Note on operadic non-associative deformations

Eugen PAAL

Department of Mathematics, Tallinn University of Technology
Ehitajate tee 5, 19086 Tallinn, Estonia
E-mail: eugen.paal@ttu.ee
This article is part of the Proceedings of the Baltic-Nordic Workshop, Algebra, Geometry and Mathematical Physics which was held in Tallinn, Estonia, during October 2005.

Abstract

Deformation equation of a non-associative deformation in operad is proposed. Its integrability condition (the Bianchi identity) is considered. Algebraic meaning of the latter is explained.

Key words: Operad, deformation, Sabinin principle, Bianchi identity.
AMS MSC 2000: 18D50

1 Introduction and outline of the paper

Non-associativity is sometimes said to be an algebraic equivalent of the differential geometric concept of curvature [3]. To see the equivalence, one must represent an associator in curvature terms. In particular, this can be observed for the geodesic loops of a manifold with an affine connection $[1,2]$.

In this paper, the equivalence is clarified from an operad theoretical point of view. By using the Gerstenhaber brackets and a coboundary operator in an operad algebra, the (formal) associator can be represented as a curvature form in differential geometry. This equation is called a deformation equation. Its integrability condition is the Bianchi identity.

2 Operad

Let K be a unital associative commutative ring, char $K \neq 2,3$, and let $C^{n}(n \in \mathbb{N})$ be unital K-modules. For homogeneous $f \in C^{n}$, we refer to n as the degree of f and write (when it does not cause confusion) f instead of $\operatorname{deg} f$. For example, $(-1)^{f} \doteq(-1)^{n}$, $C^{f} \doteq C^{n}$ and $\circ_{f} \doteq \circ_{n}$. Also, it is convenient to use the reduced degree $|f| \doteq n-1$. Throughout the paper we assume that $\otimes \doteq \otimes_{K}$.

Definition 1. A linear operad with coefficients in K is a sequence $C \doteq\left\{C^{n}\right\}_{n \in \mathbb{N}}$ of unital K-modules (an \mathbb{N}-graded K-module), such that the following conditions hold.
(1) For $0 \leq i \leq m-1$ there exist partial compositions

$$
\circ_{i} \in \operatorname{Hom}\left(C^{m} \otimes C^{n}, C^{m+n-1}\right), \quad\left|\circ_{i}\right|=0
$$

(2) For all $h \otimes f \otimes g \in C^{h} \otimes C^{f} \otimes C^{g}$, the composition relations hold,

$$
\left(h \circ_{i} f\right) \circ_{j} g= \begin{cases}(-1)^{|f||g|}\left(h \circ_{j} g\right) \circ_{i+|g|} f & \text { if } 0 \leq j \leq i-1 \\ h \circ_{i}\left(f \circ_{j-i} g\right) & \text { if } i \leq j \leq i+|f| \\ (-1)^{|f||g|}\left(h \circ_{j-|f|} g\right) \circ_{i} f & \text { if } i+f \leq j \leq|h|+|f|\end{cases}
$$

(3) There exists a unit $\mathrm{I} \in C^{1}$ such that

$$
\mathrm{I} \circ_{0} f=f=f \circ_{i} \mathrm{I}, \quad 0 \leq i \leq|f|
$$

In the 2 nd item, the first and third parts of the defining relations turn out to be equivalent.

Example 2 (endomorphism operad [4]). Let L be a unital K-module and $\mathcal{E}_{L}^{n} \doteq$ $\mathcal{E} n d_{L}^{n} \doteq \operatorname{Hom}\left(L^{\otimes n}, L\right)$. Define the partial compositions for $f \otimes g \in \mathcal{E}_{L}^{f} \otimes \mathcal{E}_{L}^{g}$ as

$$
f \circ_{i} g \doteq(-1)^{i|g|} f \circ\left(\operatorname{id}_{L}^{\otimes i} \otimes g \otimes \operatorname{id}_{L}^{\otimes(|f|-i)}\right), \quad 0 \leq i \leq|f|
$$

Then $\mathcal{E}_{L} \doteq\left\{\mathcal{E}_{L}^{n}\right\}_{n \in \mathbb{N}}$ is an operad (with the unit $\operatorname{id}_{L} \in \mathcal{E}_{L}^{1}$) called the endomorphism operad of L.

