On a graded q-differential algebra

Viktor ABRAMOV

Institute of Pure Mathematics, University of Tartu, Liivi 2, Tartu 50409, Estonia E-mail: viktor.abramov@ut.ee

This article is part of the Proceedings of the Baltic-Nordic Workshop, Algebra, Geometry and Mathematical Physics which was held in Tallinn, Estonia, during October 2005.

Abstract

Given an associative unital \mathbb{Z}_N -graded algebra over the complex numbers we construct the graded q-differential algebra by means of a graded q-commutator, where q is a primitive N-th root of unity. The N-differential d of the graded q-differential algebra is a homogeneous endomorphism of degree 1 satisfying the graded q-Leibniz rule and $d^N=0$. We apply this construction to a reduced quantum plane and study the exterior calculus on a reduced quantum plane induced by the N-differential of the graded q-differential algebra. Making use of the higher order differentials $d^k x$ induced by the N-differential d we construct an analogue of an algebra of differential forms with exterior differential satisfying $d^N=0$.

1 Introduction

The basic property of the differential d of a cochain complex is $d^2 = 0$, and the study of the cohomologies of a cochain complex can be viewed as the study of the nontrivial solutions of the equation $d^2 = 0$. This basic property of the differential of a cochain complex is based on the operation of alternation which twice successively applied gives zero because of the identity 1 + (-1) = 0. It should be mentioned that an intensive and fruitful development of the q-deformed structures within the framework of quantum groups, non-commutative geometry and field theories on quantum spaces stimulated the interest towards a possible q-generalization of some classical structures in mathematics. In our case the above mentioned identity 1 + (-1) = 0 can be easily generalized because it is a particular case of the well known identity $1 + q + q^2 + \ldots + q^{N-1} = 0$, where q is a primitive N-th root of unity. This leads to a natural idea to generalize the notion of a cochain complex replacing the classical property $d^2 = 0$ by the more general one $d^N = 0, N \ge 2$. This generalization of a cochain complex called N-complex was described in [10]. An immediate consequence of the basic property $d^N = 0$ of the differential of a N-complex is a new type of cohomologies $\operatorname{Ker} d^p/\operatorname{Im} d^{N-p}$, where $p=1,2,\ldots,N$. The theory of N-complexes was elaborated in the series of papers [6, 7, 8], where one can find several examples of N-complexes with detailed analysis of their generalized cohomologies and their applications to constrained systems (BRS-method).

A generalization of a graded differential algebra called a graded q-differential algebra [7] arises naturally within the framework of the theory of N-complexes. The differential

of a graded q-differential algebra satisfies the graded q-Leibniz rule and $d^N=0$. It is well known that one of the most important examples of graded differential algebra is the algebra of differential forms on a smooth manifold (de Rham complex) and q-generalization of a graded differential algebra raises an intriguing question: is it possible to construct a realization of a graded q-differential algebra by analogues of differential forms on a geometric space? The first attempt in this direction was made in [10], where the author constructed the analogues of differential forms on \mathbb{R}^n with exterior differential d satisfying $d^{N}=0$. Unfortunately it can be shown that the algebraic structure of the analogues of differential forms proposed in [10] is not consistent (this was explained to the author of the present paper by M. Dubois-Violette in the private communication). The main purpose of the present paper is to construct an example of a graded q-differential algebra with the help of analogues of differential forms on a geometric space. Given an associative unital graded \mathbb{C} -algebra we prove that if this algebra contains an element v satisfying $v^N = \alpha e$, where e is the unit element of an algebra and $\alpha \in \mathbb{C}$, then this algebra becomes a graded q-differential algebra if we endow it with a differential d constructed with the help of a graded q-commutator. Then we apply this construction to a reduced quantum plane [4] which is the algebra of polynomials generated by two variables x, y satisfying $xy = qyx, x^N = y^N = 1$, where q is a primitive N-th root of unity. It is obvious that this algebra contains an element satisfying $v^N = 1$ and according to the previously proved theorem we have a structure of a graded q-differential algebra. It should be mentioned that the algebra of polynomials on a reduced quantum plane is a particular case of a generalized Clifford algebra [9]. Making use of the generators x, y which can be interpreted as noncommutative coordinates of a reduced quantum plane we express the differential d and the elements of the graded q-differential algebra in terms of differentials $d^k x, k = 1, 2, \dots, N-1$ interpreting the elements of the graded q-differential algebra as differentials forms and d as exterior differential. We would like to point out that the peculiar property of the exterior calculus on a reduced quantum plane with exterior differential satisfying $d^N = 0$ is the appearance of the higher order differentials $d^k x, k > 1$ [11, 12, 2, 5, 13].

