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Abstract

We consider the generalized eigenvalue problem Aψ = λBψ for two operators A,B.
Self-similar closure of this problem under a simplest Darboux transformation gives rise
to two possible types of regular algebras of dimension 2 with generators A,B. Realiza-
tion of the operators A,B by tri-diagonal operators leads to a theory of biorthogonal
rational functions. We find the general solution of this problem in terms of the or-
dinary and basic hypergeometric functions. In special cases we obtain general Padé
interpolation tables for the exponential and power function on uniform and exponen-
tial grids.

1. Generalized eigenvalue problem and its Darboux trans-

formations

Let A,B be two operators in some linear space L (either finite- or infinite-dimensional) .
The linear combination Y (λ) = A− λB is called a linear pencil [6]. Assume that a vector
ψ(λ) belongs to a kernel space of the operator Y (λ). Clearly

Aψ(λ) = λBψ(λ). (1.1)

Thus the vector ψ(λ) is a solution of the generalized eigenvalue problem (GEVP) (1.1) [2],
[18]. When B = I, where I is identical operator, then GEVP is reduced to the ordinary
eigenvalue problem for then operator A: Aψ(λ) = λψ(λ). The GEVP arises in many
problems in the theory of separation of variables in PDE and in the mechanical vibrations
[2], [6].

Assume that a scalar product 〈ψ,χ〉 is introduced on the space L. Then it is possible
to consider the conjugated GEVP

A∗ψ∗(λ) = λB∗ψ∗(λ), (1.2)

for some vectors ψ∗(λ), where A∗, B∗ are conjugated operators defined by 〈A∗ψ,χ〉 =
〈ψ,Aχ〉 (note that we define the conjugated operator without taking complex conjugates,
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so, e.g. in the finite-dimensional case the conjugated matrix coincides with the transposed
matrix). It is then elementary to verify the biorthogonality property

〈ψ(λ), B∗ψ∗(µ)〉 = 0, if µ 6= λ (1.3)

Equivalently, we can write

〈ψ(λ), φ(µ)〉 = 0, if µ 6= λ (1.4)

where

φ(µ) ≡ B∗ψ∗(µ) (1.5)

We thus have two sets ψ(λ) and φ(λ) of biorthogonal vectors with respect to scalar product
〈ψ,χ〉.

The GEVP (1.1) possesses an important property of projective invariance. Indeed,
define a new pair of operators

C = αA+ βB, D = γA+ δB, (1.6)

where α, β, γ, δ are arbitrary complex parameters such that αδ− γβ 6= 0. Then the vector
ψ(λ) satisfies GEVP

Cψ(λ) = λ̃Dψ(λ), (1.7)

where

λ̃ =
αλ+ β

γλ+ δ
. (1.8)

This property allows one to choose arbitrary linear transformations of initial operators
A,B which leads merely to the Möbius transformation (1.8) of the spectral parameter λ
while the eigenvector ψ(λ) remains the same.

Define the so-called Darboux transformations for GEVP (1.1) (for details see, e.g. [20]).
Assume that four operators T (1), T (2), Ã, B̃ exist such

ÃT (1) = T (2)A, B̃T (1) = T (2)B (1.9)

Then it is elementary to verify that the vector

ψ̃(λ) ≡ T (1)ψ(λ) (1.10)

satisfies

Ãψ̃(λ) = λB̃ψ̃(λ). (1.11)

Thus the operator T (1) transforms a generalized eigenvector ψ(λ) to a new generalized
eigenvector ψ̃(λ) of a new GEVP (1.11) with the same eigenvalue λ. Applying this proce-
dure step-by-step, we can construct a set of GEVP

Anψn(λ) = λBnψn(λ), n = 0, 1, . . . (1.12)
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such that

An+1T
(1)
n = T (2)

n An, Bn+1T
(1)
n = T (2)

n Bn, (1.13)

where eigenvectors ψn are related as

ψn+1(λ) = T (1)
n ψn(λ). (1.14)

Thus the operator T
(1)
n can be considered as the upward operator, i.e. n → n + 1 on the

space of eigenvector ψn.

Note that the vector T
(2)
n

∗

ψ∗
n+1(λ) belongs to a kernel space of the operator Y ∗

n (λ) =

A∗
n−λB

∗
n. Thus the operator T

(2)
n

∗

can be considered as “backward” operator, i.e. n+1 →
n (but acting on the space of conjugated eigenvectors ψ∗

n).

There is a special case of the Darboux transformations (1.9) when

T1 = B, T2 = B̃. (1.15)

Then the second relation in (1.9) holds automatically and we need the only condition

ÃB = B̃A. (1.16)

In this case

ψ̃(λ) = Bψ(λ). (1.17)

Repeating this procedure we obtain the chain of vectors ψn+1(λ) = Bnψn(λ), n = 0, 1, . . .
satisfying GEVP (1.12) with the condition

An+1Bn = Bn+1An (1.18)

Consider a simple example of the Darboux transformation of the type (1.15). Let
A = ∂N

x +
∑N−1

k=0 ak(x)∂
k
x be a differential operator of the order N with unity coefficient

at the highest derivative. Consider GEVP of the form

Aψ(x;λ) = λb(x)ψ(x;λ), (1.19)

where the operator B coincides with multiplication by a function b(x). Relation (1.16)
reads

(

∂N
x +

N−1
∑

k=0

ãk(x)∂
k
x

)

b(x) = b̃(x)(∂N
x +

N−1
∑

k=0

ak(x)∂
k
x), (1.20)

where ãk(x), b̃(x) are some functions. Comparing terms in (1.20) at highest order N we
conclude that b̃(x) = b(x). Hence in this case the transformed operator Ã is merely a
similarity transformation b(x)Ab−1(x) of the differential operator A. Of course, in this
simple case the result is obvious, but in other cases the Darboux transformations (1.9)
can lead to nontrivial solutions of initial GEVP.
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2. GEVP for tri-diagonal operators and biorthogonal ratio-

nal functions

In this section we consider the case when both A and B operators can be presented as
tri-diagonal operators acting on some discrete basis en, n = 0, 1, . . . :

Aen = a
(1)
n+1en+1 + b(1)n en + c(1)n en−1, Ben = a

(2)
n+1en+1 + b(2)n en + c(2)n en−1 (2.1)

with some complex coefficients a
(i)
n , b

(i)
n , c

(i)
n , i = 1, 2. Of course, it is assumed that c

(1)
0 =

c
(2)
0 = 0 which means that the vector e0 is the lowest in the basis en. The matrices A,B

may be either finite- or infinite-dimensional. In the first case we have additional conditions

a
(1)
N = a

(2)
N = 0 (2.2)

for some N = 1, 2, . . . , where N is dimension of the matrices A,B. The corresponding
basis in this case is constructed from N linearly independent vectors e0, e1, . . . , eN−1. For

the infinite-dimensional case we have a
(1)
n a

(2)
n 6= 0 for all n = 1, 2, . . . .

