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Abstract. Accurate and efficient clock synchronization algorithm is very important in Wireless 
Sensor Networks (WSN). Considering the physical nature of sensors, a multi-model kalman filter 
clock synchronization algorithm based on experiments and hypothesis testing theory is proposed. The 
sensor experiments on the base of TelosB platform demonstrate that sensor clock system switches 
between different models. Based on this observation, a general multi-model kalman filter to describe 
clock offset is presented. Hypothesis testing method is used to switch the model between the 
first-order kalman filter and second-order kalman filter. Experiments show that the proposed 
algorithm can trace clock offset effectively. 

Introduction 

Clock synchronization is important in wireless sensor network (WSN). Sorting logs for systems 
diagnostics, coordinating of scheduling events in some media access control(MAC) protocols and 
providing accurate timestamps for cryptographic protocols all need precise clock synchronization 
mechanism. 

Ref. [1] and [2] think that limited power of sensor nodes in WSN make it impossible to achieve 
clock synchronization by unlimited passing information among sensor nodes. Due to limited power, 
phase noise, thermal noise and degradation rate, the sensor clock crystal frequency is not very precise. 
Ref. [3] think that sensors are usually deployed in a complex environment in which temperature, 
humidity and other factors may affect the work of the clock. The features of WSN make it very 
difficult to use the existing methods to realize clock synchronization. 

Most clock synchronization protocols such as those presented in [4, 5, 6] use Stochastic 
Differential Equations (SDEs) to describe the clock model on the base of oscillator physical nature. 
Protocols presented in [7, 8] use a constant model to describe the relatively stable clock system with 
"white noise" which reflects phase noise and other random factors. Researchers usually build clock 
skew modeling by using the first-order autoregressive model. Ref. [4] uses second-order kalman filter 
model to describe clock skew. However, most of the models are only suitable for special 
environments and are not general. In order to alleviate the various difficulties of clock 
synchronization, this paper proposes a general clock synchronization algorithm based on the 
multi-model kalman filter and hypothesis testing theory. From the sensor experiments on the base of 
TelosB platform, it is observed that sensor clock system switch between different models. Based on 
this analysis, a general multi-model kalman filter model is put forward for describing clock oscillator 
drift. Expectation-maximum(EM) algorithm is used to estimate parameters in the model and 
hypothesis testing method is used to realize model switch between the first-order kalman filter and 
second-order kalman filter. Finally, the performance gains of our algorithm is demonstrated by using 
different kalman filter models based on experiment data. 

Sensor Clock Experiment and Analysis 
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Sensor Clock Experiment Set.In order to study clock model from the perspective of crystal 
oscillator, the following experiments are implemented. Clock skew test of 10 wireless sensor nodes 
was conducted. Node model is TPR2400CA, the platform is TelosB, CPU frequency is from 
2400MHz to 2483.5MHz. It is noteworthy that TPR2400CA is the mainstream hardware for wireless 
sensor networks. The test environment was the enclosed area with air conditioning where 
temperature was controlled to be  25 5 C± ° . All 10 sensors were deployed at different locations to 
monitor temperature and send temperature messages to the receiver at 500s intervals. Receiver was 
connected to the computer with a stable electricity supply. When temperature message was received, 
the time when the message was sent exactly will be recorded. This recorded time is the basis of time 
synchronization test. All sensor nodes were powered by the same type of battery. 

The experiment was repeated 10 times. All the sensor nodes have the same time offset rule was 
observed. Here the paper randomly selected three nodes data to explain the experiment results. 

Results and Analysis.Before node power is depleted, each node can upload about 670 data to the 
receiver. During the last period when battery is nearly depleted, the received data is very unstable. So 
only the first 600 messages were used to analyze the data. Fig. 1 shows the clock offset of three nodes 
at different time. The dotted line shows the ideal clock, the other three curves show the three clock 
offset of the sensor nodes. From Fig.1, it can be seen that every clock offset curve has a deviation with 
the ideal curve and the deviation has a gradual upward trend. The first 300 sampling points are 
relatively stable, while the remaining nodes deviate from the ideal curve rapidly. All the information 
shows that random noise is not the only factor that affects clock offset and these clocks are slower 
than the ideal clock. From Fig. 1, it can be observed that the clock skew has the model-switching 
phenomenon.  

A single model can not effectively describe the sensor node clock changes from the observation 
and analysis of the experiments. 
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Figure1  the clock offset of three nodes 

Multi-model Kalman Filter Clock Model 

Clock model of the wireless sensor node is very complex. Therefore, establish a reliable clock 
model to realize clock synchronization is important. As the clock oscillator frequency is a key 
factor that affects clock, crystal oscillator characteristics are the focus in this section. 

