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Abstract

We describe realizations of the colour analogue of the Heisenberg Lie algebra by power
series in non-commuting indeterminates satisfying Heisenberg’s canonical commuta-
tion relations of quantum mechanics. The obtained formulas are used to construct new
operator representations of the colour Heisenberg Lie algebra. These representations
are shown to be closely connected with some combinatorial identities and functional
difference-differential interpolation formulae involving Euler numbers.
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1 Introduction

The main object studied in this article is the unital associative algebra with three gener-
ators A1, A2 and A3 satisfying the defining commutation relations

A1A2 +A2A1 = A3, (1.1)

A1A3 +A3A1 = 0, (1.2)

A2A3 +A3A2 = 0. (1.3)

The main goal is to show how A1, A2 and A3 can be expressed, using elements A and B,
obeying Heisenberg’s canonical commutation relation

AB −BA = I. (1.4)

The canonical representation of the commutation relation (1.4) is given by choosing A as
the usual differentiation operator and B as multiplication by x acting on differentiable

Copyright c© 2006 by G Sigurdsson and S D Silvestrov



Bosonic Realizations of the Colour Heisenberg Lie Algebra 111

functions of one real variable x, on polynomials in one variable, or on some other suitable
linear space of functions invariant under these operators. In quantum mechanics, these
operators, when considered on a subspace of a Hilbert space of square integrable functions,
are essentially the same as the canonical Heisenberg–Schrödinger observables of momentum
and coordinate, differing just by a complex scaling factor. The Heisenberg canonical
commutation relation (1.4) is also satisfied by the annihilation and creation operators in
a quantum harmonic oscillator.

A complex associative algebra L with generators A1, A2, A3 and defining relations
(1.1)-(1.3) is called the colour (or graded) analogue of the Heisenberg Lie algebra or, more
precisely, of its universal enveloping algebra. The algebra L is a universal enveloping al-
gebra of a three-dimensional Z

3
2-graded generalized Lie algebra (see Appendix A). When

anticommutators in the left-hand side of relations (1.1)-(1.3) are changed into commuta-
tors, we indeed have the relations between generators in the universal enveloping algebra
of the Heisenberg Lie algebra.

Since the 1970’s, generalized (colour) Lie algebras have been an object of constant in-
terest in both mathematics and physics [2,3,6–11,13–19]. Description of representations of
these algebras is an important and interesting general problem. It is well known that rep-
resentations of three-dimensional Lie algebras play an important role in the representation
theory of general Lie algebras and groups, both as test examples and building blocks. Sim-
ilarly, one would expect the same to be true for three-dimensional colour Lie algebras and
superalgebras with respect to general colour Lie algebras and superalgebras. The represen-
tations of non-isomorphic algebras have different structure. In [18,19], three-dimensional
colour Lie algebras are classified in terms of their structure constants, that is in terms
of commutation relations between generators. In [11, 16], quadratic central elements and
involutions on these algebras are calculated. In [10, 17], Hilbert space ∗-representations
are described for the graded analogues of the Lie algebra sl(2 ,C) and of the Lie algebra
of the group of plane motions, two of the non-trivial algebras from the classification. The
classification of ∗-representations in [10, 17] is achieved, using the method of dynamical
systems based on generalized Mackey imprimitivity systems.

The colour Heisenberg Lie algebra defined by relations (1.1)-(1.3) is another important
non-trivial algebra in the classification of three-dimensional colour Lie algebras obtained
in [18, 19]. In this paper we look for representations of this algebra. Here, however, we
approach representations in a totally different way than it was done in [10, 17]. Namely,
we are interested in describing those representations which can be obtained as power series
in representations of Heisenberg’s canonical commutation relations.

In Section 2 we show that, with a natural choice for A1 as the first generator of the
Heisenberg algebra corresponding to differentiation, there are no non-zero polynomials in
Heisenberg generators which can be taken as A2 and A3 so that the relations (1.1)-(1.3) are
satisfied. This means, in particular, that when A1 is the differentiation operator, A2 and
A3 cannot be chosen as differential operators of finite order with polynomial coefficients.
We prove, however, that it is possible for A2 and A3 to be power series in the Heisenberg
generators with infinitely many non-zero terms, thus in particular making possible the
operator representations by the differential operators of infinite order. In Lemma 3, we
describe all such formal power series solutions A2 and A3 for the two relations (1.1)-(1.2).
In Theorem 5, we present all formal power series solutions A2 and A3 satisfying all three
relations (1.1)-(1.3).
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By choosing various pairs of operators satisfying the Heisenberg canonical commutation
relation (1.4) and substituting them into the power series obeying (1.1)-(1.3), one can find
large classes of operator representations of the commutation relations (1.1)-(1.3). Section 3
is exclusively devoted to examples of such representations. Many of these representations,
we believe, cannot be reached or classified using classical methods based on dynamical
systems approach extending Mackey imprimitivity systems. We think that these operator
representations might have significant physical applications. It would be of great interest
to investigate spectral, structural and analytical properties of such representations on
various spaces.

2 Bosonic power series realizations

To fix notation we point out that throughout we let C denote the field of complex numbers
and N the set of non-negative integers. By C [x] and C [[x]] we mean the ring of polynomials
and formal power series over C, respectively.

Consider a set {A1, A2, A3} in an associative algebra over C with unit element I satis-
fying commutation relations (1.1)-(1.3). Clearly A2

3 commutes with each element A1, A2

and A3. Suppose there exists a non-zero scalar α such that A2
3 = α2I. By relations (1.1)

and (1.2) we then have

A1(A2A3) − (A2A3)A1 = A2
3 = α2I.

Putting Â2 = α−1A2 and Â3 = α−1A3, we obtain

A1(Â2Â3) − (Â2Â3)A1 = I, (2.1)

showing that A1 and the combination Â2Â3 satisfy the relation (1.4). By the way, this
observation implies in particular that the relations (1.1)-(1.3) together with A2

3 = α2I, α 6=
0, cannot be satisfied by bounded operators on a Hilbert space or even generally by
elements in any unital normed algebra, as this is also the case for the Heisenberg canonical
commutation relation (1.4) by the famous Wintner–Wielandt result [12,20,21].

