satisfied. The experimental results show

that the SAE-DPNN architecture is chosen as fol-

lows: 5 time-varying input signals; in PNN infor-

mation units, the first hidden layer with 20 units, the

second hidden layer with 100 units; the number of

input units in the SAE is 100, the number of hidden

layer is 8, the number of hidden units is 20, and the

output units number is 100; 1 softmax classifier out-

put unit. SAE-DPNN is trained by the sample func-

tions. The initialization training of double-hidden-

layer PNN units is convergent after 1720 times of

iteration under precision of 0.05; the output of the

second hidden unit of PNN is used as the input of

the SAE network, the number of training times is

800, and the global optimization training of SAE-

DPNN is set to 1000. The trained SAE-DPNN was

used as the reservoir water flooding level identifi-

cation model. The accuracy rate is 100% for the

training samples. For 227 samples(i.e. test set) of

15 uncored wells, comparing with the expert manual

evaluation results, automatic recognition consistent
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Table 3. Comparison of training indexes of different models.

serial

number
algorithm

training set test set

average

time

approximation

error

recognition

rate

approximation

error

recognition

rate

1 PNN 9.756s 0.0477 100% 0.0836 78.6%

2 DH-PNN 12.720s 0.0276 100% 0.0492 82.7%

3 RBFPNN 9.692s 0.0374 100% 0.0733 80.2%

4 SAE-DPNN 34.223s 0.0152 100% 0.0262 100%

Fig. 8. Typical log response characteristics of typical small

water flooding pattern.
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rate reaches 92.7%. Under the same conditions, a 5-

20-1 process neuron network, a 5-20-100-1 double

hidden layer process neuron network, a 5-20-1 ra-

dial basis function process neural network (the ker-

nel function is Gauss function) were adopted. The

correct recognition rate of the test set was 79.3%,

86.3% and 83.7%, respectively. SAE-DPNN also

achieved good results in the practical application.

This is due to the number of factors in the develop-

ment of oilfields is large, the characteristics of log-

ging curves and the relationship between them are

complex, and the training sample set is not com-

plete. These affects the generalization ability of each

model. Compared to other models, SAE-DPNN has

the best properties.

5. Conclusion

Aiming at the problem of complex time-varying sig-

nals pattern classification in nonlinear system, this

paper proposes and establishes a deep process neural

network model based on the combination of sparse

auto encoder and process neural network. The in-

put of the SAE-DPNN can be time-series signals or

continuous time-varying functions. The PNN unit

can be used to initialize the extraction and represen-

tation of the signal process features. Unlike existing

deep network models in dealing with time-series sig-

nals, SAE-DPNN does not need to set the memory

storage unit in the hidden layer. So that the time-

series signal can be maintained forward processing,

simplifying the network information processing. At

the same time, the algorithm based on orthogonal

function base expansion is used to transform the pro-

cess feature identification and analysis of the sig-

nal into the comparison between the expansion co-

efficients under the same set of orthogonal function

basis, which simplifies the computational complex-

ity of the model. SAE-DPNN has high level of

synthesis and sparse representation of data process

features, which improves the generalization ability

and classification accuracy of the model. But SAE-

DPNN training sample set needs to have better com-

pleteness and larger scale. The computational com-

plexity is also high, and the choice of network pa-

rameters has a high degree of freedom. These are

the issues that need further study. The experimental

results show that the model and algorithm provide a

feasible analysis model and algorithm for dynamic

signal pattern classification.

References

1. M. Längkvist, L. Karlsson and A. Loutfi, A review
of unsupervised feature learning and deep learning for
time-series modeling, Pattern Recogn. Lett., 42 (2014)
11–24

2. A. Nanopoulos, R. Alcock and Y. Manolopoulos,
Feature-based classification of time-series data, Int.
J. Comput. Res., 10 (2001) 49–61

3. G. W. Taylor, Composable, distributed-state models
for high-dimensional time series, (PhD thesis, Uni-
versity of Toronto, 2009).

4. J. B. Hampshire and A. H. Waibel, A novel objec-
tive function for improved phoneme recognition using
time-delay neural networks, IEEE Trans. Neural Net-
works, 1 (2) (1990) 216–228

5. A. C. Tsoi and A. D. Back, Locally recurrent glob-
ally feedforward networks: a critical review of archi-
tectures, IEEE Trans. Neural Networks, 5 (2) (1994)
229–239

6. J. S. Draye, D. A. Pavisic, G. A. Cheron, and G. A.
Libert, Dynamic recurrent neural networks: a dynam-
ical analysis, IEEE Trans. on Systems Man & Cyber-
netics Part B Cybernetics A Publication of the IEEE
Systems Man & Cybernetics Society, 26 (5) (1996)
692–706

7. M. C. Mozer, Neural net architectures for temporal
sequence processing, In Predicting the future and un-
derstanding the past, (Redwood, Canada, 1993), pp.
243–264.

8. J. Schmidhuber and S. Hochreiter, Long short-term
memory, Neural Comput., 9 (8) (1997) 1735–1780
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