Thus algebraic operations turn out to be elements of an endomorphism operad. It is convenient to call homogeneous elements of an abstract operad the operations as well.

3 Gerstenhaber brackets and associator

Definition 3 (total composition). The total composition $\bullet C^{f} \otimes C^{g} \rightarrow C^{f+|g|}$ is defined by

$$
f \bullet g \doteq \sum_{i=0}^{|f|} f \circ_{i} g \quad \in C^{f+|g|}, \quad|\bullet|=0
$$

The pair $\operatorname{Com} C \doteq\{C, \bullet\}$ is called a composition algebra of C.
Lemma 4 (Gerstenhaber identity). The composition algebra multiplication • is nonassociative and satisfies the Gerstenhaber identity

$$
\begin{aligned}
(h, f, g) & \doteq(h \bullet f) \bullet g-h \bullet(f \bullet g) \\
& =(-1)^{|f||g|}(h, g, f)
\end{aligned}
$$

Definition 5 (Gerstenhaber brackets). The Gerstenhaber brackets $[\cdot, \cdot]$ are defined in Com C by

$$
[f, g] \doteq f \bullet g-(-1)^{|f||g|} g \bullet f=-(-1)^{|f||g|}[g, f], \quad|[\cdot, \cdot]|=0
$$

The commutator algebra of $\operatorname{Com} C$ is denoted as $\operatorname{Com}^{-} C \doteq\{C,[\cdot, \cdot]\}$.

Theorem 6. $\mathrm{Com}^{-} C$ is a graded Lie algebra.
Proof. The anti-symmetry of the Gerstenhaber brackets is evident. To prove the (graded) Jacobi identity

$$
\left.(-1)^{|f||h|}[[f, g], h]+(-1)^{|g||f|} \mid[g, h], f\right]+(-1)^{|h||g|}[[h, f], g]=0
$$

use the G erstenhaber identity.
Let $\{L, \mu\}$ be a non-associative algebra with a multiplication $\mu: L \otimes L \rightarrow L$. The multiplication μ can be seen as an element of the component \mathcal{E}_{L}^{2} of an endomorphism operad \mathcal{E}_{L}. One can easily check that the associator of μ reads

$$
A \doteq \mu \circ\left(\mu \otimes \operatorname{id}_{L}-\operatorname{id}_{L} \otimes \mu\right)=\mu \bullet \mu=\frac{1}{2}[\mu, \mu] \doteq \mu^{2}, \quad \mu \in \mathcal{E}_{L}^{2}
$$

So the total composition and Gerstenhaber brackets can be used for representing the associator in operadic terms. This was first noticed by Gerstenhaber [4].
Proposition 7. If K is a field of characteristic 0 , then every binary operation $\mu \in C^{2}$ generates a power-associative subalgebra in $\operatorname{Com} C$.
Proof. Use the Albert criterion [5] that a power-associative algebra over a field K of characteristic 0 can be given by the identities

$$
\mu^{2} \bullet \mu=\mu \bullet \mu^{2}, \quad\left(\mu^{2} \bullet \mu\right) \bullet \mu=\mu^{2} \bullet \mu^{2}
$$

Both identities easily follow from the corresponding Gerstenhaber identities

$$
(\mu, \mu, \mu)=0, \quad\left(\mu^{2}, \mu, \mu\right)=0
$$

4 Coboundary operator

Let $h \in C$ be an operation from an operad C. By using the Gerstenhaber brackets, define an adjoint representation $h \mapsto \partial_{h}$ of $\mathrm{Com}^{-} C$ by

$$
\partial_{h} f \doteq \operatorname{ad}_{h}^{\text {right }} f \doteq[f, h], \quad\left|\partial_{h}\right|=|h|
$$

It follows from the Jacobi identity in $\mathrm{Com}^{-} C$ that ∂_{h} is a (right) derivation of $\mathrm{Com}^{-} C$,

$$
\partial_{h}[f, g]=\left[f, \partial_{h} g\right]+(-1)^{|g||h|}\left[\partial_{h} f, g\right]
$$

and the following commutation relation holds:

$$
\left[\partial_{f}, \partial_{g}\right] \doteq \partial_{f} \partial_{g}-(-1)^{|f||g|} \partial_{g} \partial_{f}=\partial_{[g, f]}
$$

