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Abstract

Total differentiation operators as linear vector fields, their flows, invariants and sym-
metries form the geometry of jet space. In the jet space the dragging of tensor fields
obeys the exponential law.

The composition of smooth maps induces a composition of jets in corresponding
jet spaces. The prolonged total differentiation operators generalize the differentiation
of composite function. The relations between Cartan forms under the jet composition
are described.
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Introduction

When speaking about Group Analysis, Symmetry Analysis or Secondary Calculus, when
prolonging differential equations and group operators or classifying singularities of smooth
maps, we are always dealing with jets of maps, see [1]–[4],[7].

In the present paper we consider infinite jets of smooth maps R
n → R

m. The set of
infinite jets Jn,m is a bundle space with n-dimensional base and infinite-dimensional fibers.
In Jn,m total differentiation operators (TDOs) D and Cartan forms ω are defined. At the
same time the additive group R

n acts in Jn,m along orbits that are integral manifolds
of distribution spanned by D. In Jn,m the operators D are linear vector fields and their
flows are determined by the exponential law. The same law determines invariants and
infinitesimal symmetries of D.

In the first section we introduce an algebraic scheme for calculation of invariants and
symmetries of D in J1,1. This scheme is universal in the following sense. There is a triple
(D, t, U) defined in J1,1, where D is a TDO, t is its parameter and U is the set of fiber
coordinates. Let X be a vector field with canonical parameter s on a manifold M , and
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let f be a smooth function differentiable with respect to X. Then we associate a triple
(X, s, F ), where F is the set consisting of f and all its derivatives with respect to X, by a
certain map ϕ : M → J1,1 with the triple (D, t, U). Namely, suppose t ◦ ϕ = s, U ◦ ϕ = F

and, as a result, the vector field X is ϕ-related to D. All implications for (D, t, U) are
carried over from J1,1 onto M and give us useful information about (X, s, F ). This scheme
can be also generalized for the case Jn,m using multi-indices.

In the second section we consider the rule of total differentiation under the jet compo-
sition. It is shown how the corresponding TDOs are prolonged and how the Cartan forms
are related under the jet composition. The convenient recurrent formulas are derived.

1 Jet Calculus

1.1 Jet space J1,1

A pure jet as an element of J1,1 is an infinite sequence of symbols

t, u, u′, u′′, . . . (1.1)

In general, these symbols are not connected with each other. J1,1 is a trivial bundle R×R
∞

with time axis R as its base and infinite dimensional fibers R
∞. The symbols (1.1) are

considered as coordinate functions in J1,1.
If the symbols u(k), k = 0, 1, 2, . . ., are replaced by a smooth function u of argument t

and its derivatives, then the sequence (1.1) becomes a jet of the given function, a section
of the bundle R × R

∞. Any relation between the quantities in (1.1) can be interpreted as
an ODE. After prolongation this ODE can be considered as a surface in J1,1. For instance,
being prolonged, an ODE of order n

u(n) = F(t, u, u′, u′′, . . . , u(n−1))

allows to express u(n), u(n+1), . . . by means of n+ 1 quantities t, u, u′, u′′, . . . , u(n−1). One
can speak about parametric equations of a (n+1)-dimensional surface in J1,1. If the jet of
the function u(t) which can be considered as the section of the bundle R×R

∞ lies entirely
on this surface, then the function u(t) is called a solution of the ODE.

Note that in the present paper we study pure jets (1.1) which are not connected with
a certain map.

1.2 Basic implications

Let us define in J1,1 the following infinite matrices:

E =









1 0 0 . . .

0 1 0 . . .

0 0 1 . . .

. . . . . . . . . . . .









, C =









0 1 0 . . .

0 0 1 . . .

0 0 0 . . .

. . . . . . . . . . . .









, eCt =









1 t t2

2 . . .

0 1 t . . .

0 0 1 . . .

. . . . . . . . . . . . .









,

U =











u

u′

u′′

...











, U ′ =











u′

u′′

u′′′

...











, Ut =











ut

u′t
u′′t
...











, I =











i0
i1
i2
...











, ω =











ω0

ω1

ω2
...











,
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where E is the unit matrix, C is the shift matrix, eCt is the exponential of Ct and
U,U ′, Ut, I, ω are column-matrices. Define also the infinite row-matrix

∂

∂U
=

(

∂

∂u

∂

∂u′
∂

∂u′′
· · ·

)

.

