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Abstract

Given an associative unital Zy-graded algebra over the complex numbers we construct
the graded g¢-differential algebra by means of a graded g-commutator, where ¢ is a
primitive N-th root of unity. The N-differential d of the graded g-differential algebra
is a homogeneous endomorphism of degree 1 satisfying the graded ¢-Leibniz rule and
dY¥ = 0. We apply this construction to a reduced quantum plane and study the
exterior calculus on a reduced quantum plane induced by the N-differential of the
graded g-differential algebra. Making use of the higher order differentials d*z induced
by the N-differential d we construct an analogue of an algebra of differential forms
with exterior differential satisfying d" = 0.

1 Introduction

The basic property of the differential d of a cochain complex is d?> = 0, and the study
of the cohomologies of a cochain complex can be viewed as the study of the nontrivial
solutions of the equation d> = 0. This basic property of the differential of a cochain
complex is based on the operation of alternation which twice successively applied gives
zero because of the identity 1+ (—1) = 0. It should be mentioned that an intensive
and fruitful development of the g-deformed structures within the framework of quantum
groups, non-commutative geometry and field theories on quantum spaces stimulated the
interest towards a possible g-generalization of some classical structures in mathematics.
In our case the above mentioned identity 1 + (—1) = 0 can be easily generalized because
it is a particular case of the well known identity 1 +¢q + ¢> + ... + ¢"¥~! = 0, where ¢
is a primitive N-th root of unity. This leads to a natural idea to generalize the notion
of a cochain complex replacing the classical property d> = 0 by the more general one
dN =0, N > 2. This generalization of a cochain complex called N-complex was described
in [10]. An immediate consequence of the basic property d’¥ = 0 of the differential of
a N-complex is a new type of cohomologies Kerd?/Imd" P, where p = 1,2,..., N. The
theory of N-complexes was elaborated in the series of papers [6, 7, 8], where one can find
several examples of N-complexes with detailed analysis of their generalized cohomologies
and their applications to constrained systems (BRS-method).

A generalization of a graded differential algebra called a graded g-differential algebra
[7] arises naturally within the framework of the theory of N-complexes. The differential
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of a graded g-differential algebra satisfies the graded ¢-Leibniz rule and dv = 0. It is
well known that one of the most important examples of graded differential algebra is the
algebra of differential forms on a smooth manifold (de Rham complex) and g-generalization
of a graded differential algebra raises an intriguing question: is it possible to construct
a realization of a graded g¢-differential algebra by analogues of differential forms on a
geometric space? The first attempt in this direction was made in [10], where the author
constructed the analogues of differential forms on R™ with exterior differential d satisfying
dV = 0. Unfortunately it can be shown that the algebraic structure of the analogues
of differential forms proposed in [10] is not consistent (this was explained to the author
of the present paper by M. Dubois-Violette in the private communication). The main
purpose of the present paper is to construct an example of a graded g¢-differential algebra
with the help of analogues of differential forms on a geometric space. Given an associative
unital graded C-algebra we prove that if this algebra contains an element v satisfying
vN = ae, where e is the unit element of an algebra and a € C, then this algebra becomes
a graded g¢-differential algebra if we endow it with a differential d constructed with the
help of a graded g-commutator. Then we apply this construction to a reduced quantum
plane [4] which is the algebra of polynomials generated by two variables z,y satisfying
zy = qyz, ¥ = yV = 1, where ¢ is a primitive N-th root of unity. It is obvious that
this algebra contains an element satisfying v~ = 1 and according to the previously proved
theorem we have a structure of a graded g-differential algebra. It should be mentioned that
the algebra of polynomials on a reduced quantum plane is a particular case of a generalized
Clifford algebra [9]. Making use of the generators z,y which can be interpreted as non-
commutative coordinates of a reduced quantum plane we express the differential d and the
elements of the graded g-differential algebra in terms of differentials d¥z,k = 1,2,..., N—1
interpreting the elements of the graded ¢-differential algebra as differentials forms and d as
exterior differential. We would like to point out that the peculiar property of the exterior
calculus on a reduced quantum plane with exterior differential satisfying d¥ = 0 is the
appearance of the higher order differentials d*z, k > 1 [11, 12, 2, 5, 13].