Assume we consider A1, A2 and A3 as elements of the Heisenberg algebra H1(A,B) =
C〈A,B〉/〈AB − BA − I〉. Then equation (2.1) suggests that a reasonable Ansatz is to
put A1 = A and let A2 and A3 be complex polynomials in A and B. Let P (A,B) be
an arbitrary polynomial in A and B with complex coefficients. Applying the relation
AB = I + BA, P (A,B) can be rewritten as a linear combination of monomials with no
B to the right of an A. When a polynomial (or a power series) in A and B is written
in such a way, we say that it is presented in its (B,A)-normal form. In the Heisenberg
algebra H1(A,B), we know that the set of ordered monomials {BjAk | j, k ∈ N} is linearly
independent. This fact allows us to reduce the problem of equality of two polynomials
in A and B to checking whether they have the same coefficients when rewritten in the
(B,A)-normal form.

However, as we will see in Corollary 2, in order to satisfy relations (1.1)-(1.3) it is prefer-
able to use formal power series in A and B instead of polynomials. When computing with
power series in non-commuting elements A and B of an associative unital algebra A, we
use the usual addition and multiplication rules of the Magnus algebra of noncommutative
formal power series in A and B (see [1]). However, we assume that A and B are not free,
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but satisfy at least the Heisenberg commutation relation as elements in A. We denote the
obtained algebra by H1〈〈A,B;A〉〉. In addition to the subalgebra of A generated by A
and B, consisting of noncommutative polynomials in A and B, the algebra H1〈〈A,B;A〉〉
often contains other elements which are infinite noncommutative power series in A and
B not belonging to A. The problem of equality of two elements in H1〈〈A,B;A〉〉 is a
very complex matter in itself, deeply connected both to the properties of noncommutative
power series and Heisenberg’s relation and to the structure of the algebra A, and proper-
ties of A and B in A. We say that an element of H1〈〈A,B;A〉〉 is in the (B,A)-normal
form (respectively (A,B)-normal form) if it is a noncommutative power series built of
only ordered monomials {BjAk | j, k ∈ N} (respectively {AjBk | j, k ∈ N}). In order to
be able to enjoy the equality properties in a similar way with formal power series as in
the polynomial case, we assume throughout this article that two formal power series in
A and B, written in the (B,A)-normal form (or respectively in the (A,B)-normal form),
are equal if and only if their coefficients are the same and in particular such a series is
zero if and only if all coefficients are zero. This important equality assumption is actually
an assumption on H1〈〈A,B;A〉〉, on the algebra A as well as on A and B as elements
in A. In the particular case of polynomials in A and B, that is for the subalgebra of A

generated by A and B, the assumption yields the same property as in H1(A,B), namely
that {BjAk | j, k ∈ N} and {AjBk | j, k ∈ N} are linearly independent as subsets of A.

With the assumption above we may claim the equality of two elements of H1〈〈A,B;A〉〉
if they are equal to the same element in (B,A)-normal form (or in (A,B)-normal form).
However, it is important to observe that H1〈〈A,B;A〉〉 may well contain elements which
cannot be represented on (B,A)-normal form, or (A,B)-normal form or even on either of
them. We refer to [4] for further discussion on power series extensions of the Heisenberg
algebra, Diamond lemma and normal forms. The reordering relations (see for instance [5])

AiBj =

min(i,j)
∑

ν=0

ν!

(

i

ν

)(

j

ν

)

Bj−νAi−ν , (2.2)

BiAj =

min(i,j)
∑

ν=0

(−1)νν!

(

i

ν

)(

j

ν

)

Aj−νBi−ν , (2.3)

f(A)B = Bf(A) + f ′(A), Ag(B) = g(B)A+ g′(B) (2.4)

are valid for all non-negative i and j, as long as A and B satisfy relation (1.4) and f(A)
and g(B) are polynomials (or power series) in A and B, respectively. Here f ′(A) and
g′(B) denote (formal) derivatives, obtained by termwise differentiation of the polynomials
(power series). These relations can be used to prove the following statement, showing that
two non-trivial polynomials in A and B cannot anticommute if the condition of linear
independence of ordered monomials is satisfied. Since this statement is important for this
article and we do not know any explicit reference for this fact, we include it here with a
short proof for completeness of exposition.

Proposition 1. Assume A and B are two elements in a complex associative algebra
with unity I satisfying the Heisenberg canonical commutation relation AB − BA = I. If
P,Q ∈ H1(A,B) satisfy the relation PQ + QP = 0, then it follows that at least one of
these polynomials must vanish.
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Proof. Since any polynomial in A and B can be written in the (B,A)-normal form, we
can assume that

P =
K

∑

j=0

L
∑

k=0

αjkB
jAk, Q =

M
∑

j=0

N
∑

k=0

βjkB
jAk

for some K,L,M,N ∈ N and αjk, βjk ∈ C. Each of the sets {αKk | k = 1, . . . , L} and
{βMk | k = 1, . . . , N} can be supposed to contain at least one non-zero element, so that
in variable B the polynomials P and Q have degree K and M , respectively. Let p(A) and
q(A) be the polynomials in A given by p(A) =

∑L
k=0 αKkA

k and q(A) =
∑N

k=0 βMkA
k.

Applying reordering relation (2.2), we obtain

PQ+QP = 2BK+Mp(A)q(A) +

K+M−1
∑

j=0

L+N
∑

k=0

γjkB
jAk,

for some set of complex constants γjk. If PQ+QP = 0 then, by the linear independence
of the ordered monomials {BjAk | j, k ∈ N}, this implies that p(A)q(A) = 0, and hence,
since the set of complex polynomials in A has no zero divisors, that at least one of the
factors p(A) or q(A) must vanish. This contradicts our assumption that P and Q are
polynomials of B-degree K and M , respectively. �

Corollary 2. Assume A1 = A and let A2 and A3 be polynomials in the Heisenberg algebra
H1(A,B). Then it follows that the commutation relations

A1A2 +A2A1 = A3, A1A3 +A3A1 = 0

can only be satisfied if A2 = A3 = 0.

Proof. By the second relation we have AA3 + A3A = 0. Applying Proposition 1 we
obtain A3 = 0. Combining this with the first relation yields AA2 + A2A = 0, and hence,
by Proposition 1, A2 = 0. �

Guided by this result concerning elements of the Heisenberg algebra, we see that one
is forced to work with series in A and B with infinitely many non-zero terms, in order to
be able to find non-trivial realizations of the commutation relations A1A2 + A2A1 = A3

and A1A3 +A3A1 = 0 in terms of the Heisenberg generators A and B.

