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Abstract

We propose a geometric approach to the BRST-symmetries of the Lagrangian of a
topological quantum field theory on a four dimensional manifold based on the formal-
ism of superconnections. Making use of a graded q-differential algebra, where q is a
primitive N -th root of unity, we also propose a notion of ZN -connection which is a
generalization of a superconnection. In our approach the Lagrangian of a topological
field theory is presented as the value of the curvature of a superconnection evaluated
at an appropriate section of a vector bundle. Since this value of the curvature satisfies
the Bianchi identity and representing the Bianchi identity in this case in the form of
an operator applied to the mentioned above value of the curvature we obtain an op-
erator which gives zero when applied to the Lagrangian. We show that this operator
generates the BRST-transformations of the fields of a topological field theory on a
four dimensional manifold.

1 Introduction

The topological quantum field theory on a four dimensional Riemannian manifold (TQFT4 )
proposed by E. Witten [9] leads to a field theoretic interpretation for the Donaldson in-
variants. According to the classification scheme [5] TQFT4 is a Witten type topological
field theory. The distinguishing feature of a Witten type theory is that the Lagrangian L
can be written in the form

L = {Q, V }, (1.1)

where Q is the BRST charge and V is the functional depending on the multiplet of the
fields of a theory. The BRST charge Q is nilpotent (up to gauge transformation) and the
Lagrangian L is gauge invariant. Applying the BRST charge {Q, } to both sides of (1.1)
we obtain the relation

{Q,L} = 0, (1.2)
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which shows that the Lagrangian of TQFT4 is supersymmetric. The purpose of this paper
is to show that from a geometric point of view the invariance of the Lagrangian (1.2)
originates from a Bianchi identity if we interpret the Lagrangian L as the curvature of
a superconnection and the BRST charge Q as a covariant differential on an appropriate
fibre bundle. It should be mentioned that in the case of a TQFT4 this fibre bundle is the
infinite dimensional principal bundle of all irreducible connections on a finite dimensional
principal bundle over a four dimensional smooth Riemannian manifold, and the structure
group of this infinite dimensional principal bundle of the irreducible connections is the
group of gauge transformations or, by other words, the group of all preserving fibres
automorphisms of a finite dimensional principal bundle.

The geometric approach to the Lagrangian of a TQFT4 proposed in [3] is based on the
theory of superconnections [4, 8]. In this approach the partition functions of TQFT4 can
be considered as the generalized Thom classes [8] of the infinite dimensional principal
bundle of all irreducible connections. This is the reason why the partition functions of
TQFT4 do not depend on the metric of a four-dimensional Riemannian manifold, which
means that they are topological invariants. It was shown [3] within the framework of a
geometric approach to TQFT4 that the Lagrangian of TQFT4 can be considered as the
curvature of a superconnection on a infinite dimensional vector bundle. In this paper
using the same geometric approach we show that the invariance of the Lagrangian L
with respect to BRST-supersymmetry (1.2) originates from the Bianchi identity for the
curvature and we construct the operator of BRST-supersymmetry Q extracting it from
the Bianchi identity. We stress on the point that our geometric approach to the fields and
the BRST-supersymmetry unlike the geometric approaches based on the structures of a
finite dimensional fibre bundles uses the geometric structures of the infinite dimensional
principal fibre bundle of all irreducible connections. The advantage of our approach is
that it is consisent with the nature of the ghost fields which are the generators of an
infinite dimensional Grassmann algebra and they anticommute not only with respect to
the discrete indices but also at different points of a manifold. Consequently a point of
a manifold may be viewed as a continuous index of a ghost field. For instant the field
ψ of a topological field theory in our approach is a 1-form on the infinite dimensional
principal fibre bundle of all irreducible connections (section 5). The second advantage of
our approach is that it clearly demonstrates that the Lagrangian of a theory is invariant
with respect to the supersymmetry because it can be obtained from the curvature (which
is a functional form on an infinite dimensional space) which in turn satisfies the infinite
dimensional analog of the Bianchi identity. This part of our work is based on the preprint
[1].