2 Graded g¢-differential algebra

In this section given a Zy-graded algebra we construct the graded g-differential algebra.
Let us remind the definition of a graded g¢-differential algebra [7]. A unital associative
algebra is said to be a graded g¢-differential algebra (¢ € C,q # 1) if it is a Zy-graded (or
Z-graded) algebra endowed with the linear mapping d of degree 1 satisfying the graded
¢-Leibniz rule and d¥ = 0 in the case when ¢ is a primitive N-th root of unity. The linear
mapping d is called an N-differential of a graded g-differential algebra.

Let A be an associative unital Z (or Zy)-graded algebra over the complex numbers C
and A* C A be the subspace of homogeneous elements of a grading k. The grading of a
homogeneous element w will be denoted by |w|, which means that if w € A then |w| = k.
Let ¢ be a complex number such that ¢ # 1. The g-commutator of two homogeneous
elements w,w’ € A is defined by the formula

[w, w'], = ww' — gl (2.1)

Using the associativity of an algebra A and the property |ww'| = |w| + |w’| of its graded



On a graded ¢-differential algebra 3

structure it is easy to show that for any homogeneous elements w,w’,w” € A the g¢-
commutator has the property

fw,w'w]y = [w, |’ + g1 fw, w),. (2.2)

Given an element v € A! one can define the mapping d, : A¥ — A*! by the following
formula
dyw = [v,wlg, w e A",

It follows from the property of g-commutator (2.2) that d, is a graded g¢-differential on
an algebra A, i.e. it is a homogeneous linear mapping of degree 1 satisfying the graded
g-Leibniz rule

dy(ww') = dy(w)w' + ¢"*lwd, (W), (2.3)
where w,w’ are the homogeneous elements of A.

Lemma 1. For any integer k > 2 the k-th power of the q-differential d,, can be written as
follows

k
d*w = sz(k)kaiwvi, (2.4)
=0
where w is a homogeneous element of A and
k i _|wl|; kly! i _|wl|; k
p® = (cayighle Ml qyigh. [ ; } , (25)
) q
i(i —1)

2
(k)

1

lwl;, = ilw|+ (2.6)

Proof. The coefficients p;"’ of an expansion (2.4) satisfy the following recurrence relations

k k+1 k+1 k k+1 k k
py) = pitY =1, pl = —gleltRp) pHD = pB) gl ) (2.7)
where 1 < i < k. Now we prove the formula (2.4) by means of a mathematical induction
(with respect to k) and the recurrence relations (2.7). [

Theorem 1. If N is an integer such that N > 2, A is an associative unital Zn-graded
C-algebra containing an element v of grading one such that vN = ae, where o € C and e is
the unity element of an algebra A, q is a primitive N-th root of unity, then dyw = [v, w],
satisfies dYw = 0 for any w € A.

Proof. It follows from the Lemma 1 that if ¢ is a primitive N-th root of unity then for
any integer [ = 1,2,..., N — 1 the coefficient pgN) contains the factor [IV], which is equal

to zero in the case of ¢ being a primitive N-th root of unity and this implies pl(N) = 0.
Thus dY (w) = vNw + (=1)Ng*NwoN. Taking into account that vV = ae we obtain
dN(w) = (14 (=1)N¢"I¥)aw. The first factor in the right-hand side of the above formula
equals to zero. Indeed if N is an odd number then 1 — (¢ )¥ = 0. In the case of an

even integer N we have 1+ (q%)N*1 =1+ (—=1)N=1 =0, and this ends the proof. [ |
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Let A be an associative unital Zy-graded algebra over the complex numbers C with
unit element denoted by e. Then from the property (2.3) and the Theorem 1 it follows

Corollary. If there exists an element v € A of grading 1 such that v"¥ = ae,a € C then
an algebra A endowed with the homogeneous linear mapping d, : A* — AT of degree
1 defined by dyw = [v,w],, where w € A, and q is a primitive N-th root of unity, is a
Zn-graded q-differential algebra and d,, is its N -differential.