Lemma 3. Let A1 = A and assume that A2 and A3 are elements of the algebra H1〈〈A,B;A〉〉
written in the (B,A)-normal form, i.e.,

A2 =

∞
∑

j=0

∞
∑

k=0

ajkB
jAk, A3 =

∞
∑

j=0

∞
∑

k=0

ãjkB
jAk, ajk, ãjk ∈ C.

Then A1, A2 and A3 satisfy the commutation relations

A1A2 +A2A1 = A3, A1A3 +A3A1 = 0

if and only if

A2 = T (B,A)V (A) +BT (B,A)W (A), A3 = T (B,A)W (A),

where T (B,A) =
∑∞

k=0
(−2)k

k! BkAk and V (A),W (A) ∈ C [[A]].
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Proof. We look for the general solution to the equation AZ + ZA = 0 in the form

Z =

∞
∑

j=0

∞
∑

k=0

cjkB
jAk, cjk ∈ C.

We have, using the relation ABn = BnA+ nBn−1 which is a special case of (2.2),

AZ + ZA =
∞
∑

j=0

∞
∑

k=0

cjkAB
jAk +

∞
∑

j=0

∞
∑

k=0

cjkB
jAk+1

=

∞
∑

j=0

∞
∑

k=0

2cjkB
jAk+1 +

∞
∑

j=1

∞
∑

k=0

jcjkB
j−1Ak

=

∞
∑

j=0

∞
∑

k=0

2cjkB
jAk+1 +

∞
∑

j=0

∞
∑

k=−1

(j + 1)cj+1,k+1B
jAk+1

=
∞
∑

j=0

(j + 1)cj+1,0B
j +

∞
∑

j=0

∞
∑

k=0

[2cjk + (j + 1)cj+1,k+1]B
jAk+1.

The series is here given in its (B,A)-normal form. If now AZ+ZA = 0, then all coefficients
must be equal to zero giving rise to the following recurrence relation with initial conditions

(j + 1)cj+1,k+1 + 2cjk = 0, cj+1,0 = 0, j, k ∈ N. (2.5)

As a consequence of equations (2.5) we have immediately ci+1+j,j = 0, for i, j ∈ N. In
order to find the remaining elements of the sequence, we now put l = k − j, obtaining

(j + 1)cj+1,j+l+1 + 2cj,j+l = 0, (2.6)

where j, l ∈ N. For every fixed l we have a two-term linear recursion with respect to j.
The solution is readily found to be

cj+1,j+l+1 =
(−2)j+1

(j + 1)!
c0l

where j, l ∈ N and c0l can be chosen as arbitrary complex numbers. Setting c0l = zl for
all l the solution to the problem (2.5) can now be written

cj,j+l =
(−2)j

j!
zl, cj+1+l,l = 0, (2.7)

where j, l ∈ N and (zi)
∞
i=0 is an arbitrary sequence of complex numbers. By virtue of the

solution (2.7), we may write

Z =
∞
∑

j=0

∞
∑

k=0

cjkB
jAk =

∞
∑

j=0

∞
∑

l=0

cj,j+lB
jAj+l =

∞
∑

j=0

∞
∑

l=0

(−2)j

j!
zlB

jAj+l

Alternatively, we can express the general solution Z by separating the formal summations
as

Z =

∞
∑

k=0

(−2)k

k!
BkAk

∞
∑

l=0

zlA
l. (2.8)
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A system consisting of the two relations AY +Y A = Z, AZ+ZA = 0 has a general solution
(Y,Z), where Y = Yh+Yp with Yp taken as a particular series satisfying the inhomogeneous
relation AYp + YpA = Z, and Yh being the general solution to the homogeneous equation
AY + Y A = 0. We know from above (the problem for Z) that

Yh =

∞
∑

k=0

(−2)k

k!
BkAk

∞
∑

l=0

ylA
l, (2.9)

where (yi)
∞
i=0 is an arbitrary sequence of complex numbers. Moreover, we can choose

Yp = BZ = B

∞
∑

k=0

(−2)k

k!
BkAk

∞
∑

l=0

zlA
l. (2.10)

since ABZ +BZA = ABZ −BAZ = Z by (1.4). This proves the lemma. �

In Lemma 3, the formal series A2 and A3 are expressed in the (B,A)-normal form. This
is a natural ordering when we think of A as the usual differentiation operator ∂ and B as
a multiplication operator M acting on differentiable functions on the real line, given by
∂f = f ′ and Mf(t) = tf(t). In other situations, it may be more appropriate to consider
the reversed order.

Taking A2 and A3 in Lemma 3 to be in the (A,B)-normal form, but keeping A1 = A,
the general solution will be changed to the following form

A2 = V (A)U(A,B) −W (A)U(A,B)B, A3 = W (A)U(A,B),

where U(A,B) =
∑∞

k=0
2k

k!A
kBk. The proof goes along the same lines as the proof of

Lemma 3.
In the following lemma, we formulate some important basic relations satisfied by the

series T (B,A) and U(A,B). These relations are very useful in many computations and
examples. In particular they are instrumental in the proof of our main result, Theorem 5.

Lemma 4. Suppose A and B are two elements in a complex associative algebra with unit
element I satisfying the Heisenberg canonical commutation relation AB − BA = I. Let
f(A) and g(B) be formal power series in A and B, respectively. If T (B,A) and U(A,B)
are defined by

T (B,A) =
∞
∑

k=0

(−2)k

k!
BkAk, U(A,B) =

∞
∑

k=0

2k

k!
AkBk, (2.11)

then the following relations hold true

(a) AT (B,A) + T (B,A)A = 0, T (B,A)B +BT (B,A) = 0,
AU(A,B) + U(A,B)A = 0, U(A,B)B +BU(A,B) = 0.

(b) f(A)T (B,A) = T (B,A)f(−A), T (B,A)g(B) = g(−B)T (B,A),
U(A,B)f(A) = f(−A)U(A,B), g(B)U(A,B) = U(A,B)g(−B).

(c) T (B,A)2 = U(A,B)2 = I.
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Proof. a) This is an easy verification having in mind the commutation relations (2.4).
b) Follows immediately from the relations in a) by mathematical induction.
c) Using the definition (2.11) and reordering relation (2.2), we have

T (B,A)T (B,A) =

∞
∑

k=0

(−2)k

k!
BkAk

∞
∑

m=0

(−2)m

m!
BmAm

=

∞
∑

k=0

∞
∑

m=0

(−2)k+m

k! m!
BkAkBmAm

=
∞
∑

k=0

∞
∑

m=0

min(k,m)
∑

ν=0

(−2)k+m

k! m!
ν!

