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Abstract

The problem of the classification of integrable truncations of the Toda chain is dis-
cussed. A new example of the cutting off constraint is found.

1 Introduction

Consider the two dimensional infinite Toda chain:

uxt(n) = w(n − 1) − w(n), −∞ < n <∞, (1.1)

where w(n) = exp{u(n) − u(n + 1)}. Suppose that a cutting off constraint (boundary
condition) of the form

F [u(−1), u(0), ..., u(k)] = 0 (1.2)

is imposed upon the chain. Here the brackets mean that F depends not only on the
variables u(j), j = −1, 0, 1...k, but also on a finite number of their derivatives with respect
to x and t. We require the constraint (1.2) to be consistent with the integrability property
of the chain. A formal definition of consistency is given in Definition 1 below.

In the papers [1], [2], [3] it has been shown that the problem of looking for integrable
boundary conditions for discrete chains is reduced to searching for differential constraints
linking two linear differential equations. To be more precise we recall the Lax representa-
tion for the chain (1.1):

φ (n+ 1) = (Dx + ux (n))φ (n) , (1.3a)

φt(n) = −w(n− 1)φ(n − 1). (1.3b)

The equations (1.3) are nothing else but the pair of mutually inverse Laplace transforma-
tions for the following linear hyperbolic equation

φxt(n) + ux(n)φt(n) + w(n− 1)φ(n) = 0, (1.4)
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As a Lax pair for the chain (1.1) one can also take the pair of formally conjugate equations
to the equations (1.3):

y(n− 1) = (−Dx + ux(n))y(n), (1.5a)

yt(n) = w(n)y(n + 1). (1.5b)

Here the conjugation is understood as follows (a(n))∗ = a(n), (a(n)Dx)∗ = −Dxa(n),
(a(n)T )∗ = a(n − 1)T−1, (a(n)T−1)∗ = a(n + 1)T and so on, where T, T−1 are the shift
operators: Ta(n) = a(n + 1), T−1a(n) = a(n − 1). Excluding shifts of the variable y(n)
from the equations (1.5) one gets the hyperbolic type equation conjugate to the equation
(1.4)

yxt(n) − ux(n)yt(n) + w(n)y(n) = 0. (1.6)

Suppose that we are given a set of functions

S = {a0, a1...am, b0, b1...bm}, (1.7)

depending upon x, t such that at least one of them doesn’t identically vanish.

Definition 1. The boundary condition (1.2) is called consistent with the integrability
property of the Toda chain (1.1) if there exists a set of the functions S of the form (1.7)
and integers k, l such that the constraint consisting of two equations

F [u(−1), u(0), ..., u(k)] = 0, (1.8a)
m∑

0

ajφ(k + j) + bjy(l + j) = 0, (1.8b)

is consistent with both Lax pairs (1.3) and (1.5).

Note that the first equation in the constraint coincides with the boundary condition
while the second is a linear condition imposed on the eigenfunctions.

For any semi-infinite chain obtained from (1.1) by imposing the boundary condition
satisfying the Definition 1 one can easily construct the appropriate Lax pair. Similarly,
the Lax pair can be found for finite reductions of (1.1) with two integrable boundary
conditions.

By excluding shifts of the variables φ(n) and y(n) from the equation (1.8) one gets a
constraint of the form

(L1(Dx) + L2(Dt))φ(n0) = (L3(Dx) + L4(Dt))y(n0), (1.9)

where Lj(D) are linear differential operators with coefficients depending on x, t. The
constraint (1.9) is a differential connection between solutions of the hyperbolic equations
(1.4) and (1.6) conjugate to each other, taken for some fixed point n = n0.

This observation implies the following statement.

Lemma 1. The boundary condition (1.2) is consistent with the integrability if and only
if the constraint consisting of two equations (1.2) and (1.9) is consistent with the pair of
hyperbolic equations (1.4) and (1.6).
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The Definition 1 is supported by several examples. For instance, the following theorem
from [2] shows that the well-known integrable boundary conditions satisfy the Definition
1.

Theorem 1. Suppose that the boundary condition (1.2) is consistent with integrability
and the corresponding linear constraint (1.9) is given by

φ(0) = My(0), (1.10)

where M is the differential operator M = aD2
x + bDx + c, then the boundary condition

is of one of the forms: 1) eu(−1) = 0, 2) u(−1) = 0, 3) u(−1) = −u(0), 4) ux(−1) =
−ut(0)e

−u(0)−u(−1) . The corresponding operator M is

M1 = (Dx + a0)e
uDxe

−u, (1.11a)

M2 = Dxe
uDxe

−u, (1.11b)

M3 = euDxe
−u, (1.11c)

M4 = Dxe
uDxe

−u + e−2u, (1.11d)

where a0 is an arbitrary constant and u = u(0).

