

The Analysis and Solution of a PCP Instance

Jing Dong
School of Computer Science

Beijing Institute of Technology
Beijing, China

dongjing@bit.edu.cn

Abstract—In this paper, we present a heuristic rule for solving
some specific PCP instances. We also analyze a PCP instance, and
prove that this instance has no finite solution using our heuristic
rule. Moreover, we find this instance has a unique infinite
solution generated by a Fibonacci substitution.

Keywords-PCP; Post Correspondence Problem; Fibonacci
substitution

I. INTRODUCTION

Post correspondence problem (PCP, for short) was first
introduced by Post in 1946 [1], and he also proved that the PCP
is an undecidable problem in its general form. An instance of

PCP consists of two morphisms h, g: A∗  B∗, where A and B

are two finite alphabets. If |A| = n, then we say that the size of
the instance (h, g) is n, and we denote it by PCP(n). Given a

PCP instance (h, g), if there exists a nonempty word wA∗ such

that h(w) = g(w), then we call w a solution of (h, g). In the PCP,
it is asked whether or not an instance (h, g) has a solution.

Ehrenfeucht et al. [2] proved that the PCP(2) is decidable.
Halava and his cooperators [3] gave a simpler proof for the
decidability of PCP(2). On the other hand, Matiyasevich and
Sénizergues proved in [4] that PCP(7) is undecidable. By now
the decidability of PCP(3) to PCP(6) is still unknown.

For a PCP instance (h, g), if there is an infinite word
w=a1a2...... with ai A for each i = 1, 2,, such that for any
finite prefix u of w, either h(u) is a prefix of g(u) or g(u) is a
prefix of h(u), then we call w an infinite solution of the instance
(h, g). For a given instance of PCP, the problem to determine
whether or not this instance has an infinite solution is called
infinite PCP (ωPCP, for short).

In [5], Ruohonen proved that ωPCP is undecidable. Blondel
and Canterini [6] proved that the ωPCP is undecidable for
instances of size 105, using the undecidability of the halting
problem of the Turing machine. Halava and Harju [7] used the
undecidability of the termination problem of 3-rule semi-Thue
systems and proved that the ωPCP(9) is undecidable. In an
earlier paper we proved that the ωPCP(8) is undecidable [8].

As in [7], our proof also relies on the undecidability of the
termination problem of 3-rule semi-Thue system. Currently the
decidability of ωPCP(3) to ωPCP(7) is still unknown.

In this paper, we present a heuristic rule for solving some
specific PCP instances. We can use this rule to prove some
PCP instances have no solutions. Then, we consider a PCP
instance, applying our rule to prove that it has no finite solution.
Moreover, we prove this PCP instance has a unique infinite
solution, and analyze the infinite solution.

II. PREVIOUS WORK

Many games that programmers are interesting are PSPACE
hard or PSPACE complete. PCP is theoretically more difficult,
so it has brought great challenges to the general artificial
intelligence technology. There are some interesting PCP
instances, see [9], [10]. In recent years, there have been some
programs developed for solving PCP. Lorentz has developed
programs that both solve and generate difficult instances of
PCP [11]. Before searching the solution, Lorentz first filtered
the instances and eliminated some instances that have no
solution. The three filters he used are as following.

 Prefix filter (postfix filter)

If a PCP instance (h, g): A∗  B∗ has a solution w, then

there must be a letter aA such that either h(a) is a
prefix of g(a), or g(a) is a prefix of h(a). Otherwise, no
letter can be the beginning letter in the solution, and
there is no solution of this instance.

Postfix filter is similar to prefix filter.

 Length balance filter

If a PCP instance (h, g): A∗  B∗ has a solution w, then

the length of h(w) is the same as g(w). So, if for all
aA, lengths of h(a) are longer than g(a), or for all
aA, lengths of g(a) are longer than h(a), then there is
no solution of this instance.

 Element balance filter

National Conference on Information Technology and Computer Science (CITCS 2012)

© 2012. The authors - Published by Atlantis Press943

If a PCP instance (h, g): A∗  B∗ has a solution w, then

for all bB, the number of b in h(w) is the same as in
g(w). So, if there is a bB, for all aA, the number of b
in h(a) are more than in g(a), or all aA, the number of
b in g(a) are more than in h(a), then there is no solution
of this instance.