(

k

ν

)(

m

ν

)

Bk+m−νAk+m−ν

=

∞
∑

k=0

∞
∑

m=0

min(k,m)
∑

ν=0

(−2)k+m

k! (m− ν)!

(

k

ν

)

Bk+m−νAk+m−ν .

Introducing a new summation index r = k +m− ν, this can be expressed as

T (B,A)T (B,A) =

∞
∑

r=0

drB
rAr,

where

dr =

r
∑

k=0

r
∑

m=r−k

(−2)k+m

k! (r − k)!

(

k

k +m− r

)

= (−2)r
r

∑

k=0

1

k! (r − k)!

k
∑

ν=0

(−2)ν
(

k

ν

)

=
(−2)r

r!

r
∑

k=0

(−1)k
(

r

k

)

=
(−2)r

r!
δr0 = δr0.

Hence, T (B,A)2 =
∑∞

r=0 drB
rAr =

∑∞
r=0 δr0B

rAr = I. The proof of U(A,B)2 = I is
analogous and uses the reordering relation (2.3). �

Remark 1. The series T (B,A) can be seen as an abstract generalization of the parity
operator f(x) 7→ f(−x). The usual parity operator is obtained in the special case of
canonical representation of the Heisenberg relation (1.4) when A = ∂ : f(x) 7→ f ′(x) is
differentiation and B = M : f(x) 7→ xf(x) is multiplication operator acting on functions
on R. This is proved in the beginning of Section 3.

Now, let A2 and A3 be given in the (B,A)-normal form as

A2 = T (B,A)V (A) +BT (B,A)W (A), A3 = T (B,A)W (A), (2.12)

where V (A),W (A) ∈ C [[A]] (cf. Lemma 3). Applying the rules of Lemma 4 yields

A2A3 = V (−A)W (A) +BW (−A)W (A), A2
3 = W (−A)W (A). (2.13)

On the other hand, if A2 and A3 are expressed in the (A,B)-normal form as

A2 = V (A)U(A,B) −W (A)U(A,B)B, A3 = W (A)U(A,B), (2.14)
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then Lemma 4 implies that

A2A3 = V (A)W (−A) +W (A)W (−A)B +W (A)W ′(−A), (2.15)

A3A3 = W (A)W (−A), (2.16)

where W ′(A) is the formal derivative of W (A), obtained by termwise differentiation of the
power series.

In the following theorem, being the main result of this article, we give the general
solution to the problem with all three relations (1.1)-(1.3). In the formulation, the expo-
nential generating function E(t) of the so-called Euler numbers is used. Recall that one
defines a sequence of polynomials Ek(x), called the Euler polynomials, by specifying their
exponential generating function as

2ext

et + 1
=

∞
∑

k=0

Ek(x)
tk

k!
, |t| < π.

The four polynomials of lowest degree are

E0(x) = 1, E1(x) = x− 1
2 , E2(x) = x2 − x, E3(x) = x3 − 3

2x
2 + 1

4 .

The Euler numbers Ek are then defined as the integers Ek = 2kEk(
1
2). It follows that

E0 = 1, E1 = 0, E2 = −1, E3 = 0 and generally for k ≥ 0

E2k+1 = 0, E2k = (−1)k
(2k)! 22k+2

π2k+1

∞
∑

ν=0

(−1)ν(2ν + 1)−2k−1.

The Euler numbers have an exponential generating function obtained by setting x = 1/2
and replacing t by 2t in the exponential generating function of the Euler polynomials

E(t) =
2et

e2t + 1
=

∞
∑

k=0

Ek
tk

k!
. (2.17)

Theorem 5. Suppose that A1, A2 and A3 are elements of the algebra H1〈〈A,B;A〉〉 such
that A1 = A and A2, A3 are formal power series in the (B,A)-normal form given as

A2 =
∞
∑

j=0

∞
∑

k=0

ajkB
jAk, A3 =

∞
∑

j=0

∞
∑

k=0

ãjkB
jAk, ajk, ãjk ∈ C.

Then A1, A2 and A3 satisfy the commutation relations

A1A2 +A2A1 = A3, A1A3 +A3A1 = 0, A2A3 +A3A2 = 0,

if and only if either A3 = 0 and A2 = T (B,A)V (A), where T (B,A) =
∑∞

k=0
(−2)k

k! BkAk

and V (A) ∈ C [[A]], or

A2 = c T (B,A)E(ϕ(A))[eϕ(A)ψ(A) − 1
2ϕ

′(A)] + cBT (B,A)eϕ(A),

A3 = c T (B,A)eϕ(A),

where c is a non-zero complex constant, E(t) is the exponential generating function of the
Euler numbers and both ϕ(A) and ψ(A) are some odd power series in C [[A]].
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Proof. By Lemma 3 we have, when considering only relations (1.1)-(1.2), a general solu-
tion given by A1 = A and equations (2.12). In the present case, A2 and A3 are supposed
to satisfy the additional condition A2A3 +A3A2 = 0. Inserting the expressions (2.12) and
applying the rules of Lemma 4, yields

A3A2 = T (B,A)W (A)T (B,A)V (A) + T (B,A)W (A)BT (B,A)W (A)

= T (B,A)T (B,A)W (−A)V (A) − T (B,A)W (A)T (B,A)BW (A)

= W (−A)V (A) − T (B,A)T (B,A)W (−A)BW (A)

= W (−A)V (A) − [BW (−A) −W ′(−A)]W (A)

= W (−A)V (A) −BW (−A)W (A) +W ′(−A)W (A).

Together with the first equation in (2.13) this implies

A2A3 +A3A2 = V (−A)W (A) +W (−A)V (A) +W ′(−A)W (A) = 0, (2.18)

which is a functional-differential equation for V and W . Since V and W are formal power
series, we also have the equation

V (A)W (−A) +W (A)V (−A) +W ′(A)W (−A) = 0. (2.19)

Let V (A) =
∑∞

l=0 vlA
l and W (A) =

∑∞
l=0wlA

l, where vl, wl ∈ C. Subtracting equation
(2.18) from equation (2.19) yields

W ′(A)W (−A) −W ′(−A)W (A) = 0. (2.20)

Integrating (2.20) by use of Leibniz rule and noting that W (0) = w0, we have

W (A)W (−A) = w2
01. (2.21)

First we consider the case when w0 = 0. Knowing that the set of formal power se-
ries constitutes an integral domain, it follows from the equation W (A)W (−A) = 0 that
W (A) = 0. Taking W (A) to be zero in (2.18), implies that there is no equation left for
V (A), i.e. V (A) can be chosen arbitrarily in the expression (2.12) for A2, proving the first
case in the conclusion of the theorem.