To avoid triviality we should assume that operators A,B cannot be decomposed as
A = LR1, B = LR2, where L,R1, R2 are two-diagonal operators, because otherwise we
will deal with rather trivial GEVP R1ψ = λR2ψ for two-diagonal operators.

In [20] it was shown that GEVP for such tri-diagonal operators leads to a theory of
biorthogonal rational functions. To see this we present the eigenvector ψ(λ) as

ψ(λ) =

N−1
∑

k=0

Rk(λ)ek, (2.3)

where Rk(λ) are expansion coefficients and N may be either finite or infinite. Substituting
(2.3) into (1.1) we arrive at the recursion relation for Rn(λ):

(c
(1)
1 − λc

(2)
1 )R1 + (b

(1)
0 − λb

(2)
0 )R0 = 0,

(c
(1)
n+1 − λc

(2)
n+1)Rn+1 + (b(1)n − λb(2)n )Rn + (a(1)

n − λa(2)
n )Rn−1 = 0, n = 1, 2, . . .(2.4)

In what follows we will assume that

c(1)n c(2)n 6= 0, a(1)
n a(2)

n 6= 0 n = 1, 2, . . . ,N − 1. (2.5)

Then it is seen from (2.4) that

Rn(z) = R0(z)
Pn(z)

(z − α1)(z − α2) . . . (z − αn)
, (2.6)

where Pn(z) is a polynomial of degree ≤ n, R0(z) is an arbitrary function and

αn =
c
(1)
n

c
(2)
n

. (2.7)

It is natural to put R0(z) = 1 (initial condition). Then from (2.6) Rn(z) is a rational
function in z with the prescribed poles αk, k = 1, 2, . . . , n.
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Consider conjugated GEVP (1.2), where in our case A∗, B∗ are transposed matrices,
i.e.

A∗en = c
(1)
n+1en+1 + b(1)n en + a(1)

n en−1, B∗en = c
(2)
n+1en+1 + b(2)n en + a(2)

n en−1 (2.8)

We can write the corresponding generalized eigenvector ψ(λ) as

ψ∗(λ) =

N−1
∑

k=0

R∗

k(λ)ek. (2.9)

Taking again the initial condition R∗
0 = 1 we arrive at the expression

R∗

n(z) = κn
Pn(z)

(z − β1)(z − β2) . . . (z − βn)
, (2.10)

where Pn(z) is the same polynomial as in (2.6) and

βn =
a

(1)
n

a
(2)
n

, κn =

n
∏

k=1

c
(2)
k

a
(2)
k

. (2.11)

Note that due to condition (2.5) we have κn 6= 0,∞. We thus see that R∗
n(z) is also

a rational function with the same zeroes as Rn(z) and with prescribed poles βk, k =
1, 2, . . . , n.

The polynomials Pn(z) play an important role in the theory of biorthogonal rational
functions. They satisfy the three-term recurrence relation

c
(2)
n+1Pn+1(z) + (zb(2)n − b(1)n )Pn(z) + a(2)

n (z − αn)(z − βn)Pn−1(z) = 0 (2.12)

which belongs to a class of so-called RII recurrence relations considered in [10]. There is
a relation of the polynomial Pn(z) with the characteristic determinant ∆n(z) of truncated
matrices [20]:

Pn(z) =
∆n(z)

c
(2)
1 c

(2)
2 . . . c

(2)
n

, (2.13)

where

∆n(z) = det(An − zBn) (2.14)

and matrices An, Bn are n × n matrices consisting of the first n rows and columns of
matrices A,B. In the finite-dimensional case we obtain the generalized eigenvalues λ as
roots of the characteristic polynomial

PN (z) = 0. (2.15)

In what follows we will assume that in the finite-dimensional case all N roots of the
polynomial PN (z) are simple.
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Now, using (1.5) we can construct the biorthogonal partner Tn(z) for the function
Rn(z). In our case the biorthogonal vector ψ(λ) is constructed as ψ(λ) = B∗ψ∗(λ).
Expanding the vector φ(z) as

φ(z) =

N−1
∑

n=0

Tn(z)en

we have from (1.5)
N−1
∑

n=0

Tn(z)en =
N−1
∑

n=0

R∗

n(z)B∗en

and hence

Tn(z) = a
(2)
n+1R

∗

n+1(z) + b(2)n R∗

n(z) + c(2)n R∗

n−1(z). (2.16)

Using the recurrence relation for the rational functions R∗
n(z) we can rewrite the expression

(2.16) in the equivalent forms:

Tn(z) = (a
(1)
n+1R

∗

n+1(z) + b(1)n R∗

n(z) + c(1)n R∗

n−1(z))z
−1 (2.17)

or

Tn(z) =
(a

(1)
n+1c

(2)
n − a

(2)
n+1c

(1)
n )R∗

n+1(z) + (b
(1)
n c

(2)
n − b

(1)
n c

(2)
n )R∗

n(z)

zc
(2)
n − c

(1)
n

(2.18)

or

Tn(z) =
(a

(2)
n+1b

(1)
n − a

(1)
n+1b

(2)
n )R∗

n(z) + (a
(2)
n+1c

(1)
n − a

(1)
n+1c

(2)
n )R∗

n−1(z)

za
(2)
n+1 − a

(1)
n+1

(2.19)

From (2.19) it is clear that Tn(z) is a rational function of the form

Tn(z) =
Qn(z)

(z − β1)(z − β2) . . . (z − βn+1)
, (2.20)

where Qn(z) is a polynomial with degree ≤ n. We thus see that, in contrast to R∗
n(z), the

function Tn(z) consists of n+ 1 poles, i.e it contains additional pole at z = βn+1.

As was shown in [20] for rational functions Rn(z) and Tn(z) there exists a linear func-
tional σ (defined on the space of rational functions with prescribed poles αi and βi) such
that

σ{Rn(z)Tm(z)}) = hnδnm (2.21)

with some nonzero normalization constants hn. Property (2.21) means that rational func-
tions Rn(z), Tm(z) form two biorthogonal families. For the most general explicit biorthog-
onal rational functions expressible in terms of elliptic functions see [16], [17].
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3. Self-similar closure of the Darboux transformation and

admissible poles

In this section we consider simplest self-similar closures of the Darboux transformations
for GEVP.