In the bundle R × R
∞ there is defined the adapted basis (see [5],[6])

(

D
∂

∂U

)

=

(

∂

∂t

∂

∂U

)

·

(

1 0
U ′ E

)

, (1.2)

(

dt

ω

)

=

(

1 0
−U ′ E

)

·

(

dt

dU

)

. (1.3)

This basis contains the total differentiation operator D and the Cartan forms ω:

D =
∂

∂t
+

∂

∂U
U ′, ω = dU − U ′dt. (1.4)

In order to denote differentiation with respect to D (Lie differentiation), we use ordinary
primes.

Let us start with a summary of the main implications.
First, the following double implication takes place:

U ′ = CU ⇒ Ut = eCtU ⇒ I = e−CtU. (1.5)

Since D is a linear vector field on each fibre, the dynamical system U ′ = CU determines
its flow Ut = eCtU in J1,1. Any point U moves along its trajectory (t, Ut). Changing the
sign of t, one obtains the set of invariants I = e−CtU of D. Indeed, being dragged along
the flow of D, the quantities I do not change: I ′ = e−Ct(U ′ − CU) = 0. The formulas
Ut = eCtU and I = e−CtU both can be written as follows:

u
(k)
t =

∞
∑

l=0

u(k+l) t
l

l!
, k = 0, 1, 2, . . . , (1.6)

ik =

∞
∑

l=0

u(k+l) (−t)
l

l!
, k = 0, 1, 2, . . . (1.7)

Second, for the Cartan forms ω we have the double implication

ω′ = Cω ⇒ ωt = eCtω ⇒ dI = e−Ctω. (1.8)

The leftmost equation ω′ = Cω means that each next form in the sequence ω0, ω1, ω2, . . . is
the Lie derivative of the previous one with respect to D. The middle equation ωt = eCtω

describes the dragging of ω along the flow of D. The rightmost equation dI = e−Ctω

implies that the exponential e−Ct is an integrating matrix for the system ω. Thus the
Cartan forms become the exact differentials dI. The replacement of fiber coordinates U
with invariants I is accompanied by transformations in the basis:

U  I ⇒ ω  dI,
∂

∂U
 

∂

∂I
.
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Third, for the vertical frame we have the following double implication

(

∂

∂U

)′

= −
∂

∂U
C ⇒

(

∂

∂U

)

t

=
∂

∂U
e−Ct ⇒

∂

∂I
=

∂

∂U
eCt. (1.9)

The leftmost and the middle equations describe the dragging of the frame ∂
∂U

along the flow

of D. The rightmost equation determines the invariant frame ∂
∂I

consisting of operators

∂

∂i0
=

∂

∂u
,

∂

∂i1
= t

∂

∂u
+

∂

∂u′
,

∂

∂i2
=
t2

2

∂

∂u
+ t

∂

∂u′
+

∂

∂u′′
,

...

These operators form a basis for Lie vector fields that are infinitesimal symmetries of D.

Forth, for the components of a Lie vector field we have the following double implication:

µ′ = Cµ ⇒ µt = eCtµ ⇒ ν = e−Ctµ. (1.10)

Let P be a vertical vector field in J1,1. Denote by µ = PU and ν = PI its components
in the natural frame ∂

∂U
and the invariant frame ∂

∂I
, respectively, and calculate the Lie

derivative of P with respect to D:

P =
∂

∂U
µ =

∂

∂I
ν ⇒ P ′ =

∂

∂U
(µ′ − Cµ) =

∂

∂I
ν ′.

This implies that P commutes with D, i.e. P is an infinitesimal symmetry of D if and
only if either µ′ = Cµ or ν ′ = 0. These two conditions are obviously equivalent since
ν and µ are related: ν = e−Ctµ. The equality µ′ = Cµ means that each element of the
column µ is the derivative of the previous one, i.e. µk = µ′k−1, k = 1, 2, . . ., or, that is the
same,

µk = µ
(k)
0 , k = 1, 2, . . .

The first function µ0 is said to be a generating function for P . For instance, the invari-
ant frame ∂

∂I
consists of Lie vertical vector fields with generating functions 1, t, t2

2 , . . .,
respectively.

The leftmost and the middle equations in (1.10) show how the elements of µ are dragged
along the flow of D. The rightmost equation in (1.10) shows that the components ν and
µ are related in such a way that the invariants I are related to the fiber coordinates U in
(1.5).

Now suppose that P is not necessarily vertical vector field. Such a vector field can
have both vertical and horizontal components. The natural question arises: under what
conditions P is an infinitesimal symmetry of D, or when the condition P ′ ‖ D holds. In the
later case P is obviously an infinitesimal symmetry of D. The sign ‖ means the equality
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of operators up to a coefficient of proportionality. Let us present P in the natural, the
adapted and the invariant frames respectively:

P = ξ
∂

∂t
+

∂

∂U
λ = ξD +

∂

∂U
µ = ξ

∂

∂t
+

∂

∂I
ν.