2 A new example

The classification of all boundary conditions satisfying Definition 1 is rather a hard prob-
lem. In this paper a very particular case is studied when the operator in (1.10) is of the
third order. The following statement takes place.

Theorem 2. Suppose that the constraint

F [u(−1), u(0), ..., u(k)] = 0, (2.1a)

φ(0) = My(0), (2.1b)

where M is a differential operator of the third order, is consistent with pair of differential
equations (1.4), (1.6) then the boundary condition (1.2) is of one of the forms:

eu(−1) = 0, (2.2a)

{ux(−2) + ux(−1)}eu(−2)−u(−1) = −
d

dt
µ, (2.2b)

where µ = ρ(t)e−u(−1)−u, and ρ(t) is an arbitrary function of t. The corresponding differ-
ential operators are respectively of the form

M1 = (D2
x + a0Dx + b0)e

uDxe
−u, (2.3a)

M2 = eu{D2
x + 2uxDx + uxx − uxx(−1) + u2

x − u2
x(−1) − µ}Dxe

−u, (2.3b)

where a0, b0 are arbitrary constants and u = u(0).
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Proof. Let us change the dependent variable in the equation (1.6) by setting y(n) =
ψ(n)eu(n):

ψxt(n) + ut(n)ψx(n) + w(n− 1)ψ(n) = 0. (2.4)

Now the constraint (2.1) takes the form

φ = Nψ, (2.5)

where the operator N = aD3
x + bD2

x + cDx + d is to be found. It follows from (2.5) that

φxt = Nxtψ +Nxψt +Ntψx +Nψxt. (2.6)

Eliminate the variables φxt, ψxt by means of the equations (1.4), (2.4) and then express
the variable φ and all its derivatives φx, φt, φxx, ... through ψ, ψx, ψt, ψxx, ... by means
of the constraint (2.5). After all these transformations collect in (2.6) coefficients of the
independent dynamical variables D4

xψ, D
3
xψ, D

2
xψ, Dxψ, ψ, Dtψ. As a result one gets six

equations for four unknowns

at + aγ = 0, (2.7a)

a(3γx + β) + axt + bt + (ax + b)γ = αaγ + αat + βa, (2.7b)

a(3γxx + 3βx) + (ax + b)(2γx + β) + bxt + ct + (bx + c)γ =

= α(a(2γx + β) + bγ + bt) + βb, (2.7c)

a(γxxx + 3βxx) + (ax + b)(γxx + 2βx) + (bx + c)(γx + β) + cxt + dt+

+ (cx + d)γ = α(a(γxx + 2βx) + b(γx + β) + cγ + ct) + βc, (2.7d)

aβxxx + (ax + b)βxx + (bx + c)βx + (cx + d)β + dxt =

= α(aβxx + bβx + cβ + dt) + βd, (2.7e)

dx = αd, (2.7f)

where α = −ux, β = −eu(−1)−u, γ = −ut.
The first, second, and the last equations of the system (2.7) are easily solved. The

answers are a = a0e
u, d = d0e

−u, b = (b0 + 2ux)eu, where a0 = a0(x), b0 = b0(x),
d0 = d0(t) are arbitrary functions, but without losing generality one can consider a0

and d0 as constants because the Toda chain is invariant under the shift transformation
u(x, t) → u(x, t) + f(x) + g(t). Let us choose a0 = 1. Introduce a new variable z, c = zeu

and rewrite the rest of the system (2.7) in the form

zt = (uxx + u2
x)t − 2βux − 3βx + b0uxt, (2.8a)

b0(βux + βx) = d0ute
−2u, (2.8b)

−βxxx − 4uxβxx − b0βxx − 2b0βxux − 2βxuxx − 4βxu
2
x =

= −d0uxte
−2u + 2βzux + zβx + βzx. (2.8c)

Depending on the choice of the values of the parameters one gets four alternatives:

i) b0 = 0, d0 = 0;

ii) b0 = 0, d0 6= 0;

iii) b0 6= 0, d0 = 0;

iv) b0 6= 0, d0 6= 0;
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which are to be studied separately. Begin with the first one. In this case the second
equation of the system (2.8) is identically satisfied and the last one takes the form

(zβe2u)x = −(βxe
2u)xx.