Assume that the transformed operators Ã, B̃ are expressed as linear combinations of
the initial ones:

Ã = ξ1A+ ξ2B, B̃ = ξ3A+ ξ4B (3.1)

where ξi are some constants such that ξ1ξ4 − ξ2ξ3 6= 0.
If condition (3.1) holds then the transformed GEVP can be presented in the form:

0 = (Ã− λB̃)ψ̃(λ) (3.2)

or, equivalently,

Aψ̃(λ) = λ̃ Bψ̃(λ) (3.3)

where

λ̃ =
λξ4 − ξ2
ξ1 − λξ3

.

From (3.3) and (1.1) we conclude that the vector ψ̃(λ) belongs to the kernel space of
the operator A− λ̃B. On the other hand, we know that ψ̃(λ) = Bψ(λ). From this we can
easily conclude that the expansion coefficients ψ̃n(λ) with respect to the basis en can be
presented as

ψ̃n(λ) = G(λ)ψn(λ̃), n = 0, 1, . . . (3.4)

with some function G(λ). More detailed consideration similar to that in the previous
section yields

(Bψ(z))n ≡ ψ̃n(λ) =
Yn(z)

(z − α1)(z − α2) . . . (z − αn+1)
(3.5)

where Yn(z) is a polynomial in z of degree ≤ n.
On the other hand, by (3.4) we have

ψ̃n(z) =
G(z)Pn(z̃)

(z̃ − α1)(z̃ − α2) . . . (z̃ − αn)
=

G(z)P̃n(z)

(z − α̃1)(z − α̃2) . . . (z − α̃n)
(3.6)

where

P̃n(z) = κn (ξ1 − zξ3)
nPn

(

zξ4 − ξ2
ξ1 − zξ3

)

, κn =

n
∏

i=1

(ξ4 + αiξ2) (3.7)

and new poles α̃n are

α̃n =
αnξ1 + ξ2
αnξ3 + ξ4

(3.8)
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We have an identity

Yn(z)

(z − α1)(z − α2) . . . (z − αn+1)
=

G(z)P̃n(z)

(z − α̃1)(z − α̃2) . . . (z − α̃n)
(3.9)

This identity should be valid for all n = 0, 1, . . . . For n = 0 we get (as P0 = 1 and
Y0(z) = Y0 = const)

G(z) =
Y0

z − α1
(3.10)

For all other n we obtain the restriction upon poles αn:

αnξ1 + ξ2
αnξ3 + ξ4

= αn+1 (3.11)

This restriction can be considered as a discrete Riccati equation with constant coefficients.
Its general solution can be found in an elementary way:

αn =
µ1q

n + µ2

µ3qn + µ4
(3.12)

with some constants q, µi or

αn =
µ1n+ µ2

µ3n+ µ4
(3.13)

The solution (3.12) corresponds to the case when the matrix

Ξ =

(

ξ1 ξ2
ξ3 ξ4

)

is diagonalizable with distinct eigenvalues λ1, λ2, in this case q = λ1/λ2. Solution (3.13)
corresponds to the case when the matrix Ξ is non-diagonalizable.

Quite analogously we obtain similar expressions for poles βn:

βn =
ν1q

n + ν2

ν3qn + ν4
(3.14)

with some constants νi or

βn =
ν1n+ ν2

ν3n+ ν4
(3.15)

We thus see that the rational functions ψn(z) corresponding to GEVP with the closure
condition (3.1) have the self-similarity property (3.4) with respect to action of the operator
B, i.e. the corresponding Darboux transformation leads only to a rational transformation
of the argument. Moreover, the poles of the rational functions have an explicit dependence
on n given by formulas (3.12), (3.14), or (3.13), (3.15).
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4. Canonical forms of the closure condition and regular al-

gebras of dimension 2

Substituting the closure condition (3.1) into the Darboux relation (1.16) we obtain that
operators A,B satisfy an algebraic relation

(ξ1A+ ξ2B)B = (ξ3A+ ξ4B)A (4.1)

This is a quadratic relation involving all second-degree combinations A2, B2, AB,BA.
We already know that the initial GEVP (1.1) preserves its form under arbitrary linear

transformation (1.6) (with projective transformed eigenvalue λ). We can use this property
to simplify our problem as much as possible.

Assume first that the matrix Ξ is diagonalizable with distinct nonzero eigenvalues
q1, q2, i.e. tr2Ξ − 4∆Ξ = (ξ1 + ξ4)

2 − 4(ξ1ξ4 − ξ2ξ3) 6= 0 (as usual, trΞ,∆Ξ are the trace
and determinant of the matrix Ξ). Then it is possible to choose the linear transformation
(1.6) such that

Ξ =

(

q1 0

0 q2

)

In this case as easily seen we obtain instead of (4.1) the simple Weyl-type operator
relation

AB = qBA (4.2)

where q = q2/q1 (note that zero values of q1, q2 are forbidden by the restriction ∆Ξ 6= 0).
If the matrix Ξ is non-diagonalizable then it is possible to reduce it to (say) the form

Ξ =

(

1 − 1

0 1

)

In this case algebraic relation (4.1) becomes

AB −BA = B2 (4.3)

It is interesting to note that relations (4.2) and (4.3) describe two possible types of so-
called regular algebras of dimension two [1], [8]. We thus see that these rather abstract
objects as regular algebras appear naturally in our approach.

In what follows we will assume that q is a real parameter, q 6= 0,±1. In this case we
can obtain only infinite-dimensional representations of the Weyl relation (4.2). Indeed, if
A,B are nondegenerated matrices of dimension N (i.e. det(A)det(B) 6= 0) then it follows
from (4.2) that qN = 1. Thus nondegenerate finite-dimensional representations of the
Weyl algebras are possible only for q a root of unity.

Note that the Weyl relation (4.2) is well known in quantum mechanics; it lies also in the
base of the theory of “quantum planes” and related quantum groups and algebras (see,
e.g. [13]). Relation (4.3) is closely connected with so-called raising-lowering operators.
Indeed, assume that two operators L,M satisfy the simplest linear commutation relation
[L,M ] = M . The operator M is called raising operator with respect to the operator L,
because if ψ(λ) is any eigenvector from eigenspace of the operator L with eigenvalue λ,
then Mψ(λ) is again eigenvector of the operator L but with the shifted eigenvalue λ+ 1.
Now choosing A = LM,B = M we see that relation (4.3) is fulfilled.



