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Abstract

This paper explores the quasi-deformation scheme devised in [1, 3] as applied to the
simple Lie algebra sl2(F) for specific choices of the involved parameters and underlying
algebras. One of the main points of this method is that the quasi-deformed algebra
comes endowed with a canonical twisted Jacobi identity. We show in the present article
that when the quasi-deformation method is applied to sl2(F) one obtains multiparam-
eter families of almost quadratic algebras, and by choosing parameters suitably, sl2(F)
is quasi-deformed into three-dimensional and four-dimensional Lie algebras and alge-
bras closely resembling Lie superalgebras and colour Lie algebras, this being in stark
contrast to the classical deformation schemes where sl2(F) is rigid.
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1 Introduction

In a series of papers [1, 3, 4] two of the present authors have developed a new deformation
scheme for Lie algebras. The last paper [4] is concerned with this deformation scheme
when applied to the simple Lie algebra sl2(F), where F is a field of zero characteristic, and
it is on that paper the present one builds and elaborates on.

Let us briefly explain the aforementioned deformation procedure. By F we denote
the underlying field of characteristic zero and g is the Lie algebra we wish to deform.
Let ρ : g → Der(A) ⊆ gl(A) be a representation of g in terms of derivations on some
commutative, associative algebra A with unity. The Lie structure on Der(A) is of course
given by the commutator bracket, induced from the Lie algebra structure on gl(A), the
algebra of linear operators on A. The deformation procedure now takes place on this
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representation by changing the involved derivations to σ-derivations, that is, linear maps
∂σ : A → A satisfying a generalized Leibniz rule: ∂σ(ab) = ∂σ(a)b + σ(a)∂σ(b), for all
a, b ∈ A, and for an algebra endomorphism σ on A.

In the course of this deformation we also deform the commutator [·, ·] to a σ-deformed
version 〈·, ·〉. The deformation procedure is thus an assignment

Der(A) ∋ ∂ ///o/o/o ∂σ ∈ Derσ(A) ,

such that [·, ·]  〈·, ·〉 and where Derσ(A) is the vector space of σ-derivations on A.
Remember that ∂ represents an element of g.

In general, the new product 〈·, ·〉 is not closed on Derσ(A). It is, however, true that it
is closed on the left A-submodule A · ∂σ of Derσ(A), for ∂σ ∈ Derσ(A) subject to some
(mild) conditions. This is the content of Theorem 1. This theorem also establishes a
canonical Jacobi-like relation on A · ∂σ for 〈·, ·〉, reducing to the ordinary Jacobi identity
when σ = id, i.e., in the ”limit” case of this deformation scheme corresponding to the Lie
algebra g. We remark that in some cases, for instance when A is a unique factorization
domain, A · ∂σ = Derσ(A) for suitable ∂σ ∈ Derσ(A) (see [1]). In particular, this means
that we have two ”deformation parameters” for this scheme, namely A and σ. Note,
however, that they are not independent. Indeed, σ certainly depends on A.

Diagrammatically, our deformation scheme can be given as

g
ρ // gl(A)

��
�O
�O
�O

g̃

”limit”

ee

// g̃l(A).

P

ww

Suppose the Lie algebra g is spanned as a vector space by elements {gi}i∈I , where I is
some index set. The representation ρ yields the assignments gi 7→ ai · ∂, for ai ∈ A.
This can clearly be extended linearly to the whole of g by the linearity of ρ. Now the
deformation is ai · ∂  ai · ∂σ ∈ A · ∂σ ⊆ Derσ(A). Put g̃i := ai · ∂σ. The set {g̃i}i∈I

spans a linear subspace g̃ of A ·∂σ . Restricting the bracket on A ·∂σ , given by Theorem 1,
to g̃ gives us an algebra structure on g. This restriction is denoted by P in the above
diagram. So, forgetting that g̃i is ai∂σ, {g̃i}i∈I spans an abstract (i.e., not associated with
some particular representation) algebra g̃ with multiplication 〈·, ·〉 and structure constants
given by (2.5) of Theorem 1. This algebra is then to be viewed as the deformed version of
g. Another way to look at this is to actually compute the deformed commutator in terms
of the basis elements g̃i and leaving the right-hand-side as it is given by (2.5). This gives
us a set of relations in degree one and two in the basis elements, which can, considered
as an associative algebra given by generators and relations, be viewed as an analogue of
the universal enveloping algebra U(g) to a Lie algebra g, for the algebra g̃. Alternatively,
this can be seen as a ”deformation” of U(g). In this paper we deal primarily with this
”generator and relations”-approach.