We propose a notion of a ZN -connection, where N ≥ 2, which can be viewed as a
generalization of a notion of Z2-connection or superconnection [2]. We use the algebraic
approach to the theory of connections to give the definition of a ZN -connection and to
explore its structure. It is well known that one of the basic structures of the algebraic
approach to the theory of connections is a graded differential algebra with differential d
satisfying d2 = 0. In order to construct a ZN -generalization of a superconnection for any
N > 2 we make use of a ZN -graded q-differential algebra, where q is a primitive N -th root
of unity, with N -differential d satisfying dN = 0.
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2 ZN-connection, curvature and Bianchi identity.

In this section we propose a notion of a ZN -connection which is based on the notion of a
graded q-differential algebra ([7]), where q is a primitive N -th root of unity. A notion of
a ZN -connection is a generalization of the notion of a superconnection or Z2-connection.

Let B = ⊕k∈ZB
k be an associative unital Z-graded algebra over C. We shall denote the

grading of a homogeneous element ω ∈ B by |ω|, i.e. if ω ∈ Bk then |ω| = k. An algebra
B is said to be a graded q-differential algebra, where q is a primitive N -th root of unity
(N ≥ 2), if it is endowed with a linear mapping d : Bk

// Bk+1 of degree 1 satisfying the
graded q-Leibniz rule d(ω ω′) = d(ω)ω′ + q|ω|ω d(ω′), ω, ω′ ∈ B, and dN (ω) = 0,∀w ∈ B. A
mapping d is called a N -differential of a graded q-differential algebra. A graded differential
algebra is a particular case of a graded q-differential algebra when N = 2 and q = −1.

The subspace B0 ⊂ B of elements of grading zero is the subalgebra of an algebra B.
A N -differential calculus over a unital associative algebra A is a pair (B, d), where B is a
graded q-differential algebra with N -differential d and A = B0. For any k ∈ Z a subspace
Bk of elements of grading k has a structure of a bimodule over the algebra B0 and a graded
q-differential algebra can be viewed as a N -differential complex ([6])

. . .
d

// Bk−1 d
// Bk d

// Bk+1 d
// . . . , (2.1)

with differential d satisfying the graded q-Leibniz rule.
Let A be a unital associative C-algebra, (B, d) be a N -differential calculus over A and

E = ⊕k∈ZN
Ek be a ZN -graded left A-module. Since a graded q-differential algebra B has

a structure of a (B,B)-bimodule the tensor product B ⊗A E of the right A-module B and
the left A-module E has a structure of a left B-module. We denote this left B-module by
EB, i.e. EB = B ⊗A E .

The left B-module EB is a ZN -graded left B-module if we consider B as a ZN -graded
algebra and define the grading of an element ω ⊗ ξ ∈ EB by |ω ⊗ ξ| = |ω| + |ξ|. Then

EB = ⊕k∈ZN
Ek
B, Ek

B = ⊕m+l=k Bm ⊗A E l, (2.2)

where k, l,m ∈ ZN .

Definition 1. A ZN -graded B-connection on a ZN -graded left A-module E is a mapping
∇ : Ek

B
// Ek+1

B of grading 1 satisfying the condition

∇(ω ζ) = d(ω) ζ + q|ω|ω∇(ζ), (2.3)

where ω ∈ B, ζ ∈ EB, and d is the N -differential of a ZN -graded q-differential algebra B.

A ZN -connection D can be extended to act on the ZN -graded algebra EndC(EB) in a
way consistent with the graded q-Leibniz rule if we define

D(A) = [D,A]q = D ◦ A− q|A|A ◦D, A ∈ EndC(EB). (2.4)

It is evident that D : Endk
C(EB) // Endk+1

C
(EB) and

D(AB) = D(A) ◦B + q|A|A ◦D(B). (2.5)

It can be proved [2] that the N -th power of an endomorphismD ∈ End1
C(EB) is the grading

zero endomorphism of the left B-module EB, i.e. DN ∈ End0
B(EB).
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Definition 2. The curvature FD of a ZN -connection D is the endomorphism DN of
grading zero of the left ZN -graded B-module EB, i.e. FD = DN ∈ End0

B(EB).