Assuming that w0 6= 0, we can divide both sides of equation (2.21) by the non-zero
constant w2

0, obtaining the simple equation g(A)g(−A) = 1, where g(A) = W (A)/w0.
Taking the logarithm of both sides, it follows that log g(A) has to be an odd power series
expression since log g(A) + log g(−A) = 0. Let ϕ(A) = log g(A) and we have W (A) =
w0g(A) = w0 exp(ϕ(A)), which is the general solution to the functional equation (2.21),
ϕ(A) being any odd formal power series with complex coefficients. Substituting for W (A)
into equation (2.19) yields

V (A)w0 exp(ϕ(−A)) + w0 exp(ϕ(A))V (−A) + w2
0ϕ

′(A) = 0.

This can be written as

V (A)[coshϕ(A) − sinhϕ(A)] + V (−A)[coshϕ(A) + sinhϕ(A)] + w0ϕ
′(A) = 0,

[V (A) + V (−A)] coshϕ(A) = [V (A) − V (−A)] sinhϕ(A) − w0ϕ
′(A),



120 G Sigurdsson and S D Silvestrov

and we have

2V (A) coshϕ(A) = [V (A) − V (−A)] exp(ϕ(A)) − w0ϕ
′(A).

Denoting the odd part of V (A) by V1(A), we obtain

V (A) coshϕ(A) = V1(A) exp(ϕ(A)) − w0

2 ϕ
′(A). (2.22)

The power series E(X) defined by (2.17) is the inverse to the formal power series given by
cosh(X), in the sense that E(X) cosh(X) = cosh(X)E(X) = 1. Multiplying both sides of
equation (2.22) by E(ϕ(A)) yields V (A) = E(ϕ(A))V1(A) exp(ϕ(A)) − w0

2 E(ϕ(A))ϕ′(A).
We have an expression for V (A) in terms of the odd power series ϕ(A) and the odd
part V1(A) of V (A). Here V1(A) can be chosen arbitrarily from the set of formal odd
power series with coefficients from C. Writing this as V1(A) = w0ψ(A) with w0 and ψ(A)
arbitrary, we have

V (A) = w0E(ϕ(A)) exp(ϕ(A))ψ(A) − w0

2 E(ϕ(A))ϕ′(A). (2.23)

where ϕ(A) and ψ(A) are arbitrary odd formal power series with complex coefficients. �

As was the case for Lemma 3, we can certainly formulate a version of Theorem 5, where
A1 = A and the formal series A2 and A3 are taken to be in the (A,B)-normal form. In
order for A2 and A3 to satisfy the relation A2A3 +A3A2 = 0, when given by the equations
(2.14), one has to take either W (A) = 0 (with V (A) arbitrary in C [[A]]) or

V (A) = cE(ϕ(A))[eϕ(A)ψ(A) − 1
2ϕ

′(A)], W (A) = c eϕ(A), (2.24)

where c ∈ C, c 6= 0, meaning that

A2 = cE(ϕ(A))[eϕ(A)ψ(A) − 1
2ϕ

′(A)]U(A,B) + c eϕ(A)U(A,B)B,

A3 = c eϕ(A)U(A,B).

This can be proved in a similar way with Theorem 5.
The relatively simple expressions obtained for A2A3 and A2

3 in equations (2.13), (2.15)
and (2.16), being essentially pure formal series in A, can now be rewritten using V (A) and
W (A) as given by equations (2.24). In the (B,A)-normal case we have

A2A3 = cB − cE(ϕ(A))[ψ(A) + 1
2eϕ(A)ϕ′(A)], A2

3 = c I,

whereas the (A,B)-normal form leads to the expressions

A2A3 = cB + cϕ′(A) + cE(ϕ(A))[ψ(A) − 1
2e

−ϕ(A)ϕ′(A)], A2
3 = c I.

The Heisenberg canonical commutation relation (1.4) can be rewritten in the form
B(−A) − (−A)B = I. Hence, by defining Ã = B and B̃ = −A, we obtain a new pair of
generators satisfying ÃB̃ − B̃Ã = I. In general, defining Ã and B̃ as the complex linear
combinations

Ã = c11A+ c12B, B̃ = c21A+ c22B,
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where the coefficient 2×2 matrix C = (cij) has complex entries, new elements Ã and B̃ will
satisfy the commutation relation ÃB̃− B̃Ã = I if and only if detC = 1, i.e. C ∈ SL(2,C).
Consider the special case where Ã = B and B̃ = −A. We can apply Lemma 3 and The-
orem 5, as well as their (A,B)-normal form versions described above, on the new set of
generators Ã and B̃. Observing that T (−A,B) = U(A,B) and U(B,−A) = T (B,A) the
resulting general solutions are

A1 = B, A2 = U(A,B)V (B) −AU(A,B)W (B), A3 = U(A,B)W (B), (2.25)

A1 = B, A2 = V (B)T (B,A) +W (B)T (B,A)A, A3 = W (B)T (B,A). (2.26)

Let V (t) and W (t) be arbitrary formal power series in C [[t]]. Then each of the four
suggested solutions (2.12), (2.14), (2.25) and (2.26), with A1 = A in the first two cases,
will satisfy the pair of commutation relations

A1A2 +A2A1 = A3, A1A3 +A3A1 = 0.

If we want to have a triple (A1, A2, A3) that satisfies all three relations

A1A2 +A2A1 = A3, A1A3 +A3A1 = 0, A2A3 +A3A2 = 0,

then there will be restrictions on the formal series V (t) and W (t). Note that all free
parameters are given by the complex coefficient sequences (vi)

∞
i=0 and (wi)

∞
i=0 in the formal

expressions V (t) =
∑∞

k=0 vkt
k and W (t) =

∑∞
k=0wkt

k, whereas both T (B,A) and U(A,B)
are fixed power series. The three relations are satisfied if either W (t) = 0 and V (t) is
arbitrary (the rather trivial case which essentially is contained in part b) of Lemma 4) or

V (t) = cE(ϕ(t))[eϕ(t)ψ(t) − 1
2ϕ

′(t)], W (t) = c eϕ(t), (2.27)

where c is a non-zero complex constant, E(t) is the exponential generating function of the
Euler numbers Ek and both ϕ(t) and ψ(t) are odd formal power series in t having complex
coefficients. Here ϕ′(t) denotes the formal derivative of ϕ(t).