342 A Zhedanov

5. Realizations of the regular algebra. Type I

Consider the commutation relation

AB −BA = B2 (5.1)

We will assume that off-diagonal entries of the operators A,B are non-zero (non-degeneracy
condition). Note that any non-degenerate diagonal operator S (i.e. Sen = snen with
some nonzero sn) can be used for the similarity transformation of the operators A,B:
A → SAS−1, B → SBS−1. Clearly, for such transformed operators relation (5.1) will
still hold. We thus can choose the diagonal operator S to simplify the coefficients of the
operators A,B. In particular, it is possible to choose S such that the operator B will be
symmetric in the basis en:

Ben = an+1en+1 + bnen + anen−1 (5.2)

with some coefficients an, bn. By nondegeneracy condition we have an 6= 0, n = 1, 2, . . . .
For the operator A we take the general 3-diagonal form

Aen = dn+1en+1 + gnen + rnen−1 (5.3)

with some coefficients dn, rn, gn. We assume that dnrn 6= 0, n = 1, 2, . . . . We thus have
5 unknown coefficients an, bn, dn, en, rn. Substituting (5.3) and (5.2) into commutation
relation (5.1) we obtain a system of equations for these coefficients. Equating terms in
front of vectors en±2 we get

dn = (n− n)an, rn = −(n− n1)an, (5.4)

where n0, n1 are arbitrary parameters. Equating terms in front of vectors en±1 we get two
equations

gn − gn−1 + (n− n0)(bn−1 − bn) = bn + bn−1,

and
gn−1 − gn − (n− n1)(bn − bn−1) = bn + bn−1,

Solving these equations we obtain

bn =
β

(2n − n0 − n1)(2n + 2 − n0 − n1)
(5.5)

with some parameter β and

gn = bn(n0 − n1)/2 + γ (5.6)

with some parameter γ. Finally, equating terms in front of diagonal vectors en, we get
equation

µn−1/2a
2
n − a2

n+1µn+3/2 = b2n (5.7)

where µn = 2n− n0 − n1. It is easily verified that general solution of (5.7) is

a2
n =

β2 + 4ε(2n − n0 − n1)
2

4(2n − n0 − n1)2(2n + 1 − n0 − n1)(2n − 1 − n0 − n1)
(5.8)
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where ε is a parameter.

In what follows we will demand a0 = 0. This conditions merely means that the repre-
sentation is bounded from below by the vector e0. From this condition we find that

ε = −
β2

4(n0 + n1)2
(5.9)

The GEVP

(A− zB)ψ = 0 (5.10)

can be written as

(dn − zan)ψn−1 + (gn − zbn)ψn + (rn+1 − zan+1)ψn+1 = 0 (5.11)

or

an(n− n0 − z)ψn−1 + (gn − zbn)ψn + an+1(n1 − n− z)ψn+1 = 0 (5.12)

This recurrence relation defines some rational function ψn(z) up to an arbitrary factor
ψ0(z). In order to find ψn(z) we first renormalize functions ψn(z) = ξn(z)Pn(z) where
ξn(z) is the denominator of ψn(z). We then obtain:

Pn+1(z) +Bn(z)Pn(z) + Un(z)Pn−1(z) = 0, (5.13)

where

Bn(z) = γ +
β(n0 − n1 + 2z)

2(2n − n0 − n1)(2n + 2 − n0 − n1)
(5.14)

and

Un(z) =
β2

(n0 + n1)2
n(n− n0 − n1)(n− n0 − z)(n − n1 + z)

(2n− n0 − n1)2(2n − 1 − n0 − n1)(2n + 1 − n0 − n1)
(5.15)

The solution of this recurrence relation can be found if one notices that relation (5.13)
formally coincides with the 3-term recurrence relation for the Jacobi polynomials [11]
(after appropriate redefinition of the argument and parameters of polynomials). Omitting
technical details we present the result:

Pn(z) =

(

β

n0 + n1

)n (1 − n1 + z)n
(1 + n− n0 − n1)n

2F1

(

−n, 1 + n− n0 − n1

1 + z − n1

∣

∣

∣

∣

1/2 + γ(n0 + n1)/β

)

(5.16)

The corresponding rational functions ψn(z) with initial conditions ψ−1 = 0, ψ0 = 1 are

ψn(z) =
βn

(n0 + n1)n(1 + n− n0 − n1)n
2F1

(

−n, 1 + n− n0 − n1

1 + z − n1

∣

∣

∣

∣

1/2 + γ(n0 + n1)/β

)

(5.17)
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Consider the adjacent problem. New vectors ψ̃ = Bψ. We have

Ãψ̃ = λB̃ψ̃ (5.18)

where Ã = A−B, B̃ = B. Equivalently,

Aψ̃ = (λ+ 1)Bψ̃ (5.19)

Thus the new function ψ̃(z) differs from ψ(z) by a shift of the argument:

ψ̃n(z) = const ψn(z + 1) (5.20)

A direct check shows that indeed

ψ̃(z) ≡ (Bψ)n =
β + 2γ(n0 + n1)

2(n0 + n1)(z + 1 − n1)
ψn(z + 1) (5.21)

6. Moments and orthogonality

In the previous section we constructed rational functions ψn(z) as eigensolutions of GEVP.
Omitting unnecessary factors we can put

Un(z) = 2F1

(

−n, 1 + n− n0 − n1

1 + z − n1

∣

∣

∣

∣

µ

)

, (6.1)

where µ = 1/2 + γ(n0 + n1)/β. Elementary calculations from the general scheme (1.5)
show that their biorthogonal partners Vn(z) can be chosen as

Vn(z) = 2F1

(

−n, 1 + n− n0 − n1

2 − n0 − z

∣

∣

∣

∣

1 − µ

)

(6.2)

In this section we derive directly biorthogonality property of the rational functions Un(z), Vn(z).
The rational functions Un(z), Vn(z) can be presented in terms of partial fractions:

Un(z) = ξn0 +

n
∑

k=1

ξnk

z − ak
, Vn(z) = ηn0 +

n
∑

k=1

ηnk

z − bk
(6.3)

where ak = n1 − k, bk = k + 1 − n0 are the locations of poles. However, for our purposes
it is more convenient to present functions Un(z), Vn(z) as the following decomposition