Here the components ξ, λ, µ, ν have the following meaning:

ξ = Pt, λ = PU = µ+ U ′ξ, µ = ω(P ), ν = PI = e−tCµ.

Let us calculate the Lie derivative of P with respect to D in these frames:

P ′ = ξ′D +
∂

∂U
(λ′ − Cλ− ξ′U ′) = ξ′D +

∂

∂U
(µ′ − Cµ) = ξ′D +

∂

∂I
ν ′.

One can see that the next conditions are equivalent:

P ′ ‖ D ⇔ λ′ − Cλ− ξ′U ′ = 0 ⇔ µ′ = Cµ ⇔ ν ′ = 0.

Now we can formulate a rule for prolongation of vector fields in the natural frame. Let
a vector field P = ξ ∂

∂t
+ λ0

∂
∂u

be given on the tu plane. Our purpose is to construct a
prolongation of P to a Lie vector field in J1,1. First, using components ξ and λ0 define the
generating function µ0 = λ0 − ξu′. Second, calculate the derivatives µ′ = λ′ − ξ′U ′ − ξU ′′

and then according to the formula Cλ = µ′ + ξU ′′ write the column λ for P = ξ ∂
∂t

+ ∂
∂U
λ.

Fifth and finally, for invariant (with respect to D) 1-form Ψ = ψω with coefficients
taken in the form of row-matrix ψ =

(

ψ0 ψ1 ψ2 · · ·
)

, we have the following double
implication:

ψ′ = −ψC ⇔ ψt = ψe−Ct ⇔ χ = ψeCt. (1.11)

¿From the derivative Ψ′ = (ψ′ + ψC)ω there follows

Ψ′ = 0 ⇔ ψ′ = −ψC.

So the 1-form Ψ is invariant with respect to D if and only if its components satisfy the
condition ψ′ = −ψC. This condition means that the first element ψ0 in the infinite row ψ

is invariant with respect to D: ψ′
0 = 0, and each next element is the antiderivative of the

previous one with the opposite sign: ψ′
k = −ψk−1, or, that is the same, the term (−1)kψk

is the k-th antiderivative of ψ0, k = 1, 2, . . .
The equality ψ′ = −ψC can be considered as an ODE. Its solution presented by the

middle formula in (1.11) describes the dragging of ψ along the flow of D. The system of
invariants χ = ψeCt is obtained by changing the sign of t in the previous formula. This is
the infinite row of elements

χ0 = ψ0,

χ1 = tψ0 + ψ1,

χ2 =
t2

2
ψ0 + tψ1 + ψ2,

...

the components of the 1-form Ψ in the invariant coframe, Ψ = χdI. Such a form is called
a Lie form, analogously to a Lie vector field.
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2 Jet composition

2.1 Statement of problem

Each composition of smooth maps

A → B → C

is induced by a composition of the corresponding jets. As it was mentioned above we
use only a composition of pure jets that are not connected with a certain map. Let
J(A,B), J(B,C) and J(A,C) be spaces of jets from A to B, from B to C and from A to C,
respectively. The question is how TDOs and Cartan forms from the spaces J(A,B) and
J(B,C) are related to TDOs and Cartan forms from J(A,C) under a jet composition.

Let the spaces A, B and C be of dimensions n1, n2, n3, and provide them with coordi-
nates (ti), (uα), (vλ), respectively. Assume that the indices
i, j run over 1, 2, . . . , n1;
α, β run over n1 + 1, n1 + 2, . . . , n1 + n2;
λ, µ run over n1 + n2 + 1, n1 + n2 + 2, . . . , n1 + n2 + n3.

For the sake of brevity we use also multi-indices

(j) = j1j2 . . . jp, (β) = β1β2 . . . βp, p = 0, 1, 2, . . .

In each mentioned jet space there are defined coordinates, TDOs and Cartan forms as
follows:

J(A,B) : (ti, uα
(j)), Xi =

∂

∂ti
+

∂

∂uα
(j)

uα
i(j), ωα

(j) = duα
(j) − uα

i(j)dt
i,

J(B,C) : (uα, vλ
(β)), Yα =

∂

∂uα
+

∂

∂vλ
(β)

vλ
α(β), θλ

(β) = dvλ
(β) − vλ

α(β)du
α,

J(A,C) : (ti, vλ
(j)), Yi =

∂

∂ti
+

∂

∂vλ
(j)

vλ
i(j), θλ

(j) = dvλ
(j) − vλ

i(j)dt
i.