After integration it implies

z = −
βxx

β
−

2βxux

β
+ ρ(t)

e−2u

β
, (2.9)

where ρ(t) is an arbitrary function of t. Comparison of the equation found with the
equation (2.8a) which looks now as follows

zt = uxxt + 2uxuxt − 2βux − 3βx,

leads to the equation

−
∂

∂t
(
βxx

β
+

2βxux

β
− ρ(t)

e−2u

β
) = uxxt + 2uxuxt − 2βux − 3βx. (2.10)

This is just the boundary condition we have been searching for, because it is a differential
constraint between the variables u = u(0) and β = −eu(−1)−u. Eliminate β and rewrite it
as

uxxt(−1) + 2ux(−1)uxt(−1) + (ρ′(t) − ρut(−1) − ρut)e
−u−u(−1) = 0.

Express the mixed derivatives by means of the Toda chain (1.1) and write the constraint
in the required form (see (1.2)):

{ux(−2) + ux(−1)}eu(−2)−u(−1) = −{ρ(t)ut(−1) − ρ(t)ut − ρ′(t)}e−u−u(−1).

Evidently it coincides with the second boundary condition from the theorem. Substitute
the β found into the equation (2.9) to find z: z = uxx − uxx(−1) + u2

x − u2
x(−1) +

ρ(t)e−u(−1)−u. Now one can find the operator N ,

N = euD3
x + 2uxe

uD2
x + (uxx − uxx(−1) + u2

x − u2
x(−1) − ρ(t)e−u(−1)−u)euDx.

Find M = Ne−u which evidently coincides with (2.3b).
Consider now the case ii). It follows from the equation (2.8b) that ute

−2u = 0, or,
evidently, ut = 0. The system (2.8) turns into

yt = −2βux − 3βx, (2.11a)

(yβe2u)x = −(βxe
2u)xx − b0(βxe

2u)x. (2.11b)

Integrating the last equation leads to the equation

y =
1

β
(−b0βx − βxx − 2βxux) +

c0(t)

βe2u
. (2.12)

The compatibility condition of the equations (2.11a) and the equation (2.12) gives rise to
a new constraint which is not a consequence of the constraint ut = 0 already found. So
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this case doesn’t lead to any integrable boundary condition for the Toda chain (1.1). It is
proved similarly that the case iv) doesn’t produce any integrable boundary condition. In
the third case the answer coincides with the already known boundary condition eu(−1) = 0.
The corresponding differential operator is

N = euD3
x + (2ux + b0)e

uD2
x + (uxx + u2

x + c0)e
uDx.

Evidently the operator M = Ne−u coincides with M1. �

The differential constraints of the form (1.9) allow one to find the Lax pairs for the
truncated chains. To illustrate this statement we will find the Lax pair for the Toda chain
truncated by the cutting off constraint (2.2b) found in the Theorem 2. Exclude from
the constraint φ(0) = M2y(0), where M2 is defined by (2.3b), all x-derivatives replacing
them by the shifts by means of the equations (1.3) and (1.5). The formula Dxe

−uy(0) =
−e−uy(−1) helps one to shorten the computations. As a result one gets a rather simple
formula

φ(0) = −y(−3) + (ux(−2) + ux(−1))y(−2) + µy(−1). (2.13)

Differentiate the last equation with respect to t and replace again the derivatives by shifts

−w(−1)φ(−1) = (−w(−3) + uxt(−2) + uxt(−1))y(−2)+

+ {(ux(−2) + ux(−1))w(−2) + µ′}y(−1) + µw(−1)y(0).

The coefficient before y(−1) is simplified due to the boundary condition (2.2b). Finally
one gets

φ(−1) = y(−2) − µy(0). (2.14)

Consider now the following system of equations

φx(n) = φ(n+ 1) − ux(n)φ(n) for n ≥ 0, (2.15a)

φt(n) = −w(n− 1)φ(n − 1) for n ≥ 1, (2.15b)

yx(n) = −y(n− 1) + ux(n)y(n) for n ≥ −1, (2.15c)

yt(n) = w(n)y(n + 1) for n ≥ −2, (2.15d)

and two more equations (see (2.13), (2.14))

φt(0) = −w(−1)y(−2) + w(−1)µy(0), (2.16a)

yx(−2) = φ(0) − ux(−1)y(−2) − µy(−1). (2.16b)

Evidently the system of equations (2.15), (2.16) provides the Lax pair for the semi-infinite
lattice (1.1), (2.2b).