2 Graded q-differential algebra

In this section given a \mathbb{Z}_N -graded algebra we construct the graded q-differential algebra. Let us remind the definition of a graded q-differential algebra [7]. A unital associative algebra is said to be a graded q-differential algebra ($q \in \mathbb{C}, q \neq 1$) if it is a \mathbb{Z}_N -graded (or \mathbb{Z} -graded) algebra endowed with the linear mapping d of degree 1 satisfying the graded q-Leibniz rule and $d^N = 0$ in the case when q is a primitive N-th root of unity. The linear mapping d is called an N-differential of a graded q-differential algebra.

Let \mathcal{A} be an associative unital \mathbb{Z} (or \mathbb{Z}_N)-graded algebra over the complex numbers \mathbb{C} and $\mathcal{A}^k \subset \mathcal{A}$ be the subspace of homogeneous elements of a grading k. The grading of a homogeneous element w will be denoted by |w|, which means that if $w \in \mathcal{A}^k$ then |w| = k. Let q be a complex number such that $q \neq 1$. The q-commutator of two homogeneous elements $w, w' \in \mathcal{A}$ is defined by the formula

$$[w, w']_q = ww' - q^{|w||w'|}w'w. (2.1)$$

Using the associativity of an algebra A and the property |ww'| = |w| + |w'| of its graded

structure it is easy to show that for any homogeneous elements $w, w', w'' \in A$ the q-commutator has the property

$$[w, w'w'']_q = [w, w']_q w'' + q^{|w||w'|} w'[w, w'']_q.$$
(2.2)

Given an element $v \in \mathcal{A}^1$ one can define the mapping $d_v : \mathcal{A}^k \to \mathcal{A}^{k+1}$ by the following formula

$$d_v w = [v, w]_q, \qquad w \in \mathcal{A}^k.$$

It follows from the property of q-commutator (2.2) that d_v is a graded q-differential on an algebra \mathcal{A} , i.e. it is a homogeneous linear mapping of degree 1 satisfying the graded q-Leibniz rule

$$d_v(ww') = d_v(w)w' + q^{|w|}wd_v(w'), \tag{2.3}$$

where w, w' are the homogeneous elements of \mathcal{A} .

Lemma 1. For any integer $k \geq 2$ the k-th power of the q-differential d_v can be written as follows

$$d_v^k w = \sum_{i=0}^k p_i^{(k)} v^{k-i} w v^i, \tag{2.4}$$

where w is a homogeneous element of A and

$$p_i^{(k)} = (-1)^i q^{|w|_i} \frac{[k]_q!}{[i]_q! [k-i]_q!} = (-1)^i q^{|w|_i} \begin{bmatrix} k \\ i \end{bmatrix}_q, \tag{2.5}$$

$$|w|_i = i|w| + \frac{i(i-1)}{2}. (2.6)$$

Proof. The coefficients $p_i^{(k)}$ of an expansion (2.4) satisfy the following recurrence relations

$$p_0^{(k)} = p_0^{(k+1)} = 1, \quad p_{k+1}^{(k+1)} = -q^{|w|+k} p_k^{(k)}, \quad p_i^{(k+1)} = p_i^{(k)} - q^{|w|+k} p_{i-1}^{(k)}, \tag{2.7}$$

where $1 \le i \le k$. Now we prove the formula (2.4) by means of a mathematical induction (with respect to k) and the recurrence relations (2.7).

