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Abstract—In this paper, we present a heuristic rule for solving 
some specific PCP instances. We also analyze a PCP instance, and 
prove that this instance has no finite solution using our heuristic 
rule. Moreover, we find this instance has a unique infinite 
solution generated by a Fibonacci substitution. 
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I.  INTRODUCTION 

Post correspondence problem (PCP, for short) was first 
introduced by Post in 1946 [1], and he also proved that the PCP 
is an undecidable problem in its general form. An instance of 

PCP consists of two morphisms h, g: A∗  B∗, where A and B 

are two finite alphabets. If |A| = n, then we say that the size of 
the instance (h, g) is n, and we denote it by PCP(n). Given a 

PCP instance (h, g), if there exists a nonempty word wA∗ such 

that h(w) = g(w), then we call w a solution of (h, g). In the PCP, 
it is asked whether or not an instance (h, g) has a solution. 

Ehrenfeucht et al. [2] proved that the PCP(2) is decidable. 
Halava and his cooperators [3] gave a simpler proof for the 
decidability of PCP(2). On the other hand, Matiyasevich and 
Sénizergues proved in [4] that PCP(7) is undecidable. By now 
the decidability of PCP(3) to PCP(6) is still unknown. 

For a PCP instance (h, g), if there is an infinite word 
w=a1a2...... with ai A for each i = 1, 2, ......, such that for any 
finite prefix u of w, either h(u) is a prefix of g(u) or g(u) is a 
prefix of h(u), then we call w an infinite solution of the instance 
(h, g). For a given instance of PCP, the problem to determine 
whether or not this instance has an infinite solution is called 
infinite PCP (ωPCP, for short).  

In [5], Ruohonen proved that ωPCP is undecidable. Blondel 
and Canterini [6] proved that the ωPCP is undecidable for 
instances of size 105, using the undecidability of the halting 
problem of the Turing machine. Halava and Harju [7] used the 
undecidability of the termination problem of 3-rule semi-Thue 
systems and proved that the ωPCP(9) is undecidable. In an 
earlier paper we proved that the ωPCP(8) is undecidable [8]. 

As in [7], our proof also relies on the undecidability of the 
termination problem of 3-rule semi-Thue system. Currently the 
decidability of ωPCP(3) to ωPCP(7) is still unknown. 

In this paper, we present a heuristic rule for solving some 
specific PCP instances. We can use this rule to prove some 
PCP instances have no solutions. Then, we consider a PCP 
instance, applying our rule to prove that it has no finite solution. 
Moreover, we prove this PCP instance has a unique infinite 
solution, and analyze the infinite solution. 

II. PREVIOUS WORK 

Many games that programmers are interesting are PSPACE 
hard or PSPACE complete. PCP is theoretically more difficult, 
so it has brought great challenges to the general artificial 
intelligence technology. There are some interesting PCP 
instances, see [9], [10]. In recent years, there have been some 
programs developed for solving PCP. Lorentz has developed 
programs that both solve and generate difficult instances of 
PCP [11].  Before searching the solution, Lorentz first filtered 
the instances and eliminated some instances that have no 
solution. The three filters he used are as following. 

 Prefix filter (postfix filter) 

If a PCP instance (h, g): A∗  B∗ has a solution w, then 

there must be a letter aA such that either h(a) is a 
prefix of g(a), or g(a) is a prefix of h(a). Otherwise, no 
letter can be the beginning letter in the solution, and 
there is no solution of this instance.  

Postfix filter is similar to prefix filter. 

 Length balance filter 

If a PCP instance (h, g): A∗  B∗ has a solution w, then 

the length of h(w) is the same as g(w). So, if for all 
aA, lengths of h(a) are longer than g(a), or for all 
aA, lengths of g(a) are longer than h(a), then there is 
no solution of this instance. 

 Element balance filter 
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If a PCP instance (h, g): A∗  B∗ has a solution w, then 

for all bB, the number of b in h(w) is the same as in 
g(w). So, if there is a bB, for all aA, the number of b 
in h(a) are more than in g(a), or all aA, the number of 
b in g(a) are more than in h(a), then there is no solution 
of this instance. 

III. A NEW HEURISTIC RULE 

We present a heuristic rule. It is based on the fact that if a 
PCP instance (h, g): A*B*, has a finite solution w, then for all 
bB, b must appear in h(w) and g(w) with the same count. For 
some PCP instances with |A||B|, we can determine the 
proportion of number of each letter aA in w, according to the 
number of each bB in each h(a) and g(a). Here we assume 
that all the letters in A appear in the solution. 

Given an instance, if we can get the proportion of number 
of letters, then this information may be useful to determine a 
lower bound for the length of solutions (if there is a finite 
solution). For example 

  

,              (1) 








010000

00010

and 









11001

00011 .              (2) 

If instance (1) has a finite solution, then in the solution, the 
proportion of number of letters is 2:1:2. So, we know that, the 
solution length is multiple of 5. Indeed, the shortest solution of 
this instance is of length 10. 

If instance (2) has a finite solution, then in the solution, the 
proportion of number of letters is 2:2:1. So, the solution length 
of (2) is no less than 5. Indeed, the shortest solution of this 
instance is of length 5. 

