
Enabling Zigbee Communications in Android Devices

Siquan Hu, Yu Fu
School of Computer and Communication Engineering

University of Science and Technology Beijing
Beijing 100083, China
husiquan@ustb.edu.cn

Chundong She, Hui Yao
Ruijie Networks Co., Ltd.
Beijing 100036，China
yaohui@ruijie.com.cn

Abstract—Android is one of the most popular smart phone and
tablet platforms; Zigbee is the standard for home automation
and will play an important role on future WPAN. Enabling the
Zigbee communication on Android can exploit the rich
network and nice display power of the Android phone in
Zigbee applications. In this paper we present our work on
integrating CC2530 into an Android smart phone. Based on
JNI library, the software is developed to enable Android
system can control the CC2530 module insides. The firmware
in CC2530 is also discussed. The test is carried on with the
configuration that an Android smart phone communicates
with a standalone CC2530 node via Zigbee radio. The test
verified the design feasibility.

Keywords-Android devices, zigbee networks; JNI library;
wireless networks

I. INTRODUCTION

Zigbee technology is a low cost, low power consumption,
and short distance wireless communication technology,
which is developed for wireless personal area network
(WPAN) in recent years [1] [2] [3]. Zigbee is a synonym of
IEEE 802.15.4 protocol, which is a hot topic research in
short-distance wireless communication technology. Its main
advantages are low-power, short-distance, low-complexity,
self organization, low-speed, low-cost, and so on. It is widely
used in building automatic control, industry
autoimmunization, monitoring and control of hospital and
home and other fields.

Android is one of the most popular smart phone and
tablet platforms [4]. Android is a Linux based open source
operating system for smart mobile devices. It is based on a
modified Linux kernel optimized for mobile devices. Due to
these optimizations, it is not possible to run any Linux
application on the device which makes the work with
Android OS somewhat more technically challenging
compared to working with a full featured Linux distribution.
However, because of Android‘s open source and high
flexibility, software developers can access to hardware and
rich software easily. Since a portable device such as an
Android tablet or mobile phone has nice display and rich
network connections such as WIFI, 3G, Blue, many
researchers are working on exploiting the ability of the
Android platform in sensing applications or wireless sensor
networks field [5] [6] [7] [8] [9]. Android smart phones were
used in body sensor network and two different smart phone
configurations are proposed in [5]. Android smart phones are

used to track human activity in smart home in [6] and to
weigh human body in [8]. A mobile TeleCare system are
designed in [7] with a smart wrist-worn device sensing
health parameters and an Android smart phone working on
data processing and communication. Based on Near Field
Communication (NFC) technology and Bluetooth, an
Android smart phone collects sensor data from body sensor
networks, displays sensor data on the screen and streams to
the central server simultaneously in [9]. [10] reports its the
implementation of an Android IPv6 smart phone that
interworks with Web-enabled wireless sensors in the Internet
of Things.

Since Zigbee is the standard for home automation and
will play an important role on future WPAN, enabling the
Zigbee communications into Android smart phones is more
attractive than WiFi, Bluetooth or NFC. Some work has been
done on discussing the framework. For instance, a plug-in
SD module is used to gain Zigbee ability in [11]. A RF4CE
module is mounted to the Android phone to gain RF4CE
ability in [12]. Different from above work, in this paper we
present our work on integrating CC2530 into an Android
smart phone and software development to enabling its
Zigbee communication with a standalone CC2530 node. The
hardware connection between Android phone CPU and
CC2530 are showed in part II; the work on software
development in JNI library to control CC2530 from Android
is presented in part III; Part IV is the evaluation result and
Part V is the conclusion.

II. HARDWARE DESIGN

A typical Android phone has many kinds of radios, for
example, 2G, 3G, WIFI, Bluetooth, FM, etc. To enable
Zigbee on such platform, a Zigbee chip is needed. There are
two options when integrating the Zigbee chip. One is using
radio chip such as CC2420. In this case, the phone CPU will
control the radio chip directly via high speed SPI connection.
The radio state machine should be implemented on the ARM
CPU such as registers read/write, TX/RX switch, buffer
processing, etc. Furthermore, Zigbee protocol should also be
implemented on the ARM CPU. Technically this could be
done, but it could not reuse the effort that has already
finished on the microcontroller of the Zigbee node. This
makes the first option less preferable than the second one. ,
which uses a SOC solution such as CC2430 or CC2530. The
SOC solution can leave the radio control logic and Zigbee
protocol processing unchanged exactly as a standalone
Zigbee node.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0659

UTXD1

URXD1

ARM11

P0.2 (URXD0)

P0.3 (UTXD0)