Besides this we need also to define an intermediate space J(A,B,C) with coordinates and
TDOs Xi as follows:

J(A,B,C) : (ti, uα
(j), v

λ
(β)), Xi =

∂

∂ti
+

∂

∂uα
(j)

uα
i(j) +

∂

∂vλ
(β)

vλ
α(β)u

α
i ,

It means that the space J(A,B) is extended to J(A,B,C) and the operators Xi are pro-
longed to the operators X i,

J(A,B) J(A,B,C), Xi  Xi.

2.2 Composition formula

Note that when we apply Xi to a function of the form F (ti, uα
(j)) in J(A,B) we extend the

differentiation rule for composite function on pure jets. Indeed, assuming that uα depend
on ti, the derivative of F with respect to ti equals to XiF . Analogously, if we apply Xi

to a function of the form F (ti, uα
(j), v

λ
(β)) in J(A,B,C), then the differentiation rule for

composite function is naturally generalized. Here we assume that vλ depend on uα that
in their turn depend on ti.
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Theorem 2.1. The jet composition is determined as the map

ϕ : J(A,B,C) → J(A,C) (2.1)

by relation ti ◦ ϕ = ti and recurrent formula

(Y(i)v
λ) ◦ ϕ = X(i)v

λ, (2.2)

where

Y(i) = Yi1 . . . Yip , X(i) = X i1 . . . Xip , (i) = (i1i2 . . . ip), p = 0, 1, 2, . . .

Proof. Two first relations ti◦ϕ = ti and vλ◦ϕ = vλ are true since the jets from J(A,B,C)
and J(A,C) have the common source space A and the common end space C. For p = 1, 2 . . .
(2.2) can be rewritten in the form

vλ
i ◦ ϕ = vλ

αu
α
i ,

vλ
ij ◦ ϕ = vλ

αβu
α
i u

β
j + vλ

αu
α
ij ,

...

which corresponds to a composition of maps. �

Remark. For comparison, let us present these formulas in the case of the composition of
given maps f : M1 →M2 and g : M2 →M3, i.e. h = g ◦ f (see [5], p. 116):

hλ = gλ ◦ f,

hλ
i = (gλ

α ◦ f)fα
i ,

hλ
ij = (gλ

αβ ◦ f)fα
i f

β
j + (gλ

α ◦ f)fα
ij,

...

In contrast to (2.2) that hold in J(A,B,C), these formulas hold on a neighborhood of M1.

2.3 Coupling of Cartan forms

Theorem 2.2. Operators X i and Yi are ϕ-related.

Proof. It is known that two vector fields are said to be ϕ-related for some map ϕ if the
derivatives of any ϕ-related functions with respect to these vector fields are ϕ-related. In
particular, vector fields are said to be ϕ-related if and only if the derivatives of coordinate
functions vλ and of ϕ-related with them functions vλ ◦ ϕ are ϕ-related. We have exactly
this situation for Xi and Yi, see (2.2). Hence, Xi and Yi are ϕ-related. �

Theorem 2.3. The Cartan forms θλ
(i) are mapped by (2.1) from J(A,C) to J(A,B,C)

according to the following recurrent formula:

(LY(i)
θλ) ◦ Tϕ = LX(i)

(θλ + vλ
αω

α), (2.3)
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where

Y(i) = LYi1
. . .LYip

, X(i) = LXi1
. . .LXip

, (i) = (i1i2 . . . ip), p = 0, 1, 2, . . . ,

and (2.3) can be written as follows:

θλ ◦ Tϕ = θλ + vλ
αω

α,

θλ
i ◦ Tϕ = θλ

αu
α
i + vλ

αω
α
i + vλ

αβu
β
i ω

α,

...

Proof. For p = 0 (2.3) gives obviously the first relation

θλ ◦ Tϕ = θλ + vλ
αω

α.

Note that θλ = dvλ−vλ
i dt

i are defined in J(A,C), θλ = dvλ−vλ
αdu

α and ωα = duα−uα
i dt

i

are defined in J(A,B,C). Taking into account that ti◦ϕ = ti, vλ◦ϕ = vλ and vλ
i ◦ϕ = vλ

αu
α
i ,

θλ are transported from J(A,C) to J(A,B,C) as follows:

θλ ◦ Tϕ = (dvλ − vλ
i dt

i) ◦ Tϕ = dvλ − vλ
αu

α
i dt

i = θλ + vλ
αω

α.

Hence, the first relation holds. In other words, θλ + vλ
αω

α in J(A,B,C) are ϕ-related
with θλ in J(A,C). It is well-known that the Lie derivatives of ϕ-related tensor fields
with respect to ϕ-related vector fields are ϕ-related. Differentiating ϕ-related forms with
respect to ϕ-related vector fields X i (from the right) and Yi (from the left), for p = 1, 2, . . .
we obtain ϕ-related Lie derivatives. Thus, the formula (2.3) is proved. �
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