Our method can also be used to prove some instances that 
have no solutions. In [11], there were some PCP instances that 
they suspected having no solutions, but they were not able to 
prove. By applying our rule, some of them can be proved have 
no solutions. For example 

  

,             (3) 








1001000

100100

and 

  .              (4) 








1011011

011101

For instance (3), to ensure that in the solution, the number 
of 1's in the top string are the same as in the bottom string, the 
proportion of number of the first and the second letter must be 
1:1. But the number of 0's in the top string will be less than in 
the bottom string. So, instance (3) has no solution. 

For instance (4), to ensure that in the solution, the number 
of 0's in the top string are the same as in the bottom string, the 
proportion of number of the first and the second letter must be 
1:1. But the number of 1's in the top string will be less than in 
the bottom string. So, instance (4) has no solution. 

IV. ANALYZING A PCP INSTANCE 

Considering the following PCP instance P: 

  ,              (5) 








011111

10110

this instance can write as P=(h1, g1), where the morphisms h1, 
g1: {a, b, c}*{0, 1}*are defined by 

 h1(a) =110, g1(a) =1, 
 h1(b) = 0, g1(b) =111, 
 h1(c) =1,  g1(c) =01. 
We will prove that P has no finite solution, but P has a 

unique infinite solution. 

A. P has no finite solution 

Now we use the heuristic rule in section 3 to prove the 
instance P has no finite solution. We can get that  

Lemma 1: If P has a finite solution, then in the solution, 
the proportion of number of letters a, b and c must be 3:1:4. 

Indeed, we can show that  

Lemma 2: The letter b can't occur in solutions of P. 

Proof. Suppose to the contrary that the letter b occurs in a 
solution w1 of P, then w1 can write as 

w1=xby, 

where x{a, c}+ and y{a, b, c}*. Comparing the lengths of 
h1(x) and g1(x), there are two cases, h1(x) is longer, or g1(x) is
longer. Note that if the length of h1(x) is the same as g1(x), then 
x is a solution of P.  

1) Assume that the length of h1(x) is longer. 
We can write h1(x) = g1(x)s, where s{0, 1}+. Note that 

x{a, c}+, so 1 is a suffix of g1(x), and 1111 is a suffix of 
g1(xb). So there must be 1111 in h1(x). Because x{a, c}+, 
h1(a)=110 and h1(c)=1, there must be a substring cc in x. By 
g1(c)=01, there must be a substring 0101 in g1(x). Because g1(x) 
is a prefix of h1(x), there must be a substring 0101 in h1(x). 
Note that h1(a)=110 and h1(c)=1, so there can't be substring 
0101 in h1(x). This is a contradiction, so the length of h1(x) 
can't be longer than g1(x).  

2) Assume that the length of g1(x) is longer. 
Since x{a, c}+, we know that if g1(x) is longer than h1(x), 

then the number of letter c in x must be twice more than letter a. 
So there must be a substring cc in x, then x can write as  

x=ucv, 

where u=(a+c)+, v{a, c}*. Note that cc is a suffix of uc, then 
0101 is a suffix of g1(uc). By the definition of h1 and g1, we 
can get |h1(x)|| h1(u)||g1(u)|, then there must be 0101 in h1(x). 
We have analyzed that there can't be 0101 in h1(x). We get a 
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contradiction which is the same as above case, so the length of 
g1(x) can't be longer than h1(x).     

According to the analysis above, the letter b can't occur in 
any solution of P.                 � 

Lemma1 and Lemma 2 provide that 

Theorem 1: The instance P has no finite solution. 

B. P has a unique infinite solution 

We will prove that 

Theorem 2: P has a unique infinite solution, and only 
letters a and c occur in this infinite solution. 

Proof. We have proved that a solution of P can only 
contain letters a and c, and no two consecutive c. By lengths 
difference between h1(a) and g1(a), h1(c) and g1(c), we can get 
that, for any finite prefix r of a solution, the length of h1(r) 
must be longer than g1(r). Since there are no substring 00 in 
h1(r), so there always exists a letter can match continually. So 
P has a infinite solution.

Note that 1 is a prefix of g1(a) and 0 is a prefix of g1(c), so 
there is only one letter can follow r. Thus the infinite solution 
of P is unique.                 � 

Let us solve this instance. The solution should begin with 
the letter a, and then letters are selected one by one. The 
beginning of the solution is as follows: 

110 
1 
a  

① 

110110 
11 
a a 

② 

1101101 
1101 
a a c 

③ 

1101101110 
11011 
a a c a 

④ 

11011011101 
1101101 
a a c a c 

⑤ 

11011011101110 
11011011 
a a c a c a 

⑥ 

11011011101110110 
110110111 
a a c a c a a 

⑦ 

110110111011101101 
11011011101 
a a c a c a a c 

⑧ 

110110111011101101110 
110110111011 
a a c a c a a c a 

⑨ 

110110111011101101110110 
1101101110111 
a a c a c a a c a a 

⑩ 

 
Denote the infinite solution of P by ŵ=s1s2s3......, where for 

all i, si{a, c}. Define ti, for all i, h1(si)=g1(si)ti. Several ti are 
enumerated, see Fig.1.  

It is interesting that t3, t5, t8, t13 are generated by a 
Fibonacci substitution. The substitution rule is  








1101101

11011011101
: . 

 
Figure 1.  Fibonacci substitution sequences of t i.  

The process for solving the instance P can be viewed as 
continuously generating Fibonacci substitution sequences. The 
substitution rule is  









ac

aca
: . 

Then we get the following result 

Theorem 3: The infinite solution of P is ŵ=α1α2α3......, 
where α1=a, α2=ac, and for all i3, α i=α i-1α i-2. 
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