CC2530

jint Java_com_JavaUART_JavaUART_open(JNIEnv*
env, jobject jobj, jstring strPort, jstring strBaut, jint
vtime, jint vmin);
jint Java_com_JavaUART_JavaUART_close(JNIEnv*
env, jobject jobj, jint nFd);
jint Java_com_JavaUART_JavaUART_read(JNIEnv*
env, jobject jobj, jint nFd, jint nMaxBytes);
jint Java_com_JavaUART_JavaUART_write(JNIEnv*
env, jobject jobj, jint nFd, jstring str1, jint nSendBytes);
jint Java_com_JavaUART_JavaUART_readb(JNIEnv*
env, jobject jobj, jint nFd, jcharArray rcvdata, jint
nMaxBytes);
jint Java_com_JavaUART_JavaUART_writeb(JNIEnv*
env, jobject jobj, jint nFd, jcharArray senddata, jint
nSendBytes);

LOCAL_PATH := $(CALL my-dir)

include $(CLEAR_VARS)
LOCAL_MODULE := JavaUART
LOCAL_SRC_FILES := JavaUART.c

include $(BUILD_SHARED_LIBRARY)

In our design, we use CC2530 working with the phone
CPU. The smart phone uses Android 2.3 and its CPU is a
MTK6573 chip which has an ARM11 core, which has four
USART ports. We use UART1 to connect to the USART0 of
CC2530. CC2530 is a SOC with an enhanced 8051 core
inside. The 8051 part run program to send and receive
Zigbee packets, to schedule the radio sleep and wakeup
cycles, to start a Zigbee network or join a network, to route
the packets to the desired destination, etc. In our design, the
CC2530 also send the received packets to USART0 so that
the Android system can handle them. When the Android
wants to send a packet into the Zigbee network, it will send it
via UART1, and then CC2530 will receive it and relay it into
the air via Zigbee radio. In this way, CC2530 acts a serial
device from the point of view of Android system, and the
complexity is reduced significantly because the ARM CPU
skips all the radio details.

Figure 1. The connections bwtween CC2530 with the ARM CPU of an
Android phone

III. CONTROL ZIGBEE DEVICE IN ANDROID

To control a device added into Android system, three

tasks should be carried out. One is to provide the Linux
device driver, which is same as ordinary situation in Linux
because Android uses Linux kernel as a basis. The second
task is to create the JNI (Java Native Interface) library,
which is the share library to connect the Android application
with the underlined Linux device driver. JNI library is
created in Android NDK (Native Development Kit). The
third task is to create an Android application which will
control device function by accessing the Linux device driver
via the JNI shared library. The Android NDK is a toolset that
allows you to implement parts of your app using native-code
languages such as C and C++. For certain types of apps, this
can be helpful so you can reuse existing code libraries
written in these languages.

In the hardware configuration in part II, an Android
application must have the ability to operate the serial port
/dev/ttyS1 so that it can send or receive Zigbee packets via
CC2530. Since Android doesn’t provide API for the serial
port, a JNI library is needed. An Android application can
manipulate the serial port with the help of the JNI library.

To create the serial port interface library, we create a C
file JavaUART.c and compile it with NDK in Linux. The
code skeleton of JavaUART.c is illustrated in Fig.2, all the
serial port operating function such as open the serial port,
close the serial port, read or write strings, reading or write

binary packets via the serial port are provided. It is very
important to follow the naming rules of JNI here for the sake
of accessing the c function in the library from Java. For
instance, “Java_com_JavaUART_JavaUART_open” means
that if an Android application wants to call this function, it
should have a class named as “JavaUART” in the package
“com.JavaUART”. In the java class JavaUART, this function
is available as a Java function open().

Figure 2. Main function implemented in the serial JNI library

To compile the serial source file into JNI library, a Make
file “Android.mk” should be prepared to specify the source
files, the shared library compilation option and the library
name. It is illustrated in Fig.3. The last line is setting the flag
of shared library compilation. LOCAL_MODULE specify
the name of shared library to be created. In NDK, the final
library name will use “lib” as a prefix and “.so” as a
extension. Then the library created from the Make file in
Fig.3 will be “libJavaUART.so”.