The quotation marks in ”limit” is to indicate that we may not actually retrieve the orig-
inal g by performing the appropriate (depending on the case considered) limit procedure.
This is because for some ”values” of the involved parameters the representation or specific
operators collapse, so even taking the limit becomes meaningless in these circumstances.
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This is why we choose to call our deformations quasi-deformations. Another complication
that arises is that the pull-back P ”forgets relations”. That is to say that the operators in
A · ∂σ may satisfy relations, for instance coming from the twisted Leibniz rules, that the
abstract algebra does not satisfy.

Now, the Lie algebra sl2(F) can be realized as a vector space generated by elements H,
E and F subject to the relations (see for instance, [5])

〈H,E〉 = 2E, 〈H,F 〉 = −2F, 〈E,F 〉 = H. (1.1)

Our basic starting point is the following representation of sl2(F) in terms of first order
differential operators acting on some vector space of functions in the variable t:

E 7→ ∂, H 7→ −2t∂, F 7→ −t2∂.

To quasi-deform sl2(F) means that we replace ∂ by ∂σ in this representation. At our
disposal are now the deformation parameters A (the ”algebra of functions”) and the en-
domorphism σ.

In this paper, in contrast to [4], we study some of the algebras appearing in the quasi-
deformation scheme. In particular, we extract algebras which resemble Lie superalgebras
and colour Lie algebras in that they have either commutators or anti-commutators in their
relations. This is done in the case when A = F[t] (which is a ”deformation parameter”
studied in [4], though not from the present aspect), and also the new interesting case
A = F[t]/(t4). This last case leads to six relations instead of three which should be
natural as sl2(F) only has three relations. It would be of interest to determine ring-
theoretic properties of these algebras (e.g., for which values of the parameters are they
domains, noetherian, PBW-algebras, Auslander-regular etc).

The paper is organized as follows. In Section 2 we recall the necessary background
material and fix notation. Section 3 deals with the general quasi-deformation scheme as
applied to sl2(F), and in Subsections 3.1 and 3.2 we explore this scheme in the particular
cases of A = F[t] and A = F[t]/(t4), respectively.

Let us finally comment on the title. By an ”almost quadratic algebra” we mean an
algebra with relations in degree at most two. Usually, the simpler term ”quadratic algebra”
is reserved for an algebra with homogeneous quadratic relations.

2 Qhl-algebras associated with σ-derivations

We now fix notation and state the main definitions and results from [1] and [3] needed in
this paper.

Throughout we let F denote a field of characteristic zero and A be a commutative,
associative F-algebra with unity 1. Furthermore, σ will denote an endomorphism on A.
Then by a twisted derivation or σ-derivation on A we mean an F-linear map ∂σ : A → A

such that a σ-twisted Leibniz rule holds:

∂σ(ab) = ∂σ(a)b + σ(a)∂σ(b). (2.1)

Among the best known σ-derivations are:
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• (∂ a)(t) = a′(t), the ordinary differential operator with the ordinary Leibniz rule,
i.e., σ = id.

• (∂σ a)(t) = (Dqa)(t), the Jackson q-derivation operator with σ-Leibniz rule
(Dq (ab))(t) = (Dqa)(t)b(t) + a(qt)(Dqb)(t), where σ = tq and tqf(t) := f(qt).