Let us remind that a first order differential calculus over an associative unital algebra B
is a pair (M, d), where M is a (B, B)-bimodule and d is a linear mapping d : B — M which
satisfies the Leibniz rule d(ww') = d(w)w’ + wd(w'), where w,w’ € B. The subspace A°
of elements of grading zero of a Zy-graded algebra A is a subalgebra, and N-differential
d, restricted to this subalgebra induces a first order differential calculus (A!,d,) where
the space A' of elements of grading 1 has a (A, .A°)-bimodule structure. Indeed it follows
from the associativity of the algebra A and its Zy-graded structure that for each k the
mappings A° x A¥ — AF and AF x A" — AF determined by the algebra multiplication
(r,w) — rw, (w,s) — ws, where w € A* and r,s € A°, induce a (A°, A°)-bimodule
structure on AF. In the next section we consider a reduced quantum plane from a point
of view of graded g¢-differential algebra and study the exterior calculus induced by the
N-differential.

3 Reduced quantum plane as a ¢-differential algebra

An exterior calculus with exterior differential d satisfying d”¥ = 0 has been studied in
[1, 2, 12]. In this section we study the exterior calculus on a reduced quantum plane
constructed with the help of a graded g¢-differential algebra described in the previous
section. Let us remind that the unital associative algebra C,, generated, over the complex

numbers C, by the two variables  and y satisfying the relations zy = ¢ yz, 2V =

yN = 1, where ¢ is a primitive N-th root of unity, can be considered as an algebra
of polynomials over a reduced quantum plane. Let us mention that this algebra has a
representation by N x N complex matrices. It should be also mentioned that the algebra

of polynomials over a reduced quantum plane is a particular case of a generalized Clifford

algebra which is an algebra generated by variables z1,x2,...,z, obeying the relations
TiT; = ng(j*i)xjxi, va = 1, where sg is the sign function.
The set of monomials B = {1,y,z, 2%, yz,y?,...,y*z!,...,yN 12NV =1} can be taken as

the basis of the vector space of the algebra C,,. Having chosen the basis B we can endow
this vector space with a Zy-graded structure as follows: if a polynomial w € C,, expressed
in terms of the monomials of B has the form

N-1

w= Y fyfa, BecC, (3.1)

=0

then we shall refer to it as the homogeneous polynomial of grading k, where k € Zy. Let
us denote the grading of a homogeneous polynomial w by |w| and the subspace of the
homogeneous polynomials of grading k by (qu. It is obvious that

Crg=CQ@®Cl,®...0CN . (3.2)
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In particular a polynomial r of grading zero has the form
N—-1
r=>Y fal, B eCrecl, (3.3)
=0

It is easy to show that the Zy-graded structure defined on a vector space C,, by (3.2) is
consistent with the algebra structure of C,4, i.e. for any two homogeneous polynomials
we have |ww'| = |w| + |w'|. Consequently C,, is a Zy-graded algebra with respect to
(3.2), and there exists an element v of grading one of this algebra satisfying vV = a,
where o € C. Indeed one can take for instance v = y which satisfies all mentioned above
conditions. According to the Theorem 1 proved in the previous section we can endow a
reduced quantum plane with the structure of a graded g¢-differential algebra defining the
N-differential by the formula d,w = [v, w],, where ¢ is a primitive N-th root of unity and
w € Cpy.

In order to give a differential-geometric interpretation to the graded g-differential al-
gebra structure of C,, induced by the N-differential d, we interpret the commutative
subalgebra (ng of the z-polynomials (3.3) of C,, as an algebra of polynomial functions
on a one dimensional space with coordinate x. Since (Cffq for k > 0is a (ng—bimodule
we interpret this ng—bimodule of the elements of grading k£ as a bimodule of differential
forms of degree k and we shall call an element of this bimodule a differential k-form on a
one dimensional space with coordinate x. The N-differential d, can be interpreted within
the framework of this approach as an exterior differential.

It is easy to show that in one dimensional case we have a simple situation when every
bimodule Cffq, k > 0 of the differential k-forms is a free right module over the commutative
algebra of functions C},. Indeed if we write a differential k-form w as follows

N-1 N-1
w = y" Z Bt =yFr, v = Z Bl € (C,Qq, (3.4)
1=0 1=

and take into account that the polynomial r = (y*)~lw = ¢V —*

w is uniquely determined
then we can conclude that (qu is a free right module over (ng generated by y*.