Theorem 1. For any ZN -connection D the curvature FD of this connection satisfies the

Bianchi identity D(FD) = 0.

Proof. We have D(FD) = [D,FD]q = D ◦ FD − FD ◦D = DN+1 −DN+1 = 0. �

The notion of a ZN -connection, as it is given above, is based on the algebraic structures
such as differential algebras and modules. It is a good question to ask whether a ZN -
connection may be constructed geometrically as a connection on a fibre bundle. We hope
that for N > 2 this can be done on a non-commutative analog of a fibre bundle. In
the case of N = 2 (and q = −1) a ZN -connection can be realized as a connection on a
classical (commutative) fibre bundle giving a well-known notion of a superconnection [8, 4].
Indeed let π : E = E+ ⊕E−

// M be a superbundle with a base Mn, where Mn is a n-
dimensional smooth manifold. In this case let B = ⊕rΩ

r(Mn) be the algebra of differential
forms on a manifold Mn and d be the exterior differential of this algebra. It is evident that
B is a Z2-graded algebra, where the grading of a homogeneous differential form is equal
to its degree modulo 2. Let B0 = Ω0(Mn) = Γ(Mn) be the algebra of smooth functions
on a manifold Mn, and Γ(E) = Γ(E)+ ⊕ Γ(E)− be the left Z2-graded Γ(Mn)-module of
smooth sections of a superbundle E. Then the tensor product B ⊗A E is the space of E-
valued smooth differential forms Ω(E) = ⊕rΩ

r(E) on a manifold Mn. The total grading
of a homogeneous E-valued differential form is the sum of two gradings, where first is
determined by the graded structure of the algebra of differential forms and the second is
determined by the graded structure of a superbundle E. The space EndC(EB) is the space
of differential forms on a manifold M with the values in the superbundle End(E). The
q-commutator becomes the supercommutator if we take q = −1. Finally the definition of
a ZN -connection coincides in this special case with the definition of a superconnection as
it is given in [4].

3 Superconnection and supersymmetry operator

Let L be an odd endomorphism of a supervector bundle E, i.e. L : E±
// E∓. Since

Ω(E) ∼= Ω(Mn)⊗Γ(Mn) Γ(E) an endomorphism L can be extended from E to the space of
E-valued forms Ω(E) if we put

L(σ ⊗ s) = (−1)|σ| σ ⊗ L(s), (3.1)

where σ ∈ Ω(Mn), s ∈ Γ(E), and |σ| is the grading of σ. Let D be a connection on a
superbundle E, i.e. D : Ωr(E) // Ωr+1(E). Then the linear operator D = D + L is the
superconnection on a superbundle E. Locally a superconnection D has the form

D = d+ θ + L, (3.2)

where θ is the matrix of 1-forms of a connection D. Using the definition 2 we find the
local form of the curvature FD ∈ Ω2(End(E)) of the superconnection D

FD = D2 = Θ + dL+ [θ, L] + L2, (3.3)
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where Θ is the local curvature 2-form of a connection D. From the theorem 1 it follows
that the curvature FD satisfies the Bianchi identity which locally can be written as follows

dFD = [FD, θ + L]. (3.4)

Let Q be a principal fibre bundle over a manifold Mn with structure group G and r : G
// GL+(W ) be a representation of G on a supervector space W which preserves the

graded structure of W , i.e. r(g) : W±
// W±,∀g ∈ G. The associated vector bundle

E = Q ×G W is a superbundle. The space Ω(E) of E-valued forms is isomorphic to
the space Ω(Q × W ) of equivariant (Q × W )-valued forms of the trivial superbundle
Q × W , i.e. Ω(E) ∼= Ω(Q ×W ). Let ω be a connection on a principal bundle Q and
∇ω(σ) = dσ + r′(ω) ∧ σ be the covariant differential induced by this connection on the
associated superbundle E, where r′ : G // End+(W ) is the infinitesimal representation
of the Lie algebra G of G and σ ∈ Ω(Q×W ).