Let $h \doteq \mu \in C^{2}$ be a binary operation. Then, since $|\mu|=1$ is odd, one has

$$
\partial_{\mu}^{2}=\frac{1}{2}\left[\partial_{\mu}, \partial_{\mu}\right]=\frac{1}{2} \partial_{[\mu, \mu]}=\partial_{\frac{1}{2}[\mu, \mu]}=\partial_{\mu \bullet \mu}=\partial_{\mu^{2}}=\partial_{A}
$$

So associativity $\mu^{2}=0$ implies $\partial_{\mu}^{2}=0$. In this case, ∂_{μ} is called a coboundary operator. In particular, for $C=\mathcal{E}_{L}$ one obtains the Hochschild coboundary operator [6]

$$
-\partial_{\mu} f=\mu \circ\left(\operatorname{id}_{L} \otimes f\right)-\sum_{i=0}^{|f|}(-1)^{i} f \circ\left(\operatorname{id}_{L}^{\otimes i} \otimes \mu \otimes \operatorname{id}_{L}^{\otimes| | f \mid-i)}\right)+(-1)^{|f|} \mu \circ\left(f \otimes \operatorname{id}_{L}\right)
$$

5 Deformation equation

Definition 8 (deformation). For an operad C, let $\mu, \mu_{0} \in C^{2}$ be two binary operations. The difference $\omega \doteq \mu-\mu_{0}$ is called a deformation.

Let $\partial \doteq \partial_{\mu_{0}}$ and denote the (formal) associators of μ and μ_{0} as follows:

$$
A \doteq \mu \bullet \mu=\frac{1}{2}[\mu, \mu], \quad A_{0} \doteq \mu_{0} \bullet \mu_{0}=\frac{1}{2}\left[\mu_{0}, \mu_{0}\right]
$$

Definition 9 (associative deformation). The deformation is called associative if $A=$ $0=A_{0}$.

Theorem 10 (deformation equation). One has

$$
\underbrace{A-A_{0}}_{\text {deformation }}=\underbrace{\partial \omega+\frac{1}{2}[\omega, \omega]}_{\text {operadic curvature }}
$$

Proof. Calculate

$$
\begin{aligned}
A & =\frac{1}{2}[\mu, \mu] \\
& =\frac{1}{2}\left[\mu_{0}+\omega, \mu_{0}+\omega\right] \\
& =\frac{1}{2}\left[\mu_{0}, \mu_{0}\right]+\frac{1}{2}\left[\mu_{0}, \omega\right]+\frac{1}{2}\left[\omega, \mu_{0}\right]+\frac{1}{2}[\omega, \omega] \\
& =A_{0}-\frac{1}{2}(-1)^{\left|\mu_{0}\right||\omega|}\left[\omega, \mu_{0}\right]+\frac{1}{2}\left[\omega, \mu_{0}\right]+\frac{1}{2}[\omega, \omega] \\
& =A_{0}+\left[\omega, \mu_{0}\right]+\frac{1}{2}[\omega, \omega] \\
& =A_{0}+\partial \omega+\frac{1}{2}[\omega, \omega]
\end{aligned}
$$

6 Sabinin's principle

The deformation equation can be seen as a differential equation for ω with given associators A_{0}, A. Note that if the associator is fixed, i. e. $A=A_{0}$, we obtain the Maurer-Cartan equation, well-known from the theory of associative deformations:

$$
A=A_{0} \quad \Longleftrightarrow \quad \partial \omega+\frac{1}{2}[\omega, \omega]=0
$$

Thus the deformation equation may be called the generalized Maurer-Cartan equation as well. The Maurer-Cartan expression

$$
\partial \omega+\frac{1}{2}[\omega, \omega]
$$

is a well-known defining form for curvature in modern differential geometry. One can see that the associator (deformation) is a formal (operadic) curvature while the deformation is working as a connection. By reformulating the Sabinin principle, one can say that associator is an operadic equivalent of the curvature.