Un(z) =
n
∑

k=0

ξnk

(z − n1 + 1)k
, Vn(z) =

n
∑

k=0

ηnk

(z − k − 1 + n0)k
(6.4)

Introduce a functional σ defined on rational functions with poles ak, bk by the formula

σnm ≡ σ

{

1

(z − n1 + 1)n(z −m− 1 + n0)m

}

= (−1)m
µ−n(1 − µ)−m

(2 − n0 − n1)n+m
(6.5)

This functional satisfies the restriction

σn−1,m − σn,m−1 = (n+m− n0 − n1 + 1)σn,m

It is easily verified that this restriction is equivalent to compatibility condition for a
matrix σn,m to be a moment matrix on the space of rational functions with prescribed
poles ak, bk.
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Theorem 1. The rational functions Un(z), Vn(z) are biorthogonal with respect to the
functional σ:

σ {Un(z)Vm(z)} = hn δnm (6.6)

where

hn =
(−1)nn!

(1 + 2n− n0 − n1)(2 − n0 − n1)n−1
(6.7)

Proof. It is sufficient to present both Un(z), Vm(z) as hypergeometric series and then
apply the functional defined by (6.5):

σ {Un(z)Vm(z)} =

N
∑

k,s=0

(−n)k(−m)s(1 + n− n0 − n1)k(1 +m− n0 − n1)s
k!s!(2 − n0 − n1)k(2 − n0 − n1 + k)s

(6.8)

where N is any positive integer such that N > min(n,m). Then we can calculate the
sum with respect to s reducing it to the hypergeometric function 2F1 from unit argument
which can be further simplified to get

σ {Un(z)Vm(z)} =
n
∑

k=m

(−n)k(1 + n− n0 − n1)k(1 + k −m)m
k!(2 − n0 − n1)k(2 − n0 − n1 + k)k

(6.9)

This expression is 0 if m > n. But due to obvious symmetry between n,m in (6.8) we can
conclude that this expression is 0 also for n > m. Thus we need only to check the case
n = m. But in this case only one term in (6.9) survives, and we get (6.7).

7. Padé interpolation of the exponential function

The biorthogonal functions, obtained in the previous section, can be presented as

Un(z) =
(−1)n(1 + n− n0 − n1)n

(1 + z − n1)n
Pn(z), Vn(z) =

(µ− 1)n(1 + n− n0 − n1)n
(2 − z − n0)n

P ∗

n(z)

(7.1)

where

Pn(z) = 2F1

(

−n,−n+ n1 − z

−2n+ n0 + n1

∣

∣

∣

∣

1/µ

)

(7.2)

and

P ∗

n(z) = 2F1

(

−n,−1 − n+ n0 + z

−2n+ n0 + n1

∣

∣

∣

∣

1/(1 − µ)

)

(7.3)

Assume that the parameters n0, n1 satisfy the condition

n0 + n1 = −j (7.4)
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where j is a positive integer. Introduce polynomials

Qn+j(z) = 2F1

(

−n− j,−n + n1 − z

−2n− j

∣

∣

∣

∣

1/(1 − µ)

)

(7.5)

of degree n + j. Then from the Pfaff-Euler transformation formula for the Gauss hyper-
geometric function [5] we get

Qn+j(zs)

Pn(zs)
= (µ/(µ− 1))s, s = 0, 1, . . . , 2n + j (7.6)

where the grid is

zs = s− n+ n1 (7.7)

Analogously

Q∗
n+j(ys)

P ∗
n(ys)

= (1 − 1/µ)s, s = 0, 1, . . . , 2n + j (7.8)

where

ys = 1 + n− n0 − s (7.9)

We see that the obtained polynomials solve the Padé interpolation problem (for arbitrary
positive integer j) for the exponential function f(z) = exp(ωz) on linear grids.

The Padé interpolation table for the exponential function on the uniform was first
explicitly constructed by Iserles [9]. See also [22] for further analysis and relations with
theory of orthogonal polynomials and biorthogonal rational functions.

8. The Weyl algebra representations

Consider the Weyl commutation relation

AB = qBA (8.1)

We are seeking a realization of this relation by three-term operators. In this case it is
convenient to choose the similarity transformation S such that the operator A has unit
coefficient in front of en−1, whereas B is arbitrary 3-diagonal:

Aen = en−1 + bnen + un+1en+1, Ben = ρnen−1 + gnen + dn+1en+1 (8.2)

Note that this problem was already solved in our paper [19], where, however, we did not
consider relation with GEVP.

From the commutation relation (8.1) we easily find

dn = c1q
−nun, ρn = c2q

n (8.3)

where c1, c2 - arbitrary constants. Moreover

bn = −
c3(c1q

1−n + c2q
n+2 + c4)

wnwn−1
(8.4)
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where

wn = c1q
−n − c2q

n+2 (8.5)

and c4 is an arbitrary.

gn =
bn(c1q

−n + c2q
n+1) + c3

q + 1
(8.6)

Finally, for un we have the expression

un =
wnwn−2bnbn−1 + c5

(q + 1)2vnvn−1
(8.7)

where

vn = c1q
−n − c2q

n+1 (8.8)

From the condition u0 = 0 we get the restriction for the constants:

c5 = −
c23(qs1 + s2)(qs2 + s1)

(q(q + 1)(c1 − c2))2
(8.9)

where

s1 = c4 + q(q + 1)c1, s2 = c4 + q(q + 1)c2 (8.10)

In this case it is possible to present un in the form

un = Cq2n−3 (1 − qn)(1 − c2q
n/c1)(1 + s2q

n/s1)(1 + s1c2q
n/(s2c1))

(1 − c2q2n/c1)2(1 − c2q2n+1/c1)(1 − c2q2n−1/c1)
, (8.11)

where C = −
c2
3
s1s2

((q+1)(c1−c2)c1)2
. (It is assumed that c1 6= c2).