Now let L be an odd equivariant endomorphism of the trivial superbundle Q × W ,
that is, L ∈ End−(Q × W ) and Lpg = r(g)−1 Lp r(g), p ∈ Q, g ∈ G. Having extended
L to the space of equivariant (Q ×W )-valued forms by means of (3.1) we construct the
superconnection Dω which locally can be expressed in the terms of a connection ω and
endomorphism L as follows Dω = ∇ω + L = d + r′(ω) + L. Locally the curvature Fω of
this superconnection Dω can be written as follows

Fω = r′(Θω) + dL+ [r′(ω), L] + L2, (3.5)

where Θω is the curvature 2-form of ω. The Bianchi identity in this case take on the form

dFω = [Fω, r
′(ω) + L]. (3.6)

Let P be a principal fiber bundle over a smooth manifold Mn with the structure group
G = Spin(p), where p is an even integer. Making use of the homomorphism Spin(p)

// O(p) of the spinor group on to the group of orthogonal matrices one can construct
the associated vector bundle E = P ×G V , where V = R

p. The trivial bundle Q = P × V

can be considered as the principal bundle over E.

Let Cp be a Clifford algebra over C generated by γ1, γ2, ..., γp and S2 be the complex
plane C

2. If we associate the well known Pauli matrices to the elements γ1, γ2,−iγ1γ2 of the
Clifford algebra C2 then S2 becomes the supermodule over the algebra C2. Similarly the
tensor product Sp = S2⊗ ...⊗S2 of the supermodules is the supermodule over the algebra
Cp. Clearly Cp

∼= End(Sp), and we denote this isomorphism by ν : Cp
// End(Sp).

Let C∗
p be the group of invertible elements of the Clifford algebra Cp. There is the group

homomorphism ρ : SpinC(p) // C∗
p such that the infinitesimal homomorphism of the

corresponding Lie algebras has the form ρ′(a) = 14 γtaγ, where a is an element of the Lie
algebra of SpinC(p) (skew-symmetric matrix) and γ is the column-matrix, whose entries
are the generators of Cp. The restriction of ρ′ on to the real subspace of the Lie algebra
of SpinC(p) induces the homomorphism ρ : Spin(p) // C∗

p between the group of real
spinors Spin(p) and C∗

p . This homomorphism gives the representation (preserving the
graded structure) of the real spinor group Spin(p) on the supervector space Sp and we can
consider the supervector bundle W = Q ×G Sp = (P × V ) ×G Sp over the vector bundle
E.
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Let ω be a connection 1-form on a principal bundle P . We extend this connection form
to the connection 1-form on the bundle P × V by means of ω(q)(X, v) = ωp(X), where
q = (p, x) ∈ P × V, X ∈ TpP, v ∈ TxV . Let l be the Cp-valued function on the trivial
bundle Q = P × V defined by lq = ixkγk, where q = (p, x) ∈ Q, p ∈ P, x ∈ V = R

p,
x1, x2, . . . , xp are the coordinates of x, and γ1, γ2, . . . , γp are the generators of the Clifford
algebra Cp. Since Sp is the supermodule over the Clifford algebra Cp, i.e. any element
of Cp determines the endomorphism of the supervector space Sp, we can extend the Cp-
valued function l to the odd endomorphism L of the trivial bundle Q × Sp by means of
L(q, t) = (q, lq(t)), where q ∈ Q, t ∈ Sp and lq : Sp

// Sp. It can be easily checked that
L is equivariant under the action of G.

The family of locally defined operators

Dω = d+ ω + L = d+ 14ωijγiγj + ixiγi, (3.7)

determines the superconnection on the bundle Q ×G Sp over E. The curvature of this
superconnection is

Fω = −x2 + i∇ωx
iγi +

1

4
Θω

ijγiγj , (3.8)

where Θω
ij is the curvature 2-form of the connection ω, ∇ω is the ordinary covariant

differential, and x2 =< x, x >=
∑p

i=1(x
i)2 is the standard scalar product in V = R

p.
Let Gp be a Grassmann algebra with p generators ξ1, ξ2, . . . , ξp and the unity element 1.