Theorem 1. If N is an integer such that $N \geq 2$, \mathcal{A} is an associative unital \mathbb{Z}_N -graded \mathbb{C} -algebra containing an element v of grading one such that $v^N = \alpha e$, where $\alpha \in \mathbb{C}$ and e is the unity element of an algebra \mathcal{A} , q is a primitive N-th root of unity, then $d_v w = [v, w]_q$ satisfies $d_v^N w = 0$ for any $w \in \mathcal{A}$.

Proof. It follows from the Lemma 1 that if q is a primitive N-th root of unity then for any integer $l=1,2,\ldots,N-1$ the coefficient $p_l^{(N)}$ contains the factor $[N]_q$ which is equal to zero in the case of q being a primitive N-th root of unity and this implies $p_l^{(N)}=0$. Thus $d_v^N(w)=v^Nw+(-1)^Nq^{|w|_N}wv^N$. Taking into account that $v^N=\alpha e$ we obtain $d_v^N(w)=(1+(-1)^Nq^{|w|_N})\alpha w$. The first factor in the right-hand side of the above formula equals to zero. Indeed if N is an odd number then $1-(q^N)^{\frac{N-1}{2}}=0$. In the case of an even integer N we have $1+(q^{\frac{N}{2}})^{N-1}=1+(-1)^{N-1}=0$, and this ends the proof.

Let \mathcal{A} be an associative unital \mathbb{Z}_N -graded algebra over the complex numbers \mathbb{C} with unit element denoted by e. Then from the property (2.3) and the Theorem 1 it follows

Corollary. If there exists an element $v \in \mathcal{A}$ of grading 1 such that $v^N = \alpha e, \alpha \in \mathbb{C}$ then an algebra \mathcal{A} endowed with the homogeneous linear mapping $d_v : \mathcal{A}^k \to \mathcal{A}^{k+1}$ of degree 1 defined by $d_v w = [v, w]_q$, where $w \in \mathcal{A}$, and q is a primitive N-th root of unity, is a \mathbb{Z}_N -graded q-differential algebra and d_v is its N-differential.

Let us remind that a first order differential calculus over an associative unital algebra \mathcal{B} is a pair (\mathcal{M}, d) , where \mathcal{M} is a $(\mathcal{B}, \mathcal{B})$ -bimodule and d is a linear mapping $d: \mathcal{B} \to \mathcal{M}$ which satisfies the Leibniz rule d(ww') = d(w)w' + wd(w'), where $w, w' \in \mathcal{B}$. The subspace \mathcal{A}^0 of elements of grading zero of a \mathbb{Z}_N -graded algebra \mathcal{A} is a subalgebra, and N-differential d_v restricted to this subalgebra induces a first order differential calculus (\mathcal{A}^1, d_v) where the space \mathcal{A}^1 of elements of grading 1 has a $(\mathcal{A}^0, \mathcal{A}^0)$ -bimodule structure. Indeed it follows from the associativity of the algebra \mathcal{A} and its \mathbb{Z}_N -graded structure that for each k the mappings $\mathcal{A}^0 \times \mathcal{A}^k \to \mathcal{A}^k$ and $\mathcal{A}^k \times \mathcal{A}^0 \to \mathcal{A}^k$ determined by the algebra multiplication $(r, w) \to rw$, $(w, s) \to ws$, where $w \in \mathcal{A}^k$ and $r, s \in \mathcal{A}^0$, induce a $(\mathcal{A}^0, \mathcal{A}^0)$ -bimodule structure on \mathcal{A}^k . In the next section we consider a reduced quantum plane from a point of view of graded q-differential algebra and study the exterior calculus induced by the N-differential.