III. A NEW HEURISTIC RULE

We present a heuristic rule. It is based on the fact that if a
PCP instance (h, g): A*B*, has a finite solution w, then for all
bB, b must appear in h(w) and g(w) with the same count. For
some PCP instances with |A||B|, we can determine the
proportion of number of each letter aA in w, according to the
number of each bB in each h(a) and g(a). Here we assume
that all the letters in A appear in the solution.

Given an instance, if we can get the proportion of number
of letters, then this information may be useful to determine a
lower bound for the length of solutions (if there is a finite
solution). For example

, (1)








010000

00010

and









11001

00011 . (2)

If instance (1) has a finite solution, then in the solution, the
proportion of number of letters is 2:1:2. So, we know that, the
solution length is multiple of 5. Indeed, the shortest solution of
this instance is of length 10.

If instance (2) has a finite solution, then in the solution, the
proportion of number of letters is 2:2:1. So, the solution length
of (2) is no less than 5. Indeed, the shortest solution of this
instance is of length 5.

Our method can also be used to prove some instances that
have no solutions. In [11], there were some PCP instances that
they suspected having no solutions, but they were not able to
prove. By applying our rule, some of them can be proved have
no solutions. For example

, (3)








1001000

100100

and

 . (4)








1011011

011101

For instance (3), to ensure that in the solution, the number
of 1's in the top string are the same as in the bottom string, the
proportion of number of the first and the second letter must be
1:1. But the number of 0's in the top string will be less than in
the bottom string. So, instance (3) has no solution.

For instance (4), to ensure that in the solution, the number
of 0's in the top string are the same as in the bottom string, the
proportion of number of the first and the second letter must be
1:1. But the number of 1's in the top string will be less than in
the bottom string. So, instance (4) has no solution.

IV. ANALYZING A PCP INSTANCE

Considering the following PCP instance P:

 , (5)








011111

10110

this instance can write as P=(h1, g1), where the morphisms h1,
g1: {a, b, c}*{0, 1}*are defined by

 h1(a) =110, g1(a) =1,
 h1(b) = 0, g1(b) =111,
 h1(c) =1, g1(c) =01.
We will prove that P has no finite solution, but P has a

unique infinite solution.

A. P has no finite solution

Now we use the heuristic rule in section 3 to prove the
instance P has no finite solution. We can get that

Lemma 1: If P has a finite solution, then in the solution,
the proportion of number of letters a, b and c must be 3:1:4.

Indeed, we can show that

Lemma 2: The letter b can't occur in solutions of P.

Proof. Suppose to the contrary that the letter b occurs in a
solution w1 of P, then w1 can write as

w1=xby,

where x{a, c}+ and y{a, b, c}*. Comparing the lengths of
h1(x) and g1(x), there are two cases, h1(x) is longer, or g1(x) is
longer. Note that if the length of h1(x) is the same as g1(x), then
x is a solution of P.

1) Assume that the length of h1(x) is longer.
We can write h1(x) = g1(x)s, where s{0, 1}+. Note that

x{a, c}+, so 1 is a suffix of g1(x), and 1111 is a suffix of
g1(xb). So there must be 1111 in h1(x). Because x{a, c}+,
h1(a)=110 and h1(c)=1, there must be a substring cc in x. By
g1(c)=01, there must be a substring 0101 in g1(x). Because g1(x)
is a prefix of h1(x), there must be a substring 0101 in h1(x).
Note that h1(a)=110 and h1(c)=1, so there can't be substring
0101 in h1(x). This is a contradiction, so the length of h1(x)
can't be longer than g1(x).

2) Assume that the length of g1(x) is longer.
Since x{a, c}+, we know that if g1(x) is longer than h1(x),

then the number of letter c in x must be twice more than letter a.
So there must be a substring cc in x, then x can write as

x=ucv,

where u=(a+c)+, v{a, c}*. Note that cc is a suffix of uc, then
0101 is a suffix of g1(uc). By the definition of h1 and g1, we
can get |h1(x)|| h1(u)||g1(u)|, then there must be 0101 in h1(x).
We have analyzed that there can't be 0101 in h1(x). We get a

944

contradiction which is the same as above case, so the length of
g1(x) can't be longer than h1(x).

According to the analysis above, the letter b can't occur in
any solution of P. �

Lemma1 and Lemma 2 provide that

Theorem 1: The instance P has no finite solution.