3 Moutard transformation and boundary conditions

As discussed above, any differential constraint of the form (1.2), (1.9) between a linear
hyperbolic equation and its conjugate generates a boundary condition for the Toda chain.
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All examples considered so far were connected with differential constraints of a special
form φ = My, i.e. φ was always expressed through y and its derivatives. Below we
represent a constraint of the more symmetric form. Note that in some cases it is more
convenient to use the ψ-equation (2.4) instead of the y-equation (1.6) – some formulae
become more symmetrical. Hence below we consider the constraint

φx = aφ+ bψ + cψx (3.1)

where a, b, c are functions of x, t to be determined. Take the t-derivative of both sides in
(3.1) and replace the mixed derivatives by means of the equations (1.4), (2.4):

atφ+ aφt + btψ + bψt + ctψx + c(−utψx − w(−1)ψ) = −uxφt − w(−1)φ. (3.2)

Require that the differential consequence of the constraint is also of the form (3.1)

ψt = Aφ+Bψ + Cψt (3.3)

so that the coefficient before ψx in (3.3) vanishes ct − utc = 0. Solving this equation one
gets c = c0(x)e

u. Without losing generality one can take c0 = 1, as the dependance of the
coefficient upon t can be removed by the shift u→ u+ f(t) + g(x) which leaves the Toda
chain unchanged.

It is remarkable that the pair of equations (3.1), (3.3) looks like the well-known Moutard
transformation for hyperbolic equations [5].

Comparison of the equations (3.2) and (3.3) gives a connection between the coefficients

Ab+ at + w(n − 1) = 0, (3.4a)

Bb+ bt − cw(n − 1) = 0, (3.4b)

Cb+ a+ ux = 0. (3.4c)

Take the derivative of (3.3) with respect to x and replace all mixed derivatives by means
of the equations (1.4), (2.4)

Axφ+Aφx +Bxψ +Bψx + Cxφt + C(−uxφt − w(−1)φ) = −utψx − w(−1)ψ. (3.5)

By comparing the equation obtained with (3.1) one immediately gets C = C0(t)e
u (choose

C0(t) = 1), and derives the following system of equations

aA+Ax − Cw(n− 1) = 0, (3.6a)

bA+Bx + w(n− 1) = 0, (3.6b)

cA+B + ut = 0. (3.6c)

Express the variables B = −ut − cA and a = −ux − Cb from the last equations of (3.4)
and (3.6) and substitute into the others. This allows one to derive an ordinary differential
equation for A

Ax(1 − cC) +Aux(−1 − cC) = Cuxt (3.7)
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which is easily integrated, recall that c = C = eu,

A = −
ut + κ(t)

2 sinhu
, (3.8)

where κ(t) is an unknown function of one variable. Then

B =
ute

−u + κ(t)eu

2 sinhu
. (3.9)

In a similar way one can find

b = −
ux + τ(x)

2 sinhu
and a =

uxe
−u + τ(x)eu

2 sinhu
, (3.10)

with unknown τ(x).

We have found all unknown coefficients satisfying some of equations, but the systems
above are over-determined, so one has to check the validity of the other equations. Really
the coefficients found satisfy all equations (3.4), (3.6) except may be (3.4a) and (3.6b).
Subtract from one of them the other and get a constraint at − Bx = 0. Write it in an
enlarged form

κ(t)ute
u

2 sinhu
−

cosh uκ(t)ute
u

2 sinh2 u
=
τ(x)uxe

u

2 sinhu
−

coshuτ(x)uxe
u

2 sinh2 u
. (3.11)

The last equation shows that the equations (3.4a) and (3.6b) produce two independent
constraints unless κ(t) = τ(x) ≡ 0. But due to the Definition 1 one can impose only one
constraint. So it is necessary to put both κ and τ equal to zero. Then one gets the only
constraint

uxt = −2w(n − 1)eu sinhu+
uxut

2 sinhu
eu. (3.12)

The constraint found corresponds to the well-known boundary condition for the chain
(1.1)

eu(−1) = e−u(1) +
ux(0)ut(0)

2 sinhu(0)
, (3.13)

which is connected with the finite Toda lattice of series D (see [4]).

Let us give the final form of the Moutard type constraints (3.1), (3.3) associated with
the boundary conditions (3.13)

φx =
uxe

−u

2 sinhu
φ−

ux

2 sinhu
ψ + euψx, (3.14)

ψt = −
ut

2 sinhu
φ+

ute
−u

2 sinhu
ψ + euψt. (3.15)
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intégrale générale explicite, J.École Polytechnique 45 (1878), 1–11.