It is well known that a bimodule structure on a free right module over an algebra B
generated freely by p generators is uniquely determined by the homomorphism from an
algebra B to the algebra of (p x p)-matrices over B. Since in the case of a reduced quantum
plane every right module (Cffq is freely generated by one generator (for instant we can take
y* as a generator of this module) its bimodule structure induces the homomorphism of
the algebra of functions (ng and denoting this homomorphism in the case of the generator

y* by Ay : (C(r]q — (ng we have
ryt = y" ALr), (3.5)

for any function r € (C(r]q. Making use of the relations (3) of the algebra of polynomials
on a reduced quantum plane we easily find that Ap(z) = ¢®x. Since the algebra of
functions (ng may be viewed as a bimodule over the same algebra we can consider the
functions as degree zero differentials forms and the corresponding homomorphism is the

identity mapping of C,4, i.e. A9 = I, where I : (ng — (ng is the identity mapping. Thus
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the bimodule structures of the free right modules (ng, (C(r]q, e ,(Cﬁ\g*1 of differential forms
induce the associated homomorphisms Ag, A1, ..., Ay_1 of the algebra (ng. It is easy to

see that for any k it holds Ay = A¥.

Let us start with the first order differential calculus on the algebra of functions (ng
induced by the N-differential d,, which is the pair (C},,dy), where d, : C}, — C}, and C},
is the bimodule over (ng. Since (C}q is a free right module over (ng generated by y there
exists an invertible element u € (ng such that v = y - u. We take v as a generator of the
free right module (C,l,q. Using the relation (3.5) and the commutativity of the algebra (ng
we find that the relation determining the bimodule structure in terms of the new generator
v has the same form (3.5) as in the case of the generator y. Let us express the differential

dyw of a function w € (ng in terms of the new generator v. We get
dyw = vw — wv = vw — vA;(w) = v(w — A1 (w)) = vAy(w), (3.6)

where Ay =1 — Ay : (C(r]q — (ng. It is easy to verify that for any functions w,w’ € CY, the

mapping A, has the following properties

0
rq

Ag(ww') = Ag(w)e! + Ar(w)A, (),
Ag(*) = (1 - gkl *.

Particularly d,x = yA,(x), and this formula shows that d,z can be taken as a generator
of the free right module (C,l,q.

Since the bimodule (C}"q of the first order differential calculus ((C%q, d,) is a free right
module we deal with a free coordinate calculus over the algebra (C(r]q [3], and in the case
of a calculus of this type the differential induces the derivative 0 : (ng — (ng which is
defined by the formula d,w = d,x dw, Yw € (C(r]q. Using this definition we find that for
any function w it holds

ow=(1—¢q) VN 1Ag(w). (3.9)

From this formula and (3.7),(3.8) it follows that this derivative satisfies the generalized
Leibniz rule

A(ww') = d(w) - w' + Ay (w) - d(w'), (3.10)
and
dx® = [k], 2. (3.11)

Let us study the structure of the higher order exterior calculus on a reduced quantum
plane or, by other words, the structure of the bimodule (Cffq of differential k-forms, when
k > 1. In this case we have a choice for the generator of the free right module. Indeed
since the k-th power of the exterior differential d, is not equal to zero when k < N, i.e.
d¥ # 0 for k < N, a differential k-form w may be expressed either by means of (d,z)* or
by means of dﬁx. Straightforward calculation shows that we have the following relation
between these generators

dix = L, (dyx)F z17F. (3.12)

k(k—1)

q 2
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We will use the generator (d,z)* of the free right module (qu as a basis in our calculations
with differential k-forms. For any differential k-form w € (qu we have d,w € Cff; L. Let us
express these two differential forms in terms of the generators of the modules (qu and (Cf;r L
We have w = (dy2)* r, dyw = (dyz)* ' 7, where r, 7 € CY, are the functions. Making use of
the definition of the exterior differential d, we calculate the relation between the functions
r,7 which is

F=(Agz) g Fr — " Au(r)), (3.13)

where Aj is the homomorphism of the algebra of functions (ng. This relation shows that
the exterior differential d, considered in the case of the differential k-forms induces the
mapping A((Ik) : ng — (ng on the algebra of the function which is defined by the formula

dyw = (dy) AP (1), (3.14)
where

w = (dyz)kr. (3.15)
It is obvious that

AP (r) = (Agx) Mg ™Fr — ¢" Av(r)). (3.16)

It is obvious that for k = 0 the mapping A((IO)

differential d, in the first order calculus, i.e.