Now the GEVP (A−zB)ψ = 0 for the vector ψ =
∑

∞

n=0 ψn(z)en is reduced to solution
of the three-term recurrence relation

(1 − zρn+1)ψn+1(z) + (bn − zgn)ψn(z) + un(1 − zdn)ψn−1(z) = 0 (8.12)

with the initial conditions

ψ−1 = 0, ψ0 = 1 (8.13)

Renormalizing ψn(z) = Pn(z)/Dn(z) where Dn(z) is denominator of ψn(z) and then iden-
tifying the recurrence relation Pn(z) with that for big q-Jacobi polynomials [11] we get
solution

ψn(z) =
(−q s1c2

s2c1
; q)n

( c2qn+1

c1
; q)n

3Φ2

(

q−n, c2q
n+1/c1, 0

−c2s1q/(c1s2), zc2
; q; q

)

(8.14)

Note that ψn(z) is a rational function of order [n/n] having poles z = c−1
2 q−k, k =

0, 1, . . . , n− 1.
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Consider the adjacent problem for the function ψ̃ = Bψ. From the Weyl commutation
relation it follows

Aψ̃ = λqBψ̃ (8.15)

Hence

ψ̃n(z) = const ψn(qz) (8.16)

Consider the conjugated problem

A∗ψ∗ = zB∗ψ∗ (8.17)

where
A∗en = en+1 + bnen + unen−1, B∗en = ρn+1en+1 + gnen + dnen−1

We have

ψ∗

n(z) = κn 3Φ2

(

q−n, c2q
n+1/c1, 0

−s2q/s1, q2/(zc1)
; q; q

)

(8.18)

where

κn = q−n(n−1)/2 ((c2 − c1)c1c3(q + 1)/s2)
n (c2q

2/c1; q)2n

(q; q)n(−qc2s1/(c1s2); q)n

It is sufficient to note that the biorthogonal partners

φ∗n ≡ B∗ψ∗

n

correspond the same GEVP
A∗φ∗ = λq−1B∗φ∗

with rescaled eigenvalue parameter λ→ λ/q. Thus we have explicitly

φ∗n(z) = ψ∗

n(z/q) = κn 3Φ2

(

q−n, c2q
n+1/c1, 0

−s2q/s1, q3/(zc1)
; q; q

)

(8.19)

The rational function φ∗n(z) has poles at points z = c−1
1 qk+2. Consider the elementary

rational functions

χ(1)
n (z) = 1/(zc2; q)n, χ(2)

n (z) = 1/(q3/(zc1); q)n

Clearly, χ
(1)
n (z) has poles at z = c−1

2 , . . . , c−1
2 q1−n and χ

(2)
n (z) has poles at z = c−1

1 q3, . . . , c−1
1 qn+2,

thus coincide with poles of ψn(z), φ∗n(z)
Define the matrix of “moments” for some linear functional σ acting on the space of

rational functions with these poles:

σnm = σ{χ(1)
n (z)χ(2)

m (z)} =
(−c2s1q/(c1s2); q)n(−qs2/s1; q)m

(q2c2/c1; q)n+m
(8.20)

This functional satisfies the restriction

σn−1,m + σn,m−1 = σn−1,m−1 + (1 − qn+m+1)σn,m
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which is equivalent to the compatibility condition for the matrix σnm be a moment matrix
for a linear functional defined on the space of rational functions with prescribed poles.

Instead of ψn(z), φn(z) we define now rational functions Un(z), Vn(z) which are essen-
tially basic hypergeometric functions without unnecessary factors, i.e.

Un(z) = 3Φ2

(

q−n, c2q
n+1/c1, 0

−c2s1q/(c1s2), zc2
; q; q

)

(8.21)

and

Vn(z) = 3Φ2

(

q−n, c2q
n+1/c1, 0

−s2q/s1, q3/(zc1)
; q; q

)

(8.22)

Theorem 2. Functions Un(z), Vm(z) are biorthogonal with respect to functional σ:

σ{Un(z)Vm(z)} = hnδnm (8.23)

where

hn =
(−1)n(c2/c1)

nqn(n+3)/2(q; q)n
(c2q2/c1; q)n−1(1 − c2q2n+1/c1)

(8.24)

Proof. Expanding functions Un(z), Vm(z) in terms of χ
(1)
i (z), χ

(2)
k and substituting to

lhs of (8.23) we get the double sum

σ{Un(z)Vm(z)} =
N
∑

ik=0

(q−n; q)i(c2q
n+1/c1; q)i(q

−m; q)k(c2q
m+1/c1; q)k

(q; q)i(q; q)k(c2q2/c1; q)i+k
qi+k (8.25)

where N ≥ min(n,m).
Taking into account that

(c2q
2/c1; q)i+k = (c2q

2/c1; q)i(c2q
2+i/c1; q)k

we can separate summation in k and i:

σ{Un(z)Vm(z)} =

n
∑

i=0

(q−n; q)i(c2q
n+1/c1; q)i

(q; q)i(c2q2/c1; q)i
qi ×

m
∑

k=0

(q−m; q)k(c2q
m+1/c1; q)k

(q; q)k(c2q2+i/c1; q)k
qk (8.26)

The sum in k can be calculated using the standard summation formula for basic hyperge-
ometric function [7], [11]:

m
∑

k=0

(q−m; q)k(c2q
m+1/c1; q)k

(q; q)k(c2q2+i/c1; q)k
qk =

qm(m+1)(c2/c1)
m(q1+i−m; q)m

(c2q2+i/c1; q)m

The remaining expression contains term (q1+i−m; q)m which vanishes if n < m, hence
σ{Un(z)Vm(z)} = 0 if n < m. But expression (8.25) is symmetric with respect to n,m,
hence also σ{Un(z)Vm(z)} = 0 if m < n. We thus proved that functions Un(z) and Vm(z)
are biorthogonal for noncoinciding values of n,m. If m = n then only one term (with
i = n) survives in the sum (8.26) and we arrive at expression (8.24) for normalization
coefficient hn.
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9. Interpolation of the power function

Using transformation formulas for basic hypergeometric functions, we can present the
rational functions Un(z) in the form

Un(z) = (−ps1c2z/s2)
−n (c1/c2p

n+1; p)n
(−c1s2p/(c2s1); p)n(1/(zc2); p)n

×

3Φ2

(

p−n,−c2s1p
−n/(c1s2), zc2p

1−n

0, c2p−2n/c1
; p; p

)

(9.1)

where p = 1/q. Introduce the polynomials

Pn(z) = 3Φ2

(

p−n,−c2s1p
−n/(c1s2), zc2p

1−n

0, c2p−2n/c1
; p; p

)

(9.2)

It is clear that (to within factor not depending on z) Pn(z) are numerators of rational
functions Un(z).

In what follows we assume that

c2 = c1q
j (9.3)

where j is an arbitrary positive integer. Introduce polynomials

Qn+j(z) = 3Φ2

(

p−j−n,−s2p
−n/(s1), zc2p

1−n

0, p−j−2n
; p; p

)

(9.4)

having degree n+ j in z.