If we replace in (3.8) the generators γ1, γ2, . . . , γp of the Clifford algebra by the generators
ξ1, ξ2, . . . , ξp of the Grassmann algebra, i.e. γk

// ξk, then we get the polynomial

Φω = −x2 + i∇ωx
kξk +

1

4
Θω

ijξiξj . (3.9)

It can be shown [3] that taking this polynomial as a starting point one can derive the
finite dimensional analog of the Lagrangian L of a topological quantum field theory on
a four-dimensional manifold. The fundamental property of the Lagrangian is the BRST-
invariance (1.2) which is a crucial tool for deriving the Donaldson invariants of a four-
dimensional manifold. In this paper our aim is to show that the origin of this invariance
is the Bianchi identity for the curvature. Indeed the polynomial Φω is obtained from the
curvature Fω by the replacement γk

// ξk but the curvature satisfies the Bianchi identity
Dω(Fω) = 0 which is very similar to the BRST-invariance of the Lagrangian {Q,L} = 0.
Taking into account that the Lagrangian L can be derived from the curvature Fω we expect
that the BRST-symmetry of L can be derived from the connection Dω if we consider it as
an operator acting on the space of differentials forms.

The basic element of our construction is the representation µ : Cp
// End(Gp) of

the elements of the Clifford algebra Cp by the linear operators acting on the Grassmann
algebra Gp which is determined by

γ2j = ξ̂j + ∂j , γ2j+1 = i(ξ̂j − ∂j), j = 1, 2, ...m, p = 2m (3.10)

where ∂j is the partial derivative on the Grassmann algebra with respect to a generator

ξj and ξ̂j is the operator of multiplication by a generator ξj. This representation allows
us to relate the curvature Fω to the polynomial Φω not formally by the replacement of
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generators γk
// ξk but geometrically with the help of the superbundle W = Q×G Gp.

In other words the construction used in [8] is based on the sequence of homomorfisms

Spin(p)
ρ

// Cp
ν

// End(Sp) but we use the sequence Spin(p)
ρ

// Cp
µ

// End(Gp).
The local connection Dω and the curvature of this connection Fω are given in the terms
of the bundle Q ×G Sp, and if we wish to express them in the coordinates of the bundle
W = Q×G Gp we should use the representation (3.10). We calculate

Dω = d+
1

2
ωklξ̂k∂l + ixk ∂k +

1

4
ωkl ∂k ∂l +

1

4
ωkl ξ̂kξ̂l + ixk ξ̂k, (3.11)

Fω =
1

2
Θω

klξ̂
k∂l + i∇ωx

k∂k +
1

4
Θω

kl∂k∂l − x2 + i∇ωx
k ξ̂k +

1

4
Θω

klξ̂k ξ̂l. (3.12)

The trivial fibre bundle Q × Gp has the section e : Q // Q × Gp which is defined by
e(q) = (q, 1), where 1 is the unity element of Gp. Since this section is equivariant with
respect to the action of G it induces the section of the bundle Q ×G Gp which will be
denoted by the same symbol e. Acting on this section by the curvature (3.12) which is
now the End(Q×G Gp)-valued 2-form we obtain (Q×G Gp)-valued 2-form

Fω(e) = −x2 + i∇ωx
kξk +

1

4
Θω

klξkξl. (3.13)

Comparing the above expression with (3.9) we see that this form coincides with Φω and
the first aim of our construction to give Φω a geometric meaning in the framework of an
appropriate fibre bundle is achieved.

Now our aim is to find an operator which will vanish being applied to the Fω(e) (or to
the Φω which is the same) extracting it from the Bianchi identity for the curvature Fω.
This identity can be written in the form

dFω + [Dω − d, Fω] = 0. (3.14)

Making use of (3.11),(3.12) and collecting together all terms containing a partial derivative
on the first place from the right we can put the Bianchi identity as follows

dFω + (ωklξ̂k∂l + 2 ixk ∂k)(−x
2 + i∇ωx

k ξ̂k +
1

4
Θω

klξ̂k ξ̂l) + R = 0, (3.15)

where R denotes the sum of all terms containing a partial derivative on the first place
from the right. Acting by the operator standing in the left-hand side of the above relation
(3.15) on the constant section e and taking into account that R vanishes in this case we
obtain