In the paper [1] the notion of a hom-Lie algebra as a deformed version of a Lie algebra was
introduced, motivated by some of the examples of deformations of the Witt and Virasoro
algebras constructed using σ-derivations. However, finding examples of more general kinds
of deformations associated to σ-derivations, prompted the introduction in [3] of quasi-hom-
Lie algebras (qhl-algebras) generalizing hom-Lie algebras. Quasi-hom-Lie algebras include
not only hom-Lie algebras as a subclass, but also colour Lie algebras and in particular Lie
superalgebras [3].

We let Derσ(A) denote the vector space of σ-derivations on A. Fixing a homomorphism
σ : A → A, an element ∂σ ∈ Derσ(A) and an element δ ∈ A, we assume that these objects
satisfy the following two conditions:

σ(Ann(∂σ)) ⊆ Ann(∂σ), (2.2)

∂σ(σ(a)) = δσ(∂σ(a)), for a ∈ A, (2.3)

where Ann(∂σ) := {a ∈ A | a · ∂σ = 0}. Let A · ∂σ := {a · ∂σ | a ∈ A} denote the cyclic
A-submodule of Derσ(A) generated by ∂σ and extend σ to A · ∂σ by σ(a · ∂σ) = σ(a) · ∂σ.
The following theorem, from [1], introducing an F-algebra structure on A · ∂σ making it a
quasi-hom-Lie algebra, is of central importance for the present paper.

Theorem 1. If (2.2) holds then the map 〈·, ·〉 defined by

〈a · ∂σ, b · ∂σ〉 = (σ(a) · ∂σ) ◦ (b · ∂σ) − (σ(b) · ∂σ) ◦ (a · ∂σ), (2.4)

for a, b ∈ A and where ◦ denotes composition of maps, is a well-defined F-algebra product
on the F-linear space A · ∂σ. It satisfies the following identities for a, b, c ∈ A:

〈a · ∂σ, b · ∂σ〉 = (σ(a)∂σ(b) − σ(b)∂σ(a)) · ∂σ, (2.5)

〈a · ∂σ, b · ∂σ〉 = −〈b · ∂σ, a · ∂σ〉, (2.6)

and if, in addition, (2.3) holds, we have the deformed six-term Jacobi identity

	a,b,c

(
〈σ(a) · ∂σ, 〈b · ∂σ, c · ∂σ〉〉 + δ · 〈a · ∂σ, 〈b · ∂σ, c · ∂σ〉〉

)
= 0, (2.7)

where 	a,b,c denotes cyclic summation with respect to a, b, c.

The algebra A · ∂σ in the theorem is then a qhl-algebra with α = σ, β = δ and
ω = − idA·∂σ

. For the detailed proof of Theorem 1 see [1].

3 Quasi-deformations

Let A be a commutative, associative F-algebra with unity 1, t an element of A, and let σ
denote an F-algebra endomorphism on A. Choose an element ∂σ of Derσ(A) and consider
the F-subspace A · ∂σ of elements of the form a · ∂σ for a ∈ A. We will usually denote
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a · ∂σ simply by a∂σ. Notice that A · ∂σ is a left A-module, and by Theorem 1 there is a
skew-symmetric algebra structure on A · ∂σ given by

〈a · ∂σ, b · ∂σ〉 = σ(a) · ∂σ(b · ∂σ) − σ(b) · ∂σ(a · ∂σ)

= (σ(a)∂σ(b) − σ(b)∂σ(a)) · ∂σ, (3.1)

where a, b ∈ A. The elements e := ∂σ, h := −2t∂σ and f := −t2∂σ span an F-linear
subspace S := LinSpanF{∂σ ,−2t∂σ,−t2∂σ} = LinSpanF{e, h, f} of A · ∂σ. We restrict the
multiplication (3.1) to S without, at this point, assuming closure. Now, ∂σ(t2) = ∂σ(t ·t) =
σ(t)∂σ(t) + ∂σ(t)t = (σ(t) + t)∂σ(t) which, by using (3.1), leads to

〈h, f〉 = 2〈t∂σ , t2∂σ〉 = 2σ(t)∂σ(t)t∂σ, (3.2a)