3 Reduced quantum plane as a q-differential algebra

An exterior calculus with exterior differential d satisfying $d^N = 0$ has been studied in [1, 2, 12]. In this section we study the exterior calculus on a reduced quantum plane constructed with the help of a graded q-differential algebra described in the previous section. Let us remind that the unital associative algebra \mathbb{C}_{rq} generated, over the complex numbers \mathbb{C} , by the two variables x and y satisfying the relations xy = q yx, $x^N = y^N = 1$, where q is a primitive N-th root of unity, can be considered as an algebra of polynomials over a reduced quantum plane. Let us mention that this algebra has a representation by $N \times N$ complex matrices. It should be also mentioned that the algebra of polynomials over a reduced quantum plane is a particular case of a generalized Clifford algebra which is an algebra generated by variables x_1, x_2, \ldots, x_p obeying the relations $x_i x_j = q^{\text{Sg}(j-i)} x_j x_i$, $x_i^N = 1$, where sg is the sign function.

The set of monomials $B = \{1, y, x, x^2, yx, y^2, \dots, y^k x^l, \dots, y^{N-1} x^{N-1}\}$ can be taken as the basis of the vector space of the algebra \mathbb{C}_{rq} . Having chosen the basis B we can endow this vector space with a \mathbb{Z}_N -graded structure as follows: if a polynomial $w \in \mathbb{C}_{rq}$ expressed in terms of the monomials of B has the form

$$w = \sum_{l=0}^{N-1} \beta_l y^k x^l, \quad \beta_l \in \mathbb{C}, \tag{3.1}$$

then we shall refer to it as the homogeneous polynomial of grading k, where $k \in \mathbb{Z}_N$. Let us denote the grading of a homogeneous polynomial w by |w| and the subspace of the homogeneous polynomials of grading k by \mathbb{C}^k_{rq} . It is obvious that

$$\mathbb{C}_{rq} = \mathbb{C}_{rq}^0 \oplus \mathbb{C}_{rq}^1 \oplus \ldots \oplus \mathbb{C}_{rq}^{N-1}.$$
(3.2)

In particular a polynomial r of grading zero has the form

$$r = \sum_{l=0}^{N-1} \beta_l x^l, \qquad \beta_l \in \mathbb{C}, r \in \mathbb{C}_{rq}^0.$$
(3.3)

It is easy to show that the \mathbb{Z}_N -graded structure defined on a vector space \mathbb{C}_{rq} by (3.2) is consistent with the algebra structure of \mathbb{C}_{rq} , i.e. for any two homogeneous polynomials we have |ww'| = |w| + |w'|. Consequently \mathbb{C}_{rq} is a \mathbb{Z}_N -graded algebra with respect to (3.2), and there exists an element v of grading one of this algebra satisfying $v^N = \alpha$, where $\alpha \in \mathbb{C}$. Indeed one can take for instance v = y which satisfies all mentioned above conditions. According to the Theorem 1 proved in the previous section we can endow a reduced quantum plane with the structure of a graded q-differential algebra defining the N-differential by the formula $d_v w = [v, w]_q$, where q is a primitive N-th root of unity and $w \in \mathbb{C}_{rq}$.

In order to give a differential-geometric interpretation to the graded q-differential algebra structure of \mathbb{C}_{rq} induced by the N-differential d_v we interpret the commutative subalgebra \mathbb{C}_{rq}^0 of the x-polynomials (3.3) of \mathbb{C}_{rq} as an algebra of polynomial functions on a one dimensional space with coordinate x. Since \mathbb{C}_{rq}^k for k > 0 is a \mathbb{C}_{rq}^0 -bimodule we interpret this \mathbb{C}_{rq}^0 -bimodule of the elements of grading k as a bimodule of differential forms of degree k and we shall call an element of this bimodule a differential k-form on a one dimensional space with coordinate x. The N-differential d_v can be interpreted within the framework of this approach as an exterior differential.