(d+ ωklξ̂k∂l + 2 ixk ∂k)(Fω(e)) = 0. (3.16)

Thus the Bianchi identity gives us the operator which vanishes on Fω(e) = Φω and this
operator is

Qω = d+ ωklξ̂k∂l + 2 ixk ∂k. (3.17)

The first two terms in the operator Qω can be replaced by the covariant differential ∇ω.
Indeed since a connection ω is compatible with the metric of the trivial bundle P × V

we have dx2 =< ∇ωx, x > + < x,∇ωx >. Therefore in the next section we will use the
operator Qω in the equivalent form

Qω = ∇ω + 2 ixk∂k. (3.18)
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4 Supersymmetry in finite dimensional case

The aim of this section is to show that making use of the operator Qω obtained from the
Bianchi identity in the previous section one can get the supersymmetry transformations
of a finite dimensional model of a topological quantum field theory.

Let P be a Riemannian manifold of dimension l = 2m + r, G be a r-dimensional
compact connected Lie group, G be the Lie algebra of the group G, V be a real vector
space of dimension p = 2m with an inner product denoted by <,>, and ρ be an orthogonal
representation of G on V . We also suppose that G acts freely on P by isometries. In
this case P is a principal fiber bundle over 2m-dimensional base manifold M . Let E =
P ×G W be the associated vector bundle, where W = G⊕ V , and G acts on G by adjoint
representation. Obviously E = Ad(P ) ⊕ Ẽ, where Ad(P ) = P ×G G and Ẽ = P ×G V .

Let (x1, x2, ..., x2m) = (xµ) be the coordinates of V , (λ1, λ2, ..., λd) = (λi) be the coor-
dinates of the Lie algebra G with respect to a basis {t1, t2, ..., td}. Then any element λ of G
is the linear combinition λ = λiti. Let (ξ1, ξ2, ..., ξl) = (χ1, ..., χ2m, ζ1, ..., ζr) = (χµ, ζi) be
the generators of the Grassmann algebra Gl. If ω is a connection 1-form on the principal
bundle P then the covariant differential ∇ω on the vector bundle E can be decomposed
into the sum

∇ω = ∇′
ω + ∇′′

ω, (4.1)

where ∇′
ω = d + ad(ω) is the covariant differential on Ad(P ) and ∇′′

ω = d + ρ′(ω) is the
covariant differential on Ẽ. The matrix of the curvature of the bundle E splits into the
following blocks

(

ad(Θω) 0
0 ρ′(Θω)

)

, (4.2)

where Θω is the curvature 2-form of a connection ω. The 2-form Fω(e) obtained in the
previous section in the coordinates of the vector bundle E has the form

Fω(e) =
1

4
ad(Θω)ijζiζj +

1

4
ρ′(Θω)µνχµχν

+ i∇′
ωλ

iζi + i∇′′
ωx

µχµ− < x, x > −Tr(λ, λ), (4.3)

where Tr is the Killing form on the algebra G. The operator Qω in the coordinates of E
has the form

Qω = ∇′
ω + ∇′′

ω + 2iλi∂i + 2ixµ∂µ, (4.4)

where ∂i is a partial derivative with respect to ζi and ∂µ is a partial derivative with respect
to χmu. From the previous section it follows that

Qω(Fω(e)) = 0. (4.5)

The fibre bundle E, the coordinates of this bundle and the forms of connection and
curvature may be viewed as a finite dimensional model of a field theory. From this point
of view the multiplet of ”bosonic fields” of a theory consists of φ = Fω (curvature), xµ (the
coordinates of V ) and λi (the coordinates of G). The multiplet of the ”fermionic fields”
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consists of (ζi, χµ) (the generators of the Grassmann algebra Gl), η
i (the 1-forms ∇′

ωλ
i),

ϕµ (the 1-forms ∇′′
ωx

µ). The form (4.3) may be viewed as the Lagrangian of a field theory

L =
1

4
ad(φ)ijζiζj +

1

4
ρ′(φ)µνχµχν + iηiζi + iϕµχµ− < x, x > −Tr(λ, λ). (4.6)

Acting by the operator (4.4) on each field from the mentioned above multiplets we obtain
the supersymmetry transformations of our theory

Qω(φ) = 0, Qω(χ) = 2ix, Qω(ϕ) = ρ′(φ)x, Qω(λ) = η.