〈h, e〉 = −2〈t∂σ , ∂σ〉 = −2(σ(t)∂σ(1) − σ(1)∂σ(t))∂σ , (3.2b)

〈e, f〉 = −〈∂σ, t2∂σ〉 = −(σ(1)(σ(t) + t)∂σ(t) − σ(t)2∂σ(1))∂σ , (3.2c)

under the natural assumptions σ(1) = 1 and ∂σ(1) = 0 (see [4]), simplifying to

〈h, f〉 = 2σ(t)t∂σ(t)∂σ , (3.3a)

〈h, e〉 = 2∂σ(t)∂σ , (3.3b)

〈e, f〉 = −(σ(t) + t)∂σ(t)∂σ . (3.3c)

Remark 1. Note that when σ = id and ∂σ(t) = 1, we retain the classical sl2(F) with
relations (1.1).

3.1 Quasi-deformations with base algebra A = F[t]

Take A to be the polynomial algebra F[t], σ(1) = 1 and ∂σ(1) = 0. Since the set of
all non-negative integer powers of t is linearly independent over F in F[t], we are in the
situation of relations (3.3a), (3.3b) and (3.3c). Suppose that σ(t) = q(t) and ∂σ(t) = p(t),
where p(t), q(t) ∈ F[t]. To have closure of (3.3a), (3.3b) and (3.3c) these polynomials are
far from arbitrary. Indeed, by (3.3a) we get

deg(∂σ(t)σ(t)) = deg(p(t)q(t)) ≤ 1.

If we allow σ(t) = q(t) and ∂σ(t) = p(t), where p, q are arbitrary polynomials in t, then
we get a deformation of sl2(F) which does not preserve dimension; that is, brackets of the
basis elements e, f, h are not simply linear combinations in these elements but include,
additionally, basis elements from the whole A · ∂σ. This phenomenon will be studied
further in a following subsection.

Assume q(t) = q0 + q1t, implying that p(t) = p0. Relations (3.3a), (3.3b) and (3.3c)
according to (3.1) now become

〈h, f〉 : −2q0ef + q1hf + q2
0eh − q0q1h

2 − q2
1fh = −q0p0h − 2q1p0f, (3.4a)

〈h, e〉 : −2q0e
2 + q1he − eh = 2p0e, (3.4b)

〈e, f〉 : ef + q2
0e

2 − q0q1he − q2
1fe = −q0p0e +

q1 + 1

2
p0h. (3.4c)
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We would like to show how algebras similar in kind to Lie algebras, Lie superalgebras and
colour Lie algebras, in that their quadratic parts involve only commutators and anticom-
mutators, appear in this quasi-deformation family. When q0 = 0, q1 = 1 and p0 6= 0, that
is σ(t) = q(t) = t and ∂σ(t) = p(t) = p0 6= 0, we have

hf − fh = −2p0f, he − eh = 2p0e, ef − fe = p0h.

The special case of p0 = 1 corresponds to the Lie algebra sl2(F), i.e.,

hf − fh = −2f, he − eh = 2e, ef − fe = h.

Taking q0 = 0, q1 = −1 and p0 6= 0, meaning that σ(t) = q(t) = −t and ∂σ(t) = p(t) =
p0 6= 0, yields

hf + fh = −2p0f, he + eh = −2p0e, ef − fe = 0.

Remark 2. If we in the cases q0 = 0, q1 = ±1 and p0 6= 0 make the re-scalings e 7→ p0e,
f 7→ p0f and h 7→ p0h, we get the corresponding cases when putting p0 equal to one.
Hence, in each of the cases q1 = 1 and q1 = −1, we obtain isomorphic algebras for all
non-zero values of the parameter p0. In the classical terminology this is a so-called ”jump-
deformation” (here with deformation parameter p0) of the algebra defined by

hf + fh = 0, he + eh = 0, ef − fe = 0.

We consider the case where p0 = −1/2 giving rise to the relations

hf + fh = f, he + eh = e, ef − fe = 0.