It is easy to show that in one dimensional case we have a simple situation when every bimodule \mathbb{C}^k_{rq} , k > 0 of the differential k-forms is a free right module over the commutative algebra of functions \mathbb{C}^0_{rq} . Indeed if we write a differential k-form w as follows

$$w = y^k \sum_{l=0}^{N-1} \beta_l x^l = y^k r, \quad r = \sum_{l=0}^{N-1} \beta_l x^l \in \mathbb{C}_{rq}^0,$$
(3.4)

and take into account that the polynomial $r = (y^k)^{-1}w = y^{N-k}w$ is uniquely determined then we can conclude that \mathbb{C}^k_{rq} is a free right module over \mathbb{C}^0_{rq} generated by y^k .

It is well known that a bimodule structure on a free right module over an algebra \mathcal{B} generated freely by p generators is uniquely determined by the homomorphism from an algebra \mathcal{B} to the algebra of $(p \times p)$ -matrices over \mathcal{B} . Since in the case of a reduced quantum plane every right module \mathbb{C}^k_{rq} is freely generated by one generator (for instant we can take y^k as a generator of this module) its bimodule structure induces the homomorphism of the algebra of functions \mathbb{C}^0_{rq} and denoting this homomorphism in the case of the generator y^k by $A_k: \mathbb{C}^0_{rq} \to \mathbb{C}^0_{rq}$ we have

$$r y^k = y^k A_k(r), (3.5)$$

for any function $r \in \mathbb{C}^0_{rq}$. Making use of the relations (3) of the algebra of polynomials on a reduced quantum plane we easily find that $A_k(x) = q^k x$. Since the algebra of functions \mathbb{C}^0_{rq} may be viewed as a bimodule over the same algebra we can consider the functions as degree zero differentials forms and the corresponding homomorphism is the identity mapping of \mathbb{C}_{rq} , i.e. $A_0 = I$, where $I : \mathbb{C}^0_{rq} \to \mathbb{C}^0_{rq}$ is the identity mapping. Thus

the bimodule structures of the free right modules $\mathbb{C}^0_{rq}, \mathbb{C}^0_{rq}, \dots, \mathbb{C}^{N-1}_{rq}$ of differential forms induce the associated homomorphisms A_0, A_1, \dots, A_{N-1} of the algebra \mathbb{C}^0_{rq} . It is easy to see that for any k it holds $A_k = A_1^k$.

Let us start with the first order differential calculus on the algebra of functions \mathbb{C}^0_{rq} induced by the N-differential d_v which is the pair (\mathbb{C}^1_{rq}, d_v) , where $d_v : \mathbb{C}^0_{rq} \to \mathbb{C}^1_{rq}$ and \mathbb{C}^1_{rq} is the bimodule over \mathbb{C}^0_{rq} . Since \mathbb{C}^1_{rq} is a free right module over \mathbb{C}^0_{rq} generated by y there exists an invertible element $u \in \mathbb{C}^0_{rq}$ such that $v = y \cdot u$. We take v as a generator of the free right module \mathbb{C}^1_{rq} . Using the relation (3.5) and the commutativity of the algebra \mathbb{C}^0_{rq} we find that the relation determining the bimodule structure in terms of the new generator v has the same form (3.5) as in the case of the generator v. Let us express the differential v0 of a function v1 of v2 in terms of the new generator v2. We get

$$d_v w = vw - wv = vw - vA_1(w) = v(w - A_1(w)) = v \Delta_q(w),$$
(3.6)

where $\Delta_q = I - A_1 : \mathbb{C}^0_{rq} \to \mathbb{C}^0_{rq}$. It is easy to verify that for any functions $w, w' \in \mathbb{C}^0_{rq}$ the mapping Δ_q has the following properties

$$\Delta_q(ww') = \Delta_q(w)w' + A_1(w)\Delta_q(w'), \tag{3.7}$$

$$\Delta_q(x^k) = (1 - q)[k]_q \ x^k. \tag{3.8}$$

Particularly $d_v x = y \Delta_q(x)$, and this formula shows that $d_v x$ can be taken as a generator of the free right module \mathbb{C}^1_{rq} .