From Ref.[10], the following general clock offset model is gotten, 
2[ ] [ 1] [ ] [ ] 0.5 [ ] [ ] [ ]o n o n s n n n n nτ γ τ ϑ= − + + +                                                                               (1) 

where ][no is clock offset, ][ns  is the clock skew at sampling time n, ][nτ is sampling time 
interval, ][nϑ  is the combination of offset noise, skew noise and aging rate noise, and ][nγ  is the 
aging rate. 
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As in [11], ][nx  represents the n-th value of the clock variable, ][ny represents the n-th clock 
observation, F represents the state transition matrix, H represents the observation matrix, ][nμ  
and ][nζ  represents the white noise covariance matrix Q and R respectively, the following Kalman 
Filter can be obtained. 
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                                                                                                                   (2) 

Two kinds of kalman filter models according to the above definitions are discussed here. 
Case 1: If the aging rate is zero, the clock model is regarded as a constant velocity model. The 

following set for the kalman filter is given 
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][nζ  is observation noise. Thus the model is the first-order kalman filter of the clock offset. 
Case 2: If the aging rate is a non zero constant, the clock model is regarded as an accelerated 

motion model. The aging rate is a small perturbation around the mean random process. Assuming a 
tiny disturbance for a white noise, set the kalman filter to be the following 
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where ][nρ is aging rate noise, ][nζ  is observation noise. Then the model becomes the 
second-order kalman filter of the clock offset. 

Ref. [10] has used first-order kalman filter to track the clock synchronization and the results 
shown that first-order kalman filter can only trace the observation data of some sampling points. Ref. 
[12] has used second-order kalman filter to track the clock synchronization and the results shown 
that second-order kalman filter has proper performance in tracing the latter sampling points. 

Ref. [10] and Ref. [12] show that whether first-order kalman filter or second-order Kalman filter 
clock model can not trace clock offset very well independently. Further analysis demonstrates that 
the clock offset can be divided into two parts. The first part approximates to meet the first-order 
kalman filter model and the other part approximates to satisfy the second-order kalman filter model. 
In this paper, a multi-model kalman filter clock synchronization model is proposed. Using this 
method, the dynamic system can switch between first-order kalman filter and second-order kalman 
filter. 

Hypothesis Testing for Multi-model Kalman Filter 

Hypothesis Testing.The covariance tS  at time t  in the iterative process of the kalman filter can 

be obtained by the following equation 

t
T

tttt RHVHS += −1,                                                                                                                                                    (3) 

where tH  represents observation matrix model at time t and is used to map the actual state space 

to the observation space, tR  is white noise covariance matrix value at time t, 1, −ttV is the error 

covariance matrix for estimation value based on observational data of the t-1 moment prior to the 
time t, H represents the initial set and has  different value for first-order filter and second-order filter. 

For the system with two models, the transfer of the model can be reflected in the changes of the 
error covariance. That is, if the model is transferred, significant changes in error covariance will 
occur. Therefore, hypothesis testing is used to determine the transfer of this model. Based on 
hypothesis testing theory [11], the following null hypothesis and alternative hypothesis can be gotten, 

1110 :,: −− ≠= tttt SSHSSH                                                                                                              (4) 

where 0H  is rejection region and 1H  is acceptance region. 
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Using (3) and (4), Eq. (5) can be obtained, 
{ } { } htt sKDKDPistrueHrejectHP =≥≤= )()(| 2100                                                                    (5) 

where hs  is the significance level, 1K and 2K are threshold, 21 KK < , tD is rejection region. 

Based on Eq. (4) and Eq. (5), the following rejection region tD will be gotten, 

)(2
2/11 mKD

hst −=≤ χ  or )(2
2/12 mKD

hst −=≥ χ                                                                                       (6) 

where m  is degrees of freedom. Using the method of hypothesis testing, not only computing the 
transition probability matrix is avoided, but also judging when the state of the kalman iterative 
process transfer is avoided. 

Clock Offset Tracing Using Multi-model Algorithm.The only observational data is clock skew 
in observing system. The observation error Ut  is one-dimensional vector. Ref. [11] indicates that 
hypothesis testing is usually 5%, 1% or 0.1% significance level. 
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Figure 2 the first item of error covariance matrix     Figure 3 Error comparison result between 

different models 
If the hypothesis testing probability is less than hs , it will reject the null hypothesis. The more 

significantly lower than hs , it will be the more inclined to accept the null hypothesis. But at the same 

time, it will increase the risk of error null hypothesis (Type II error described in [11]). Therefore, it 
does not have statistical nature. As how to choose significant level is involved in balance significance 
and effectiveness of hypothesis testing, the significant level is generally in the probability interval  
from Type I to Type II error probability. Here 1% is used to be as the significance level to verify the 
multi-model kalman filter performance. 

Fig. 2 shows the tracking of the first item (P(1,1)) of error covariance matrix of multimode clock 
offset tracking. (P(1,1)) converges to a fixed value in a very short period of time. There is a small 
fluctuation at approximately the 300th sampling point and it demonstrates that a model switch occurs 
at this time. 

Fig. 3 shows that the error comparison between observation value and estimated values of 
different models. From Fig.3, it can be seen that the error in the last part of the first order filter and the 
first part of second-order filter are greater than those in multi-model. Fig. 2 and Fig. 3 demonstrate 
that the multi-model kalman filter has a higher accuracy compared with first-order filter and 
second-order filter. 

Conclusion 

The multi-model kalman filter method in clock offset tracking has smaller error compared with the 
simple first-order or second-order methods. The multi-model algorithm is divided into learning phase 
and tracking phase. It continuously collects clock synchronization messages of the clock model in 
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learning stage. The messages are the basis for tracking in the next stage. In the tracking phase, the 
algorithm synchronizes the clock of the wireless sensor nodes using the multi-model kalman filter. 
The computing function of the two stages is configured in the server, so the algorithm does not have 
too much impact on the energy consumption of sensor nodes. Therefore, the multi-model kalman 
filter algorithm based on hypothesis testing has good performance than first-order and second- order 
filter. 
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