7 Bianchi identity

By following a differential geometric analogy, one can state the
Theorem 11 (Bianchi identity). The associator of the deformed algebra satisfies the Bianchi identity

$$
\partial A+[A, \omega]=0
$$

Proof. First differentiate the deformation equation,

$$
\begin{aligned}
\partial\left(A-A_{0}\right) & =\partial^{2} \omega+\frac{1}{2} \partial[\omega, \omega] \\
& =\partial^{2} \omega+\frac{1}{2}(-1)^{|\partial||\omega|}[\partial \omega, \omega]+\frac{1}{2}[\omega, \partial \omega] \\
& =\partial^{2} \omega-\frac{1}{2}[\partial \omega, \omega]+\frac{1}{2}[\omega, \partial \omega] \\
& =\partial^{2} \omega-\frac{1}{2}[\partial \omega, \omega]-\frac{1}{2}(-1)^{|\partial \omega||\omega|}[\partial \omega, \omega] \\
& =\partial^{2} \omega-[\partial \omega, \omega]
\end{aligned}
$$

Again using the deformation equation, we obtain

$$
\begin{aligned}
\partial\left(A-A_{0}\right) & =\partial^{2} \omega-[\partial \omega, \omega] \\
& =\partial^{2} \omega-\left[A-A_{0}-\frac{1}{2}[\omega, \omega], \omega\right] \\
& =\partial^{2} \omega-\left[A-A_{0}, \omega\right]+\frac{1}{2}[[\omega, \omega], \omega]
\end{aligned}
$$

It follows from the Jacobi identity that

$$
\partial A_{0}=\left[A_{0}, \mu_{0}\right]=\frac{1}{2}\left[\left[\mu_{0}, \mu_{0}\right], \mu_{0}\right]=0, \quad[[\omega, \omega], \omega]=0
$$

By using these relations we obtain

$$
\partial A=\partial^{2} \omega-\left[A-A_{0}, \omega\right]
$$

Recall that $\partial^{2}=\partial_{A_{o}}$ and calculate

$$
\begin{aligned}
\partial A+[A, \omega] & =\partial_{A_{0}} \omega+\left[A_{0}, \omega\right]=\left[\omega, A_{0}\right]+\left[A_{0}, \omega\right] \\
& =-(-1)^{|\omega|\left|A_{0}\right|}\left[A_{0}, \omega\right]+\left[A_{0}, \omega\right] \\
& =0
\end{aligned}
$$

Remark 12. To clarify algebraic meaning of the Bianchi identity, let us give another proof of the Bianchi identity:

$$
\partial A+[A, \omega]=\left[A, \mu_{0}\right]+\left[A, \mu-\mu_{0}\right]=[A, \mu]=\frac{1}{2}[[\mu, \mu], \mu]=0
$$

where the latter equality is evident from the Jacobi identity. But $A \doteq \mu \bullet \mu$ and so the Bianchi identity strikingly reads

$$
(\mu \bullet \mu) \bullet \mu=\mu \bullet(\mu \bullet \mu)
$$

The latter identity can be easily seen from the Gerstenhaber identity.

Acknowledgement

Research was in part supported by the Estonian SF Grant 5634.

References

[1] M. Kikkawa. On local loops in affine manifolds. J. Sci. Hiroshima Univ. 28, Ser A (1964), 199-207.
[2] M. Akivis. On geodesic loops and local triple systems of a space with an affine connection. Sibirski Mat. J. 19 (1978), 243-253 (in Russian).
[3] L. Sabinin. Methods of non-associative algebra in differential geometry. In Russian translation of "Foundations of Differential Geometry" (S. Kobayashi and K. Nomizu), Nauka, Moscow, 1981, pp 293-339 (in Russian).
[4] M. Gerstenhaber. The cohomology structure of an associative ring. Ann. of Math. 78 (1963), 267-288.
[5] A. A. Albert. Power-associative rings. Trans. Amer. Math. Soc. 64 (1948), 552-593.
[6] G. Hochschild. Cohomology groups of an associative algebra. Ann. Math. 46 (1945), 58-67.