Since the bimodule \mathbb{C}^1_{rq} of the first order differential calculus (\mathbb{C}^1_{rq}, d_v) is a free right module we deal with a free coordinate calculus over the algebra \mathbb{C}^0_{rq} [3], and in the case of a calculus of this type the differential induces the derivative $\partial: \mathbb{C}^0_{rq} \to \mathbb{C}^0_{rq}$ which is defined by the formula $d_v w = d_v x \ \partial w$, $\forall w \in \mathbb{C}^0_{rq}$. Using this definition we find that for any function w it holds

$$\partial w = (1 - q)^{-1} x^{N - 1} \Delta_0(w). \tag{3.9}$$

From this formula and (3.7),(3.8) it follows that this derivative satisfies the generalized Leibniz rule

$$\partial(ww') = \partial(w) \cdot w' + A_1(w) \cdot \partial(w'), \tag{3.10}$$

and

$$\partial x^k = [k]_q \ x^{k-1}. \tag{3.11}$$

Let us study the structure of the higher order exterior calculus on a reduced quantum plane or, by other words, the structure of the bimodule \mathbb{C}^k_{rq} of differential k-forms, when k>1. In this case we have a choice for the generator of the free right module. Indeed since the k-th power of the exterior differential d_v is not equal to zero when k< N, i.e. $d_v^k \neq 0$ for k< N, a differential k-form w may be expressed either by means of $(d_v x)^k$ or by means of $d_v^k x$. Straightforward calculation shows that we have the following relation between these generators

$$d_v^k x = \frac{[k]_q}{q^{\frac{k(k-1)}{2}}} (d_v x)^k x^{1-k}.$$
(3.12)

We will use the generator $(d_v x)^k$ of the free right module \mathbb{C}^k_{rq} as a basis in our calculations with differential k-forms. For any differential k-form $w \in \mathbb{C}^k_{rq}$ we have $d_v w \in \mathbb{C}^{k+1}_{rq}$. Let us express these two differential forms in terms of the generators of the modules \mathbb{C}^k_{rq} and \mathbb{C}^{k+1}_{rq} . We have $w = (d_v x)^k r$, $d_v w = (d_v x)^{k+1} \tilde{r}$, where $r, \tilde{r} \in \mathbb{C}^0_{rq}$ are the functions. Making use of the definition of the exterior differential d_v we calculate the relation between the functions r, \tilde{r} which is

$$\tilde{r} = (\Delta_q x)^{-1} (q^{-k} r - q^k A_1(r)), \tag{3.13}$$

where A_1 is the homomorphism of the algebra of functions \mathbb{C}_{rq}^0 . This relation shows that the exterior differential d_v considered in the case of the differential k-forms induces the mapping $\Delta_q^{(k)}: \mathbb{C}_{rq}^0 \to \mathbb{C}_{rq}^0$ on the algebra of the function which is defined by the formula

$$d_v w = (d_v x)^{k+1} \Delta_q^{(k)}(r), \tag{3.14}$$

where

$$w = (d_v x)^k r. (3.15)$$

It is obvious that

$$\Delta_q^{(k)}(r) = (\Delta_q x)^{-1} (q^{-k} r - q^k A_1(r)). \tag{3.16}$$

It is obvious that for k = 0 the mapping $\Delta_q^{(0)}$ coincides with the derivative induced by the differential d_v in the first order calculus, i.e.