Using standard transformation formulas for the basic hypergeometric function [11] we
easily find that

Pn(zk)

Qn+j(zk)
= (−s2/s1)

k, k = 0, 1, . . . , 2n + j (9.5)

where

zk = c−1
2 p−k+n−1

This is equivalent to Padé interpolation of the power function

f(z) = zα

where α is determined by

p−α = −s2/s1

Note that the Padé interpolation table for the exponential and power functions was
constructed and analyzed in [22]. Our present interpolation problem differs from that of
[22] by a shift of the interpolation grid, i.e. in [22] the initial point z0 of interpolation grid
was the same for all Padé entries m,n, whereas in the present case z0 depends on n,m.
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10. Realization of the moment functionals in terms of Fourier

and Mellin integrals and the general interpolation prob-

lem

We defined the moment functionals σ formally by the expressions (6.5) and (8.20). A
natural question arises: is it possible to realize these functionals in terms of definite
integrals with respect to some weight function? Such a realization is well known in the
theory of orthogonal polynomials where the Favard theorem provides existence of such a
representation (at least in terms of the Stieltjes integral, including purely discrete weights)
[4].

For the generic situation we didn’t find a corresponding representation. However such
a representation does exist for the case of the Padé interpolation of the exponential and
power functions, i.e. when we have restrictions (7.4) and (9.3).

Consider first the case of restriction (7.4). Note that shifting the parameter n1 is
equivalent to shifting the argument z. Hence we can put n1 = 0 without loss of generality.
Then n0 = −j with some positive integer j.

In this case it is not difficult to show that the moments (6.5) can be presented as

σnm ≡ σ

{

1

(z + 1)n(z −m− 1 − j)m

}

=
cj
2πi

∫

Γ

exp(ωζ)dζ

Wj(ζ)(ζ + 1)n(ζ −m− 1 − j)m
(10.1)

where eω = µ/(µ− 1), cj = (j + 1)!(µ− 1)j+1 and

Wj(z) = z(z − 1) . . . (z − j − 1)

The contour Γ is chosen such that all poles zs = s, s = −n,−n+1, . . . ,m+j+1 coming
from denominator in (10.1) lie inside the contour. Indeed, the integral in (10.1) is reduced
to the sum of residues at m+ n+ j + 2 poles zs = s, s = −n,−n+ 1, . . . ,m+ j + 1. This
sum, in turn, can be easily calculated using binomial theorem.

Now we can deform the contour Γ transforming it to a vertical line. If ω < 0, we can
choose this line passing to the left of the point z = −n, if ω > 0 we choose the line to
the right of the point z = m + j + 1. Indeed, by the Cauchy theorem, in these cases it
is possible to close the contour adding a big semicircle with vanishing contribution to the
integral.

We thus have

Theorem 3. . Assume that n1 = 0, n0 = −j. Then the moment functional (6.5) can be
presented in terms of the Fourier integral

σnm =
cj
2πi

∫ α+i∞

α−i∞

eωxdx

Wj(x)(x+ 1)n(x−m− 1 − j)m
(10.2)

where α < −n for ω < 0 and α > m+ j + 1 for ω > 0.

Consider now the case of the moment functional (8.20) with an additional restriction

c1 = q1−j , c2 = q (10.3)



352 A Zhedanov

with some positive integer j. This restriction is equivalent to restriction (9.3) necessary
for the Padé interpolation of the power function (the constant c2 can be chosen arbitrarily
without loss of generality because this leads merely to a shift of the interpolation grid

zs). In this case we have that the basic rational functions χ
(1)
n (z) = 1/(zq; q)n have the

poles z = q−1, q−2, . . . , q−n and the functions χ
(2)
m (z) = 1/(qj+2/z; q)m have the poles

z = qj+2, qj+3, . . . qj+m+1. Introduce the polynomial Wj(z) = (z − 1)(z − q) . . . (z − qj+1)
of degree j + 2. We then obtain that the moment functional (8.20) has the integral
representation

σnm ≡ σ

{

1

(zq; q)n(qj+2/z; q)m

}

=
κj

2πi

∫

Γ

ζpdζ

Wj(ζ)(ζq; q)n(qj+2/ζ; q)m
(10.4)

where

qp = −s2/s1, κj = (s1/s2)
j+1qj(j+1)/2 (q; q)j+1

(−s1/s2; q)j+1

and the contour Γ is chosen to encircle all poles zs = qs, s = −n, n + 1, . . . ,m + j + 1.
Verification of formula (10.4) is elementary using the Cauchy theorem and the q-binomial
formula [11].

Assume now that additionally we have the restriction −1 < p < j + 1. Then the
contour Γ can be transformed into the contour consisting from two sides of negative real
axis and two circles with the origin z = 0: one is very small and second is very large. The
contribution from the circles tends to zero and we have

Theorem 4. Under the restrictions c1 = q1−j , c2 = q, −1 < p < j + 1 we have represen-
tation of the moment functional (10.4) in terms of the Mellin integral

σnm =
κj sin(πp)

π

∫ 0

−∞

|x|pdx

Wj(x)(xq; q)n(qj+2/x; q)m
(10.5)

Now we can apply these results to biorthogonal rational functions corresponding to
Padé interpolation of the exponential and power functions.

We first need a general result concerning biorthogonality of rational functions corre-
sponding to general Padé interpolation scheme [23].

Let F (z) be a function and ys, s = 0,±1,±2, . . . an infinite sequence of distinct points
(the interpolation grid). We are seeking polynomials Qn+M(z;M,k), Pn(z;M,k) satisfying
the interpolation property

F (ys) =
Qn+M(ys;M,k)

Pn(ys;M,k)
, s = −n+ k,−n+ k + 1, . . . , n+M + k (10.6)

We assume that the Padé scheme is nondegenerate, i.e. polynomialsQn+M (z;M,k), Pn(z;M,k)
exist, have the degrees n +M and n and have no coinciding roots. The last condition is
equivalent to the condition that roots of polynomials Qn+M (z;M,k), Pn(z;M,k) do not
coincide with the interpolation grid ys [3].

It is convenient to normalize polynomials Pn(ys;M,k) = zn +O(zn−1) to be monic (i.e.
with highest-order term being unity). The polynomials Qn+M(z;M,k) are not monic and
have the expansion

Qn+M (z;M,k) = αn,n+M(k)zn+M +O(zn+M−1)
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with some leading term αn,n+M (k) depending on 3 integer parameters: n,M, k.