In general, for k ≥ 0 we have

∂σ(tk+1) =
k∑

j=0

σ(t)jtk−j∂σ(t) = p(t)
k∑

j=0

q(t)jtk−j.

Let q(t) = q1t and p(t) = p0. Then

∂σ(tk+1) = p0

k∑

j=0

(q1t)
jtk−j = p0t

k
k∑

j=0

qj
1 = p0{k + 1}q1

tk,

where {n}q =
∑n−1

j=0
qj = 1−qn

1−q
if q 6= 1 and {n}1 = n (see [2], for instance). Choosing

the parameters q1 = −1 and p0 = −1/2, we have p0{n}q1
= −1

4
(1− (−1)n), and hence for

n ≥ 1

e(tn) = −
1 − (−1)n

4
tn−1, h(tn) =

1 − (−1)n

2
tn, f(tn) =

1 − (−1)n

4
tn+1.

Recall that ∂σ(1) = 0, implying e(1) = h(1) = f(1) = 0. It follows that we obtain two
additional relations, namely e2 = 0 and f2 = 0. We arrive at an algebra defined by the
five relations

hf + fh = f, he + eh = e, ef − fe = 0, e2 = 0, f2 = 0.
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We suspect that this algebra is involved in some kind of duality for colour Lie algebras.
The condition (2.3) holds with δ = q1. By Theorem 1 we have a deformed Jacobi

identity

	x,y,z 〈(α + id)(x), 〈y, z〉〉 = 0 (3.5)

on A · ∂σ = F[t] · ∂σ, where α(x) := q−1
1 σ(x) for any x = a∂σ ∈ A · ∂σ .

3.2 Quasi-deformations with base algebra F[t]/(t4)

Now, let F include all fourth roots of unity and take as A the algebra F[t]/(t4). This
is obviously a four-dimensional F-vector space and a finitely generated F[t]-module with
basis {1, t, t2, t3}. We let, as before, e = ∂σ, h = −2t∂σ and f = −t2∂σ. We introduce a
fourth basis element g = 2t3∂σ. Note that −2t · e = h, t · h = 2f and −2t · f = g. Put

∂σ(t) = p0 + p1t + p2t
2 + p3t

3, (3.6a)

σ(t) = q0 + q1t + q2t
2 + q3t

3, (3.6b)

considering these as elements in the ring F[t]/(t4). The equalities (3.6a) and (3.6b) have
to be compatible with t4 = 0. This means in particular that

σ(t4) = σ(t)4 = (q0 + q1t + q2t
2 + q3t

3)4

= q4
0 + 4q3

0q1t + 2q2
0(2q0q2 + 3q2

1)t
2 + 4q0(q

2
0q3 + 3q0q1q2 + q3

1)t
3 = 0,

implying q0 = 0. Furthermore,

0 = ∂σ(t4) = (σ(t)3 + σ(t)2t + σ(t)t2 + t3)∂σ(t). (3.7)

Since

σ(t) = (q1 + q2t + q3t
2)t, σ(t)2 = (q2

1 + 2q1q2t)t
2, σ(t)3 = q3

1t
3,

it follows from equation (3.7) that (q3
1 + q2

1 + q1 + 1)p0t
3 = 0, and hence

(q3
1 + q2

1 + q1 + 1)p0 = 0. (3.8)

In other words, in case p0 6= 0, we generate deformations at the zeros of the polynomial
u3 + u2 + u + 1; if p0 = 0 then q1 is a true free deformation parameter.