$$\Delta_q^{(0)}(r) = \partial r = (\Delta_q x)^{-1} (r - A_1(r)). \tag{3.17}$$

The higher order mappings $\Delta_q^{(k)}$, which we do not have in the case of a classical exterior calculus on a one dimensional space, have the derivation like property

$$\Delta_a^{(k)}(r\,r') = \Delta_a^{(k)}(r)\,r' + q^k\,A_1(r)\,\Delta_x^{(0)}(r'),\tag{3.18}$$

where k = 0, 1, 2, ..., N - 1. A higher order mapping $\Delta_q^{(k)}$ can be expressed in terms of the derivative ∂ as a differential operator on the algebra of functions as follows

$$\Delta_q^{(k)} = q^k \,\partial \, + \frac{q^{-k} - q^k}{1 - q} \, x^{-1}. \tag{3.19}$$

Thus we see that exterior calculus on a one dimensional space with coordinate x satisfying $x^N=1$ generated by the exterior differential d_v satisfying $d_v^N=0$ has the differential forms of higher order which are not presented in the case of a classical exterior calculus with $d^2=0$. The formula for the exterior differential of these kind of differential forms uses not an ordinary derivative but a deformed derivative (3.19). The exterior calculus with exterior differentials d_v satisfying $d_v^N=0$ can be considered in a more general case of a generalized Clifford algebra with even number 2p of generators. Then we will have an exterior calculus with $d_v^N=0$ on a p-dimensional space and the structure of this exterior calculus and associated structures such as connections and curvatures will be a main object of a forthcoming paper.

Acknowledgments. The author is grateful to the Estonian Science Foundation for a financial support of this work under the grant No. 6206

References

[1] Abramov V, Bazunova N, Algebra of differential forms with exterior differential $d^3 = 0$ in dimension one, in New Symmetries and Integrable Models, Editors: Frydryszak A, Lukierski J, Popowicz Z, World Scientific, 2002, 603–609.

- [2] Abramov V, Kerner R, Exterior differentials of higher order and their covariant generalization, Journal of Mathematical Physics, 41 (2000), 5598–5614.
- [3] Borowiec A, Kharchenko V K, Algebraic approach to calculuses with partial derivatives, Siberian Advances in Mathematics, 5 (1995), 10–37.
- [4] Coquereaux R, García A O, Trinchero R, Differential calculus and connections on a quantum plane at a cubic root of unity, *Rev. Math. Phys.*, **12** (2000), 227–285.
- [5] Coquereaux R, Differentials of higher order in noncommutative differential geometry, *Lett. Math. Phys.*, **42** (1997), 1650–1669.
- [6] Dubois-Violette M, Lectures on graded differential algebras and noncommutative geometry, in Noncommutative differential geometry and its applications to physics, Editors: Maeda Y et al., Kluwer Academic Publishers, Math. Phys. Stud. 23 (2001), 245–306.
- [7] Dubois-Violette M, Generalized homologies for $d^N = 0$ and graded q-differential algebras, Contemp. Math., 219 (1998), 69–79.
- [8] Dubois-Violette M, Kerner R, Universal q-differential calculus and q-analogue of homological algebra, Acta Math. Univ. Comenianae, LXV (1996), 175–188.
- [9] Fleury N, Rausch de Traubenberg M, Yamaleev R M, Generalized Clifford algebras and hyperspin manifolds, *Int. J. Theor. Phys.*, **32** (1993), 503–516.
- [10] Kapranov M M, On the q-analog of homological algebra, math.QA/9611005.
- [11] Kerner R, Graduation \mathbb{Z}_3 et la racine cubique de l'équation de Dirac, *C.R. Acad. Sci. Paris*, **312** (1991), 191–196.
- [12] Kerner R, Abramov V, On certain realizations of q-deformed exterior differential calculus, Rep. Math. Phys., 43 (1999), 179–194.
- [13] Laksov D, Thorup A, These are the differentials of order n, Transactions of the American Mathematical Society, **351** (1999), 1293–1353.