Remark 2. Note that exchange of A1 and A2 does not change the commutation relations
(1.1)-(1.3). So, by exchanging A1 and A2 in all statements of the article, we obtain other
expressions for A1 and A2 in terms of the Heisenberg generators.

3 Some particular bosonic representations

In this section we will describe some non-trivial particular representations of the colour
Heisenberg Lie algebra defined by the commutation relations (1.1)-(1.3). All examples are
based on the general statement in Theorem 5 and correspond (except in Example 1) to
simple specific choices of the odd formal power series ϕ(A) and ψ(A).

As a concrete example of elements satisfying the Heisenberg commutation relation (1.4),
we can consider the differentiation and multiplication operators ∂ and M defined on the
linear space C [x] of polynomials. If f(x) =

∑n
k=0 fkx

k, then by definition

(∂f)(x) =

n
∑

k=1

fkkx
k−1, (Mf)(x) = xf(x) =

n
∑

k=0

fkx
k+1
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and we have the well-known relation ∂M −M∂ = I. As a basis in C [x] we can take the
set of monomials {1, x, x2, . . . , xn, xn+1, . . .}. Acting on an arbitrary basis vector xn, we
find

T (M,∂)(xn) =

∞
∑

k=0

(−2)k

k!
Mk∂kxn =

n
∑

k=0

(−2)k

k!
xk n!

(n− k)!
xn−k = (−x)n,

U(∂,M)(xn) =

∞
∑

j=0

2j

j!
∂jM jxn =

∞
∑

j=0

2j

j!
∂jxn+j =

∞
∑

j=0

2j

j!

(n+ j)!

n!
xn = ∞ · xn.

Thus T (M,∂) acts as the parity operator, while U(∂,M) is not well-defined on C [x]. In
fact, if g is an analytic function on R, then we have by Taylor’s Theorem e∂g(x) = g(x+1)
and

T (M,∂)g(x) =
∞
∑

k=0

(−2)k

k!
Mk∂kg(x) =

∞
∑

k=0

(−2)k

k!
xkg(k)(x)

=

∞
∑

k=0

g(k)(x)

k!
(−2x)k = g(x− 2x) = g(−x). (3.1)

Example 1. We consider the operators A = ∂ and B = M , defined on the linear space
C [x]. The general solution given by equations (2.26) and (2.27) is

A1 = M, A3 = c eϕ(M)T (M,∂),

A2 = cE(ϕ(M))[eϕ(M)ψ(M) − 1
2ϕ

′(M)]T (M,∂) + c eϕ(M)T (M,∂)∂.

These operators are defined on the whole polynomial space C [x], and by Theorem 5 they
satisfy (1.1)-(1.3) on C [x]. We can now, for any f ∈ C [x], define A1, A2 and A3 by the
equations

(A1f)(x) = xf(x), (A3f)(x) = c eϕ(M)f(−x) = c eϕ(x)f(−x),
(A2f)(x) = cE(ϕ(M))[eϕ(M)ψ(M) − 1

2ϕ
′(M)]f(−x) + c eϕ(M)f ′(−x)

=
c

cosh(ϕ(x))
[eϕ(x)ψ(x) − 1

2ϕ
′(x)]f(−x) + c eϕ(x)f ′(−x).

Example 2. Let s be a positive odd integer and put ϕ(A) = αA and ψ(A) = βAs, where
α, β ∈ C, in the general solution given by Theorem 5. As in Example 1 we consider the
operators A = ∂ and B = M defined on the linear space C [x]. Then we have

A1 = ∂, A3 = c T (M,∂)eα∂ ,

A2 = c T (M,∂)E(α∂)[eα∂β∂s − α
2 ] + cMT (M,∂)eα∂ .

We can now define A1, A2 and A3 on the polynomial space C [x] by the equations

(A1f)(x) = f ′(x), (A3f)(x) = c T (M,∂)eα∂f(x) = cf(−x+ α),

(A2f)(x) = c T (M,∂)E(α∂)[βf (s)(x+ α) − α
2 f(x)] + cxf(−x+ α)

= c T (M,∂)
∞

∑

n=0

E2n α
2n

(2n)!
[βf (s+2n)(x+ α) − α

2 f
(2n)(x)] + cxf(−x+ α)

= c

∞
∑

n=0

E2n α
2n

(2n)!
[βf (s+2n)(−x+ α) − α

2 f
(2n)(−x)] + cxf(−x+ α).
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These operators are defined on the whole polynomial space C [x], and by Theorem 5 they
satisfy relations (1.1)-(1.3) on C [x]. By a simple computation we have

(A1A2 +A2A1)f(x) = cf(−x+ α) = (A3f)(x),

(A1A3 +A3A1)f(x) = −cf ′(−x+ α) + cf ′(−x+ α) = 0.

Moreover,

(A2A3f)(x) = c
∞
∑

n=0

E2n α
2n

(2n)!
[cβ(−1)sf (s+2n)(x) − 1

2cαf
(2n)(x− α)] + c2xf(x),

(A3A2f)(x) = c2
∞

∑

n=0

E2n α
2n

(2n)!
[βf (s+2n)(x) − α

2 f
(2n)(x+ α)] + c2(−x+ α)f(x),

showing that

(A2A3 +A3A2)f(x) = αc2f(x) − 1
2c

2
∞
∑

n=0

E2n

(2n)!
α2n+1[f (2n)(x− α) + f (2n)(x+ α)].

Thus, the relation (A2A3 +A3A2)f(x) = 0 is satisfied if and only if the function f satisfies

f(x) = 1
2

∞
∑

n=0

E2n

(2n)!
α2n[f (2n)(x− α) + f (2n)(x+ α)]. (3.2)

The relations (1.1)-(1.3) hold on C [x] and so equation (3.2) holds for f ∈ C [x].

Example 3. Let in Example 2 the constant c = 1 and the parameters α = β = 0. Then
we obtain

A1 = ∂, A2 = MT (M,∂), A3 = T (M,∂).

In this case we have the simple relation A2 = MA3 and for any polynomial p(x) ∈ C [x],
we obtain

(A1p)(x) = p′(x), (A2p)(x) = xp(−x), (A3p)(x) = p(−x).

These three operators can be defined for any differentiable function f and they satisfy the
commutation relations (1.1)-(1.3), since one can easily verify that

(A1A2 +A2A1)f(x) = f(−x) = A3f(x),

(A1A3 +A3A1)f(x) = −f ′(−x) + f ′(−x) = 0,

(A2A3 +A3A2)f(x) = xf(x) − xf(x) = 0.