AV (r) = or = (Agz) 7 (r — Ar(r)). (3.17)
The higher order mappings A((Jk), which we do not have in the case of a classical exterior
calculus on a one dimensional space, have the derivation like property

AP 'y = AR ()1 + g% A1 (r) AL (), (3.18)

coincides with the derivative induced by the

where kK = 0,1,2,...,N — 1. A higher order mapping Agk) can be expressed in terms of
the derivative 0 as a differential operator on the algebra of functions as follows
—k _ k

AW = gk + % z L, (3.19)
Thus we see that exterior calculus on a one dimensional space with coordinate x satisfying
¥ = 1 generated by the exterior differential d, satisfying d)Y = 0 has the differential
forms of higher order which are not presented in the case of a classical exterior calculus
with d> = 0. The formula for the exterior differential of these kind of differential forms
uses not an ordinary derivative but a deformed derivative (3.19). The exterior calculus
with exterior differentials d, satisfying d)Y = 0 can be considered in a more general case of
a generalized Clifford algebra with even number 2p of generators. Then we will have an
exterior calculus with dY = 0 on a p-dimensional space and the structure of this exterior
calculus and associated structures such as connections and curvatures will be a main object
of a forthcoming paper.

Acknowledgments. The author is grateful to the Estonian Science Foundation for a
financial support of this work under the grant No. 6206



8

V Abramov

References

[1]

Abramov V, Bazunova N, Algebra of differential forms with exterior differential d®> = 0 in
dimension one, in New Symmetries and Integrable Models, Editors: Frydryszak A, Lukierski J,
Popowicz Z, World Scientific, 2002, 603-609.

Abramov V, Kerner R, Exterior differentials of higher order and their covariant generalization,
Journal of Mathematical Physics, 41 (2000), 5598-5614.

Borowiec A, Kharchenko V K, Algebraic approach to calculuses with partial derivatives,
Siberian Advances in Mathematics, 5 (1995), 10-37.

Coquereaux R, Garcia A O, Trinchero R, Differential calculus and connections on a quantum
plane at a cubic root of unity, Rev. Math. Phys., 12 (2000), 227-285.

Coquereaux R, Differentials of higher order in noncommutative differential geometry, Lett.
Math. Phys., 42 (1997), 1650—-1669.

Dubois-Violette M, Lectures on graded differential algebras and noncommutative geometry,
in Noncommutative differential geometry and its applications to physics, Editors: Maeda Y
et al., Kluwer Academic Publishers, Math. Phys. Stud. 23 (2001), 245-306.

Dubois-Violette M, Generalized homologies for d¥ = 0 and graded g-differential algebras,
Contemp. Math., 219 (1998), 69-79.

Dubois-Violette M, Kerner R, Universal g-differential calculus and g-analogue of homological
algebra, Acta Math. Univ. Comenianae, LXV (1996), 175-188.

Fleury N, Rausch de Traubenberg M, Yamaleev R M, Generalized Clifford algebras and
hyperspin manifolds, Int. J. Theor. Phys., 32 (1993), 503-516.

Kapranov M M, On the g-analog of homological algebra, math.QA /9611005.

Kerner R, Graduation Zs et la racine cubique de I’équation de Dirac, C.R. Acad. Sci. Paris,
312 (1991), 191-196.

Kerner R, Abramov V, On certain realizations of g-deformed exterior differential calculus,
Rep. Math. Phys., 43 (1999), 179-194.

Laksov D, Thorup A, These are the differentials of order n, Transactions of the American
Mathematical Society, 351 (1999), 1293-1353.