As before we make the assumptions that σ(1) = 1, ∂σ(1) = 0 and so relations (3.3a),
(3.3b) and (3.3c) still hold. Moreover, since

∂σ(t2) = (σ(t) + t)∂σ(t), ∂σ(t3) = (σ(t)2 + σ(t)t + t2)∂σ(t),

the introduction of the new generator g means that we obtain three additional relations
using equation (3.1)

〈h, g〉 = −4〈t∂σ, t3∂σ〉 = −4(σ(t) + t)σ(t)t∂σ(t)∂σ, (3.9a)

〈e, g〉 = 2〈∂σ , t3∂σ〉 = 2(σ(t)2 + σ(t)t + t2)∂σ(t)∂σ , (3.9b)

〈f, g〉 = −2〈t2∂σ , t3∂σ〉 = −2σ(t)2t2∂σ(t)∂σ. (3.9c)
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The action of A·∂σ on A is now given by the values of e, h, f and g on the basis {1, t, t2, t3}.
From ∂σ(1) = 0 it follows that e(1) = h(1) = f(1) = g(1) = 0. Moreover, applying the
σ-twisted Leibniz rule, we have

e(t) = p0 + p1t + p2t
2 + p3t

3,

e(t2) = (q1 + 1)p0t + (q2p0 + q1p1 + p1)t
2 + (q3p0 + q2p1 + q1p2 + p2)t

3,

e(t3) = (q2
1 + q1 + 1)p0t

2 + (q2p0 + 2q1q2p0 + q2
1p1 + q1p1 + p1)t

3.

For the action of h we have (since h = −2t · e)

h(t) = −2p0t − 2p1t
2 − 2p2t

3,

h(t2) = −2(q1 + 1)p0t
2 − 2(q2p0 + q1p1 + p1)t

3,

h(t3) = −2(q2
1 + q1 + 1)p0t

3.

The values of f are easily computed using f = 1

2
t · h:

f(t) = −p0t
2 − p1t

3, f(t2) = −(q1 + 1)p0t
3, f(t3) = 0.

Finally, for g we obtain g(t) = 2p0t
3 and g(t2) = g(t3) = 0. By (2.4) the bracket can be

computed abstractly on generators as

〈h, f〉 = q1hf + 2q2f
2 − q2

1fh + q1q2gh − q3gf, (3.10a)

〈h, e〉 = q1he + 2q2fe− eh − q3ge, (3.10b)

〈e, f〉 = ef − q2
1fe + q1q2ge, (3.10c)

〈h, g〉 = q1hg + 2q2fg − q3g
2 − q3

1gh, (3.10d)

〈e, g〉 = eg − q3
1ge, (3.10e)

〈f, g〉 = q2
1fg − q1q2g

2 − q3
1gf. (3.10f)

Formulas (3.6a) and (3.6b), together with the assumption that the right-hand-sides of
these are elements in F[t]/(t4), now yield closure. Indeed, by (3.1) we obtain with σ(t) =
q(t) = q1t + q2t

2 + q3t
3 and ∂σ(t) = p(t) = p0 + p1t + p2t

2 + p3t
3

〈h, f〉 = 2q(t)tp(t)∂σ = 2(q1p0 + (q2p0 + q1p1)t)t
2∂σ

= −2q1p0f + (q2p0 + q1p1)g,

〈h, e〉 = 2p(t)∂σ = 2p0e − p1h − 2p2f + p3g,

〈e, f〉 = −(q(t) + t)p(t)∂σ =
1

2
(1 + q1)p0h + (p1 + q1p1 + q2p0)f

−
1

2
(p2 + q1p2 + q2p1 + q3p0)g,

〈h, g〉 = −4(q(t) + t)q(t)tp(t)∂σ = −2(1 + q1)q1p0g,

〈e, g〉 = 2(q(t)2 + q(t)t + t2)p(t)∂σ

= −2(1 + q1 + q2
1)p0f + (p1 + q1p1 + q2

1p1 + q2p0 + 2q1q2p0)g,

〈f, g〉 = −2q(t)2t2p(t)∂σ = 0.
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We shall consider two cases where q2 = q3 = 0. In the first one, corresponding to q1 = 1,
we must have p0 = 0 in order to satisfy (3.8), so we obtain six relations from (3.10a –3.10f )
and the bracket expressions listed above

〈h, f〉 : hf − fh = p1g,

〈h, e〉 : he − eh = −p1h − 2p2f + p3g,

〈e, f〉 : ef − fe = 2p1f − p2g,

〈h, g〉 : hg − gh = 0,

〈e, g〉 : eg − ge = 3p1g,

〈f, g〉 : fg − gf = 0.