Example 4. Let us have a closer look at the operators studied in Example 2 in the special
case where c = α = 1 and β = 0, namely

A1 = ∂, A2 = MT (M,∂)e∂ − 1
2 T (M,∂)E(∂), A3 = T (M,∂)e∂ .
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We can express E(∂) in terms of the generating function for the Euler numbers, obtaining

E(∂) = 2e∂(e2∂ + 1)−1 = e∂(1
2 + 1

2e2∂)−1 = e∂(1 + 1
2(e2∂ − 1))−1

= e∂
∞
∑

k=0

(−1)k

2k
(e2∂ − 1)k = e∂

∞
∑

k=0

(−1)k

2k

k
∑

l=0

(

k

l

)

e2(k−l)∂(−1)l

=
∞
∑

k=0

(−1)k

2k

k
∑

l=0

(−1)l
(

k

l

)

e(2(k−l)+1)∂ .

By virtue of the equality en∂f(x) = f(x+ n) and equation (3.1), it is now reasonable to
define

(A1f)(x) = f ′(x), (A3f)(x) = f(1 − x),

(A2f)(x) = xf(1 − x) −
∞

∑

k=0

(−1)k

2k+1

k
∑

l=0

(−1)l
(

k

l

)

f(2(k − l) + 1 − x),

where f ∈ C [x]. In order to verify the commutation relations, we compute

A1A2f(x) = f(1 − x) − xf ′(1 − x) +

∞
∑

k=0

k
∑

l=0

(−1)k+l

2k+1

(

k

l

)

f ′(2(k − l) + 1 − x),

A2A1f(x) = xf ′(1 − x) +
∞
∑

k=0

k
∑

l=0

(−1)k+l

2k+1

(

k

l

)

f ′(2(k − l) + 1 − x).

It follows that

(A1A2 +A2A1)f(x) = f(1 − x) = A3f(x),

(A1A3 +A3A1)f(x) = −f ′(1 − x) + f ′(1 − x) = 0.

Moreover,

A2A3f(x) = A2f(1 − x) = xf(x) −
∞
∑

k=0

k
∑

l=0

(−1)k+l

2k+1

(

k

l

)

f(x− 2(k − l)),

A3A2f(x) = (1 − x)f(x) −
∞
∑

k=0

k
∑

l=0

(−1)k+l

2k+1

(

k

l

)

f(x+ 2(k − l)),

and hence

(A2A3 +A3A2)f(x) = f(x) −
∞

∑

k=0

k
∑

l=0

(−1)k+l

2k+1

(

k

l

)

[f(x− 2(k − l)) + f(x+ 2(k − l))].

The relation (A2A3 +A3A2)f(x) = 0 is satisfied if and only if

f(x) =
∞

∑

k=0

(−1)k

2k+1

k
∑

l=0

(−1)l
(

k

l

)

[f(x− 2(k − l)) + f(x+ 2(k − l))]. (3.3)
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By Example 2 and Example 4 we have a proof of the following statement:

Proposition 6. Every polynomial p(x) ∈ C [x] satisfies the relations

(a) p(x) = 1
2

∞
∑

k=0

E2k

(2k)!
α2k[p(2k)(x− α) + p(2k)(x+ α)],

(b) p(x) =

∞
∑

k=0

(−1)k

2k+1

k
∑

l=0

(−1)l
(

k

l

)

[p(x− 2(k − l)) + p(x+ 2(k − l))].

Example 5. Consider the differentiation and multiplication operators ∂ andM introduced
at the beginning of this section. The linear transformation

a =
x0√

2
∂ +

1√
2x0

M, a∗ = − x0√
2
∂ +

1√
2x0

M,

where x0 is a positive real constant, gives a couple of operators a and a∗ satisfying the
canonical commutation relation aa∗ − a∗a = 1. This follows from the fact that they are
obtained from ∂ and M by an SL(2,C)-transformation. Now let {φν}∞ν=0 be a sequence
of functions defined by

√
ν + 1φν+1(x) = a∗φν(x), ν ≥ 0; φ0(x) =

1
√√

πx0

exp(−1
2( x

x0
)2).

It follows that

φn(x) =
1√
n!

(a∗)nφ0(x) =
1

√

n!
√
πx0

(a∗)n exp(−1
2( x

x0
)2)

=
1

√

2nn!
√
πx0

exp(−1
2( x

x0
)2)Hn( x

x0
),

with n = 0, 1, 2, . . . , where Hn are the Hermite polynomials. It can be shown that aφ0 = 0
and aφν =

√
ν φν−1 for ν ≥ 1. Furthermore,

(a∗)kakφν =

{

ν!
(ν−k)!φν if k ≤ ν

0 if k > ν,

for any k ∈ N. The sequence of functions {φν}∞ν=0 describes the energy eigenstates of
the simple quantum mechanical harmonic oscillator. Consider now the two differential
operators a∗ (“creation” operator) and a (“annihilation” operator) defined on the linear
space Ω = linspanC({φν}∞ν=0) consisting of all complex linear combinations of functions
from the set of eigenfunctions {φν}∞ν=0. Since now aa∗ − a∗a = 1, we can replace ∂ and
M in the representation studied in Example 2 by a and a∗, respectively, thus obtaining
(with c = α = 1 and β = 0)

A1 = a, A2 = a∗T (a∗, a)ea − 1
2T (a∗, a)E(a), A3 = T (a∗, a)ea.

Acting on an eigenfunction φν we have by a straightforward computation T (a∗, a)φν =
(−1)νφν . Moreover, knowing that aφν =

√
ν δ0νφν−1 where δ0ν is the Kronecker symbol,
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it follows that for all ν ≥ 0

eaφν =
ν

∑

k=0

√

1

k!

(

ν

k

)

φν−k =
ν

∑

j=0

√

1

(ν − j)!

(

ν

j

)

φj ,

E(a)φν =
∞
∑

k=0

E2k

(2k)!
a2kφν =

[ ν

2
]

∑

k=0

E2k

√

1

(2k)!

(

ν

ν − 2k

)

φν−2k.

Hence,

A1φν =
√
ν φν−1, ν ≥ 1, A1φ0 = 0,

A2φν =

ν
∑

j=0

(−1)j

√

j + 1

(ν − j)!

(

ν

j

)

φj+1 −
(−1)ν

2

[ ν

2
]

∑

j=0

E2j

√

1

(2j)!