Qω(x) = ϕ, Qω(ζ) = 2iλ, Qω(η) = ad(φ)λ, (4.7)

The supersymmetry transformations (4.7) are not nilpotent. Indeed if we apply twice the
supersymmetry Qω then the transformations of the fields x, λ, η, ϕ take on the form

Q2
ω(Ψ) = R(φ)Ψ, (4.8)

where R is either r or ρ′. The twice applied supersymmetry Qω in the case of the fields
ζ, χ gives

Q2
ω(ζ) = 2iη, Q2

ω(χ) = 2iϕ. (4.9)

These transformations are on-shell nilpotent since the equations for the fields η and χ have
the form

ζi = 0, ϕµ = 0. (4.10)

In order to obtain the supersymmetry transformations of a topological field theory on a
four dimensional manifold (within the framework of its finite dimensional model) we shall
use a fibre bundle P instead of the associated vector bundle E. Let us suppose that there is
a smooth section of the bundle Ẽ = P ×GV induced by a G-invariant section of the trivial
bundle P × V . This G-equvariant section p // (p, x), where p ∈ P, x ∈ V , determines
on P the V -valued function Σ : p // x = Σ(p) which satisfies Σ(p g) = g−1Σ(p) for any
g ∈ G. The Lagrangian (4.6) becomes the G-equivariant form on the principal fibre bundle
P if we replace x in the expression (4.6) for the Lagrangian by this V -valued function Σ.

Let a = (a1, a2, ..., al) = (aα) be the local coordinates on a principal fibre bundle P , and
(ψ1, ψ2, ..., ψl) be their differentials. Then x = Σ(a) and the Lagrangian (4.6) depends on
the local coordinates of P which may be viewed as the new fields of our theory. Let TP be
the tangent bundle of a principal fibre bundle P , and let ψ = ψαXα be a TP -valued 1-form
on P , where {X1,X2, ...,Xl} is a local basis of TpP dual to (ψ1, ψ2, ..., ψl). We remind
that the field ϕ may be viewed as a 1-form on the vector bundle P ×V . Consequently the
pull-back of this form by Σ is the 1-form Σ∗(ϕ) on P which can be expressed by means
of a, ψ. Thus the multiplet of bosonic fields of the theory becomes now the set φ, a, λ and
the multiplet of fermion fields is ψ,χ, ζ, η.

It is shown in [3] that the horizontality condition is very important in obtaining the
representative of a Thom class of a vector bundle. We also use the horizontality condition
in deriving the supersymmetry transformations of the fields. Therefore we can identify
the field ϕ with exterior differential dx instead of ∇′′

ωx keeping in mind the necessity
of taking the horizontal part. Thus the pull-back by Σ of the form ϕ is the 1-form
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(Σ∗ϕ)(ψ) = DΣ(ψ), where DΣ : TP // V is the differential of the section Σ. We have
changed the structure of the field ϕ (∇′′

ωx
// dx ) and this will change it transformation

in the supersymmetry transformations (4.7). This in turn will break the invariance of the
Lagrangian L. Since the operator (4.4) generating the supersymmetry transformations
does not depend on the new fields a, ψ we shall use this degree of freedom to choose
transformations for a, ψ in such a way that the transformation for ϕ would be the same
as in (4.7). In this way we shall retain the invariance of the Lagrangian with respect to
the previously found supersymmetry. We obtained the transformation for ϕ by applying
twice the covariant differential ∇′′

ω to x. Since ∇′′
ωx is replaced by dx we have to evaluate

the horizontal part of DΣ(ψ) then to differentiate it and finally to evaluate the horizontal
part of the resulting 2-form. Obviously this procedure is equivalent to applying twice the
covariant differential. The horizontal part ψH of ψ can be evaluated by means of the
formula