In our specific representation of the associative algebra defined by these relations, the
action of e on the set {t, t2, t3} is (recall that e(1) = h(1) = f(1) = g(1) = 0)

e(t) = p1t + p2t
2 + p3t

3, e(t2) = 2p1t
2 + 2p2t

3, e(t3) = 3p1t
3,

while h, f and g simplify to h(t) = −2p1t
2 − 2p2t

3, h(t2) = −4p1t
3, f(t) = −p1t

3 and
h(t3) = f(t2) = f(t3) = g(t) = g(t2) = g(t3) = 0.

In the second case, obtained by choosing q1 = −1 and q2 = q3 = 0, the relations reduce
to the form

〈h, f〉 : hf + fh = −2p0f + p1g,

〈h, e〉 : he + eh = −2p0e + p1h + 2p2f − p3g,

〈e, f〉 : ef − fe = 0,

〈h, g〉 : hg − gh = 0,

〈e, g〉 : eg + ge = −2p0f + p1g,

〈f, g〉 : fg + gf = 0.

The values of e on the set {t, t2, t3} are now given by

e(t) = p0 + p1t + p2t
2 + p3t

3, e(t2) = 0, e(t3) = p0t
2 + p1t

3.

For the action of h, we find

h(t) = −2p0t − 2p1t
2 − 2p2t

3, h(t2) = 0, h(t3) = −2p0t
3,

whilst f and g have values f(t) = −p0t
2 − p1t

3, g(t) = 2p0t
3 and, as for the q1 = 1 case,

finally f(t2) = f(t3) = g(t2) = g(t3) = 0.

Twisted Jacobi identity

If σ(t) = −t the left-hand-side of (2.3) for a = t is by equation (3.6a)

∂σ(σ(t)) = ∂σ(−t) = −∂σ(t) = −(p0 + p1t + p2t
2 + p3t

3).

The right-hand-side becomes

δσ(∂σ(t)) = δ · σ(p0 + p1t + p2t
2 + p3t

3) = δ(p0 − p1t + p2t
2 − p3t

3).
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Assume that δ can be written as δ = δ0 + δ1t + δ2t
2 + δ3t

3. Then our relation ∂σ(σ(t)) =
δσ(∂σ(t)) can be written as

p0 + p1t + p2t
2 + p3t

3 = −δ0p0 + (δ0p1 − δ1p0)t − (δ0p2 − δ1p1 + δ2p0)t
2

+ (δ0p3 − δ1p2 + δ2p1 − δ3p0)t
3,

keeping in mind that t4 = 0. This is equivalent to the linear system of equations for
δ0, δ1, δ2 and δ3





p0 + δ0p0 = 0
p1 − δ0p1 + δ1p0 = 0
p2 + δ0p2 − δ1p1 + δ2p0 = 0
p3 − δ0p3 + δ1p2 − δ2p1 + δ3p0 = 0.

Assuming that p0 6= 0, then obviously δ0 = −1, and hence

(δ0, δ1, δ2, δ3) = (−1,−
2p1

p0

,−
2p2

1

p2
0

,−
2p3

1

p3
0

+
2p1p2

p2
0

−
2p3

p0

).

In the sequel, let ξ1, ξ2 and ξ3 denote three free parameters taking values in F. If p0 = 0
and p1 6= 0 then we have δ0 = 1 and

(δ0, δ1, δ2, δ3) = (1,
2p2

p1

,
2p2

2

p2
1

, ξ3).

The case p0 = p1 = 0, p2 6= 0 yields δ0 = −1, δ1 = −2p3/p2 and δ2 = ξ2, δ3 = ξ3. Finally,
p0 = p1 = p2 = 0, p3 6= 0 implies that δ = 1 + ξ1t + ξ2t

2 + ξ3t
3. In each of these cases the

twisted Jacobi identity is obtained from (2.7).
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