The additional integer parameter k describes the shift of the interpolation grid. For
k = n we return to the standard interpolation scheme on the grid y0, y1, . . . , y2n+M . In
what follows we will consider the scheme with fixed value of the shift k. We will also fix
the value of the parameter M > 0 which means that we deal with a string from the Padé
table parallel to the main diagonal n = m (i.e. M = 0).

Introduce polynomials

WkM (z) = (z − yk)(z − yk+1) . . . (z − yM+k+1) (10.7)

of degree M + 2 and a pair of rational functions Un(z;M,k) and Vn(z;n;M,k) defined as

Un(z;M,k) =
Pn(z;M,k)

(z − y−n+k)(z − y−n+k+1) . . . (z − yk−1)

Vn(z;M,k) =
Pn(z;M,k + 1)

(z − yM+2+k)(z − yM+3+k) . . . (z − yn+M+k+1)
(10.8)

Note that both rational functions Un(z;M,k), Vn(z,M, k) have the type [n/n] because the
scheme is assumed to be nondegenerate and hence the roots of numerator polynomials in
(10.8) cannot coincide with roots of denominators.

We then have

Theorem 5. The rational functions Un(z;M,k), Vn(z,M, k) are biorthogonal with respect
to the scalar product

1

2πi

∫

Γ

F (ζ)Un(ζ;M,k)Vm(ζ;M,k)dζ

WkM (ζ)
= hn(M,k) δn,m (10.9)

or, equivalently,

m+M+k+1
∑

s=−n+k

F (ys)Res

{

Un(z;M,k)Vm(z;M,k)

WkM(z)

}

∣

∣

∣

∣

∣

z=ys

= hn(M,k) δn,m (10.10)

where the normalization coefficients are

hn(M,k) =
αn,n+M+1(k)αn−1,n+M (k)

αn−1,n+M (k) − αn,n+M+1(k)
(10.11)

Remark. The contour Γ in (10.9) is chosen to encircle all poles z = y−n+k, y−n+k+1, . . . ym+M+k+1

coming from all denominators and to avoid all singularity points of the function F (z). In
case if the function F (z) is multi-valued, we should choose a regularity area in the complex
plane with an appropriate system of cuts, all interpolation points ys and the contour Γ
should belong to the same area of regularity.

For the proof of this theorem see [23]. We mention only that this theorem is a simple
consequence of the well known orthogonality property of the Padé interpolants with respect
to a functional defined in terms of divided differences [12]. Nevertheless, as far as we
know, explicit biorthogonality property (10.9) or (10.10) is a new result. (For the special
case k = n this theorem was proven in [17]). Note, that numerators Pn(z;M,k + 1) of
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biorthogonal partners Vn(z;M,k) coincide with the numerator Padé interpolants for the
same function F (z) but on shifted interpolation grid (i.e. k → k + 1).

We now can apply this theorem to the Padé interpolation of the exponential and power
functions.

Assume that we have exponential function F (z) = eωz with ω < 0. Assume also that
all interpolation grids ys are real. Then from Theorem 5 we obtain that the contour Γ
can be transformed to a vertical line in the complex plane:

1

2πi

∫ γ+i∞

γ−i∞

exp(ωx)Un(x;M,k)Vm(x;M,k)dζ

WkM(x)
= hn(M,k), δn,m (10.12)

where γ is an arbitrary real parameter such that γ < y−n+k. In particular, if all interpo-
lation points ys are positive ys > 0 then it is sufficient to take γ = 0 (i.e. in this case the
contour Γ coincide with imaginary axis).

Similarly, in the case of the power function F (z) = zp (where the p is an arbitrary real
parameter with the restriction −1 < p < M + 1) we have biorthogonality property in the
form

sin(πp)

π

∫ 0

−∞

(−x)pUn(x;M,k)Vm(x;M,k)dx

WkM(x)
= hn(M,k), δn,m (10.13)

We thus have

Theorem 6. The regular Padé interpolation scheme for the exponential and power func-
tions on arbitrary interpolation grids ys (with above mentioned weak restrictions) leads
to rational functions Un(z;M,k), Vm(z;M,k) which are biorthogonal with respect to the
Fourier and Mellin integrals respectively.

Of course, compact explicit expressions for rational functions Un(z;M,k), Vn(z;M,k)
can be found only for exclusive choice of the interpolation grid: arithmetic progression for
the exponential function and geometric progression for the power function. Still, Theorem
6 allows to recognize all BRF with respect to the Fourier and Mellin integrals as arising
in problem of the Padé interpolation for exponential and power function. Such integral
realization may be useful in questions concerning asymptotic behavior of corresponding
interpolants.

11. Conclusion

We showed that the simplest self-similarity condition for the Darboux transformations
in GEVP generates 2 possible types of regular non-commutative algebras of dimension
2. Moreover, these two types correspond to biorthogonal rational functions which can
be expressed in terms of (basic) hypergeometric functions. Under a simple restriction
on the parameters of BRF we obtain solutions of the Padé interpolation problem for the
exponential and power function. In these special cases the linear functional providing
biorthogonality can be realized as Fourier and Mellin integrals.

It is useful to compare these results with similar ones obtained in theory of self-similar
closure of the chain of Darboux transformations for the ordinary orthogonal polynomials
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[14], [15]. It is known that self-similar closure of the finite chain of the Darboux trans-
formation in this case leads to so-called semi-classical orthogonal polynomial on uniform
or exponential grids [15]. In the simplest case of closure after the first Darboux transfor-
mation we obtain Charlier or q-Charlier polynomials [11]. It is naturally to conclude that
our constructed examples of BRF are “rational” analogues of the (q)-Charlier polynomi-
als. It would be interesting to study further, more complicated possibilities of self-similar
closure conditions for the Darboux transformations. One can expect the appearance of
non-trivial algebras with non-linear commuting relations. Although many examples of
explicit biorthogonal functions were constructed, still the general hierarchy of BRF is un-
clear. E.g., even in our simple examples of hypergeometric rational functions we were
not able to find an integral representation for the corresponding linear functional in the
general case. The relation of BRF with the theory of the Padé interpolation is also a
very fruitful area of investigation. Connection between the usual Padé approximation and
orthogonal polynomials is well known (see, e.g. [3]) and goes back to classical works by
Chebyshev and Stieltjes. For the Padé interpolation, however, we are only at the starting
point of a similar theory. Some first results can be found in [17], [23].
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