(

ν

ν − 2j

)

φν−2j ,

A3φν =
ν

∑

j=0

(−1)j

√

1

(ν − j)!

(

ν

j

)

φj .

Appendix

Recall that a Z
n
2 -graded (colour) generalized Lie algebra is a Z

n
2 -graded linear space

X =
⊕

γ∈Zn

2

Xγ

with a bilinear multiplication (bracket) 〈 · , · 〉 : X ×X → X obeying:

Grading axiom: 〈Xα ,Xβ 〉 ⊆ Xα+β .

Graded skew-symmetry: 〈 a , b 〉 = −(−1)α·β〈 b , a 〉.

Generalized Jacobi identity:

(−1)α·γ〈 a , 〈 b , c 〉 〉 + (−1)γ·β〈 c , 〈 a , b 〉 〉 + (−1)β·α〈 b , 〈 c , a 〉 〉 = 0

for all α = (α1, . . . , αn) , β = (β1, . . . , βn) , γ = (γ1, . . . , γn) in Z
n
2 , and a ∈ Xα, b ∈ Xβ,

c ∈ Xγ , where α · β =
∑n

i=1 αiβi etc., with
∑

meaning addition in Z2. The elements of
⋃

γ∈Zn

2

Xγ are called homogeneous.
Any Z

n
2 -graded generalized Lie algebra X can be embedded in its universal enveloping

algebra U(X) in such a way that, for homogeneous a ∈ Xα and b ∈ Xβ , the bracket
〈 · , · 〉 becomes a commutator [a , b] = ab − ba when α · β is even, or an anticommutator
{a , b} = ab+ ba when α · β is odd [14].

Now take X to be a Z
3
2-graded linear space

X = X(1,1,0) ⊕X(1,0,1) ⊕X(0,1,1)

with the homogeneous basis A1 ∈ X(1,1,0), A2 ∈ X(1,0,1), A3 ∈ X(0,1,1). The homogeneous
components graded by the elements of Z

3
2 different from (1, 1, 0), (1, 0, 1) and (0, 1, 1) are
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zero and so are omitted. If the Z
3
2-graded bilinear multiplication 〈 · , · 〉 turns X into a

Z
3
2-graded generalized Lie algebra, then 〈Ai , Ai 〉 = 0, i = 1, 2, 3 and

〈A1 , A2 〉 = c12A3, 〈A2 , A3 〉 = c23A1, 〈A3 , A1 〉 = c31A2 .

When a and b are in different homogeneous subspaces, it follows that 〈 a , b 〉 = 〈 b , a 〉,
whereas 〈 a , b 〉 = −〈 b , a 〉 if a and b belong to the same one. Moreover, the generalized
Jacobi identity is valid. Now put c12 = 1, c23 = 0 and c31 = 0. The algebra X so defined
has as its universal enveloping algebra the colour Heisenberg Lie algebra.

Acknowledgements

The authors would like to thank Professor Jouko Mickelsson, Dr. Lars Hellström and
Dr. Edwin Langmann for useful comments. The first author is grateful to the Centre for
Mathematical Sciences, Lund University for hospitality during his visits in Lund. This
work has been partially supported by the Crafoord Foundation, the Royal Physiographic
Society in Lund, the Swedish Royal Academy of Sciences and the Swedish Foundation for
International Cooperation in Research and Higher Education (STINT).

References

[1] Bahturin Yu, Basic Structures of Modern Algebra, Kluwer Academic Publishers, Dor-
drecht, 1993.

[2] Bahturin Yu A, Mikhalev A A, Petrogradsky V M and Zaicev M V, Infinite Dimen-
sional Lie Superalgebras, Walter de Gruyter, Berlin, 1992.

[3] Green H S and Jarvis P D, Casimir invariants, characteristic identities and Young
diagrams for Colour algebras and superalgebras, J. Math. Phys. 24 (1983), 1681–1687.

[4] Hellström L, The Diamond Lemma for Power Series Algebras, Doctoral Thesis, no
23, 2002, Ume̊a University.

[5] Hellström L and Silvestrov S D, Commuting Elements in q-Deformed Heisenberg
Algebras, World Scientific, 2000, 256 pp.

[6] Kac V G, Lie Superalgebras, Adv. Math. 26 (1977), 8–96.

[7] Kleeman R, Commutation factors on generalized Lie algebras, J. Math. Phys. 26

(1985), 2405–2412.

[8] Kwasniewski A K, Clifford- and Grassmann-like algebras – Old and new,
J. Math. Phys. 26 (1985), 2234–2238.

[9] Marcinek W, Generalized Lie algebras and Related Topics,1,2, Acta
Univ. Wratislaviensis ( Matematyka, Fizyka, Astronomia ) LV, 1170 (1991),
3–52.

[10] Ostrovskii V L and Silvestrov S D, Representations of the real forms of the graded
analogue of the Lie algebra sl(2,C), Ukrain. Mat. Zh. 44 (1992), 1518–1524; (English
translation: Ukrainian Math. J. 44 (1993), 1395–1401).



128 G Sigurdsson and S D Silvestrov

[11] Persson L, Silvestrov S D and Strunk P, Central elements of the second order in
three-dimensional generalised Lie algebras, Czech. J. Phys. 47 (1997), 99–106.

[12] Putnam C R, Commutation Properties of Hilbert Space Operators and Related Topics,
Springer-Verlag, Berlin Heidelberg, 1967.

[13] Rittenberg V and Wyler D, Generalized Superalgebras, Nucl. Phys. B 139 (1978),
189–202.

[14] Scheunert M, Generalized Lie algebras, J. Math. Phys. 20 (1979), 712–720.

[15] Scheunert M, Graded tensor calculus, J. Math. Phys. 24 (1983), 2658–2670.

[16] Sigurdsson G and Silvestrov S D, Canonical involutions in three-dimensional gener-
alised Lie algebras, Czech. J. Phys. 50 (2000), 181–186.

[17] Silvestrov S D, Hilbert space representations of the graded analogue of the Lie algebra
of the group of plane motions, Studia Mathematica 117 (1996), 195–203.

[18] Silvestrov S D, Representations of Commutation Relations. A Dynamical Systems
Approach, Hadronic Journal Supplement, 11 (1996), 1–116.

[19] Silvestrov S D, On the classification of 3-dimensional coloured Lie algebras, in “Quan-
tum Groups and Quantum Spaces”, Banach Center Publications 40 (1997), 159–170.
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