B. P has a unique infinite solution

We will prove that

Theorem 2: P has a unique infinite solution, and only
letters a and c occur in this infinite solution.

Proof. We have proved that a solution of P can only
contain letters a and c, and no two consecutive c. By lengths
difference between h1(a) and g1(a), h1(c) and g1(c), we can get
that, for any finite prefix r of a solution, the length of h1(r)
must be longer than g1(r). Since there are no substring 00 in
h1(r), so there always exists a letter can match continually. So
P has a infinite solution.

Note that 1 is a prefix of g1(a) and 0 is a prefix of g1(c), so
there is only one letter can follow r. Thus the infinite solution
of P is unique. �

Let us solve this instance. The solution should begin with
the letter a, and then letters are selected one by one. The
beginning of the solution is as follows:

110
1
a

①

110110
11
a a

②

1101101
1101
a a c

③

1101101110
11011
a a c a

④

11011011101
1101101
a a c a c

⑤

11011011101110
11011011
a a c a c a

⑥

11011011101110110
110110111
a a c a c a a

⑦

110110111011101101
11011011101
a a c a c a a c

⑧

110110111011101101110
110110111011
a a c a c a a c a

⑨

110110111011101101110110
1101101110111
a a c a c a a c a a

⑩

Denote the infinite solution of P by ŵ=s1s2s3......, where for

all i, si{a, c}. Define ti, for all i, h1(si)=g1(si)ti. Several ti are
enumerated, see Fig.1.

It is interesting that t3, t5, t8, t13 are generated by a
Fibonacci substitution. The substitution rule is








1101101

11011011101
: .

Figure 1. Fibonacci substitution sequences of t i.

The process for solving the instance P can be viewed as
continuously generating Fibonacci substitution sequences. The
substitution rule is









ac

aca
: .

Then we get the following result

Theorem 3: The infinite solution of P is ŵ=α1α2α3......,
where α1=a, α2=ac, and for all i3, α i=α i-1α i-2.

ACKNOWLEDGMENT

We thank Prof. Liu Qinghui for his useful guidance, help
and discussions. We thank the referees for helpful comments
and suggestions.

REFERENCES
[1] E. Post, A variant of a recursively unsolvable problem. Bull. Amer.

Math. Soc. 52 (1946), 264–268.

[2] A. Ehrenfeucht, J. Karhumäki and G. Rozenberg, The (generalized) Post
Correspondence Problem with lists consisting of two words is decidable.
Theoret. Comput. Sci. 21 (1982), 119–144.

[3] V. Halava, T. Harju and M. Hirvensalo, Binary (generalized) Post
Correspondence Problem. Theoret. Comput. Sci. 276 (2002), 183–204.

[4] Y. Matiyasevich and G. Sénizergues, Decision problems for semi-Thue
systems with a few rules. Theoret. Comput. Sci. 330 (2005), 145–169.

945

[5] K. Ruohonen, Reversible machines and Posts Correspondence Problem

for biprefix morphisms. J. Inform. Process. Cybernet. EIK 21 (1985),
579–595.

[6] V.D. Blondel and V. Canterini, Undecidable problems for probabilistic
automata of fixed dimension. Theor. Comput. Syst. 36 (2003), 231–245.

[7] V. Halava and T. Harju, Undecibability of infinite Post Correspondence
Problem for instances of size 9. RAIRO–Theor. Inf. Appl. 40 (2006),
551–557.

[8] J. Dong and Q. Liu, Undecibability of infinite post correspondence
problem for instances of size 8. RAIRO–Theor. Inf. Appl. (2012),
Online publication.

[9] Gurari, E.: An Introduction to the Theory of Computation. Computer
Science Press, 1989.

[10] Manna, Zohar: Mathematical Theory of Computation. McGraw Hill Inc,
1974.

[11] R. J. Lorentz, Creating difficult instances of the post correspondence
problem. The Second International Conference on Computers and
Games (CG’2000), Hamamatsu, Japan, 2000, 145-159.

946

	I. Introduction
	II. Previous work
	III. A new heuristic rule
	IV. Analyzing a PCP instance
	A. P has no finite solution
	1) Assume that the length of h1(x) is longer.
	2) Assume that the length of g1(x) is longer.

	B. P has a unique infinite solution
	Acknowledgment
	References