ψH = ψ − Λω, (4.11)

where Λ : G // TP is the infinitesimal action of G on P . Taking the horizontal part
and differentiating as it is explained above we get

Qω(DΣ(ψ)) = (dDΣ(ψH ))H = D2Σ(Qω(a)H , ψH) +DΣ(d(ψH)H)

= D2Σ(Qω(a)H , ψH) −DΣ((d(Λω)H ))

= D2Σ(Qω(a)H , ψH) −DΣ(Λ(dω)H)

= D2Σ(Qω(a)H , ψH) −DΣ(ΛΘω)

= D2Σ(Qω(a)H , ψH) −DΣ(Λφ). (4.12)

On the other hand

Qω(DΣ(ψ)) = D2Σ(Qω(a), ψ) +DΣ(Qω, ψ). (4.13)

We define the supersymmetry transformation of the field a by the formula

Qω(a) = ψ. (4.14)

As a consequence of this definition the second order differential D2Σ vanishes in (4.12)
and (4.13). Comparing (4.12) and (4.13)we obtain the supersymmetry transformation for
the field ψ

Qω(ψ) = −Λφ. (4.15)

Finally the supersymmetry Qω in terms of the fields φ, a, λ, ψ, χ, ζ, η take on the form

Qω(φ) = 0, Qω(a) = ψ, Qω(λ) = η, (4.16)

Qω(ψ) = −Λφ, Qω(χ) = 2iΣ, Qω(η) = ad(φ)λ, Qω(ζ) = 2iλ. (4.17)

5 Supersymmetry in infinite dimensional case

Our aim in this section is to show that the supersymmetry transformations obtained from
the Bianchi identity in a finite dimensional case give the supersymmetry transformations
of a topological field theory on a four dimensional manifold [9].



Geometric approach to BRST-symmetry and ZN -generalization of superconnection 19

Let us remind that in the previous section P is a finite dimensional Riemannian manifold
and G is a finite dimensional compact connected Lie group acting on P by isometries. In
this section let P be the infinite dimensional affine space of all irreducible connections of a
finite dimensional principal fibre bundle, and G be the infinite dimensional group of gauge
transformations or the group of all automorphisms of a same finite dimensional principal
fiber bundle. We assume that a base manifold of a finite dimensional principal fibre bundle
has dimension four. It is well known that one can define a norm on the infinite dimensional
space P in such a way that P becomes an infinite dimensional Banach manifold. Similarly
one can define a norm on the infinite dimensional group G of gauge transformations in
such a way that G becomes an infinite dimensional Banach group, and G acts on P by
isometries.

Since a base manifold of our finite dimensional principal fibre bundle is a four dimen-
sional Riemannian manifold there is the Hodge operator on a base manifold and we can
decompose the space of all 2-forms on this manifold with values in the associated adjoint
vector bundle into the direct sum of self-dual 2-forms and the space of anti-self-dual 2-
forms. Let V be the infinite dimensional space of anti-self-dual 2-forms. Then the action
of G on V , denoted in the previous section by ρ, is defined by g · θ = g−1 θ g, where
g ∈ G is a gauge transformation and θ is a anti-self-dual 2-form. Let A be a point of
the infinite dimensional principal fibre bundle P , i.e. A is an irreducible connection on a
finite dimensional principal fibre bundle. Then the infinitesimal action of G on P is the
covariant differential ∇A. We define the G-equivariant section of the trivial bundle P ×V

denoted in the previous section by Σ with the help of the formula

Σ(A) = F−
A , (5.1)

where F−
A is the anti-self-dual part of the curvature FA of a connection A.

The supersymmetry transformations (4.16) - (4.17) of the previous section expressed
in the terms of this section take on the form

Qω(φ) = 0, Qω(ψ) = −∇Aφ, (5.2)

Qω(A) = ψ, Qω, χ} = 2i F−
A , (5.3)

Qω(λ) = η, Qω(η) = [φ, λ], (5.4)

where ω is a connection on the infinite dimensional principal fibre bundle P . The su-
persymmetry transformations (5.2) - (5.4) are the supersymmetry transformations of a
topological quantum field theory on a four dimensional smooth manifold [9].
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