Figure 3. Android.mk for compiling the serial JNI library

Once the serial port interface library is created, it can be
used in the Android application development. It means to
access the function in the library from Android source files,
which are written in java. As illustrated in Fig.4, a
“JavaUART” class in package “com.JavaUART” is created
in Android application project to access the functions in the
serial port JNI library. The library should be loaded before
its functions can be called in Java. In the mean time, the
interface functions implemented in the library should be
declared in Java beforehand. The “native” keyword is used

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0660

package com.JavaUART;
…..
public class JavaUART extends Thread {
 static {System.loadLibrary(“JavaUART”);}
 private native int open(…);
 private native int close(…);
 private native String read(…);
 private native int write(…);
 private native int readb(…);
private native int writeb(…);
…
public JavaUART(Eventhandler eHandler, int

lenBuf){…}
public int openPort(…) {…}
public int closePort(){…}
publc void run(){…}
public String recv(){…}
public int send(string strBuf) {…}
public int recvb(char buf[]){…}
public int sendb(char buf[], int len) {…}
}

uint16 SerialBase_ProcessEvent(uint8 task_id, uint16
events){

 // Send a message out
 if (events & UART_RX_CB_EVT) {
 SerialBase_Radio_SendData(rbuf, rxlen+1);
 return (events ^ UART_RX_CB_EVT);
 }
...
}
...
void SerialBase_MessageMSGCB

(afIncomingMSGPacket_t *pkt){
 uint8 *pRecv; //the pointer to the recv data
 switch (pkt->clusterId) {
 case SERIALBASE_FLASH_CLUSTERID:
 pRecv=&pkt->cmd.Data[1];

 //cmd.Data[0] is the size of recv data
HalUARTWrite(0,pRecv,pkt->cmd.Data[0]);

 break; } }

to indicate the function is from the JNI library, enabling Java
language to access the function written in C or C++.

In Fig.4, all the functions in JNI library are declared and
can be accessed from JavaUART class. To provide the serial
port operation function for the components out of the
JavaUART class, the serial interfaces are reassembled as java
functions such as “openPort()”, “recv()” ,”send()”. They will
call the functions implemented in the JNI library actually.

Figure 4. The java class accessing the serial JNI library

To avoid missing coming packets, the Android
application needs to keep on listening to the UART port.
This is achieved by implementing JavaUART class as a
Thread class. Since the serial port in Android is used both on
sending and receiving packets, to avoid conflict, a critical
section is needed. We implemented it as an event handler as
Fig.5.

Figure 5. The eventhandler processing the sending and receiving

The event handler will accept two kings of event,
UART_RECV and UART_SEND. Once an event triggered,
the handler will call the recv() or send() function of the
JavaUART class depending on the kind of event. Based on
the analysis, the event handler is key point for both sending
thread and receiving thread. However, the receiving thread is
implemented in the JavaUART class rather the top level
activity class of the Android application. So a proper design
would be putting the event handler component in the main
activity class, and transferring it as a argument to the creator
function of class JavaUART.

IV. EVALUATION

To evaluate the Zigbee communication of the Android
device, we implemented a SerialBase application on CC2530
to serve as the bridge of the CC2530 UART and radio. The
firmware is based on TI Z-Stack. The main function codes
are illustrated in Fig.6. When the Android sends a packet to
CC2530 via UART, the firmware on CC2530 will relay it to
radio. And when CC2530 receives a radio packet, the
firmware will use HALUARTwrite to forward it to the UART
and will be received by the Android receiving thread.

Figure 6. Main code of the firmware on CC2530

To verify our design, the custom Android phone was
deployed in the lab to communicate with a standalone
CC2530 node. The Android phone sent a packet every
second; the packet has a plus 1 sequence number field. The
standalone CC2530 node run the similar code except it sent
packets by itself. A laptop is attached to the standalone
CC2530’s serial port to check the receiving.

An Android test application ZigbeeTest is developed in
Eclipse with Android add-ons and deployed on the test
Android phone. The Android GUI is presented in Fig.7.

TX Done RX Done

EventHanler(msg)

UART listening
Thread

UART sending
Thread

Post Event
UART_RECV

Post Event
UART RECV

JavaUART instance

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0661

ZigbeeTest implements a ZigbeeTestActivity class which
extends Android Activity class. Its GUI layout has a
Start/Stop button to control the test. Once started, a event
handler will be created and a JavaUART instance is created
with the event handler as a argument. Then the serial port
“/dev/ttyS1”is opened with a baud rate 115200 and the
receiving thread is started. After that, a sending thread is
created to send Zigbee packets once per second. The test
runs for an hour and the results are collected, which shows
that 99.75% sent packets are successfully received by the
standalone CC2530, and 99.8% packets are successfully
received by Android ZigbeeTest application.

Figure 7. The execution screenshot of ZigbeeTest application

V. CONCLUSION

Enabling the Zigbee communication on an Android
device can exploit the power of the Android phone in home
automation or WPAN. In this paper we present our work on
integrating CC2530 into an Android smart phone. Based on
JNI library, the software is developed to enable Android
system can control the CC2530 module insides. The
firmware in CC2530 is also discussed. The test is carried on
with the configuration that an Android smart phone
communicates with a standalone CC2530 node via Zigbee
radio. The test verified the design feasibility.

ACKNOWLEDGMENT

This project is sponsored by National Key Technology
R&D Program Grant #2012BAH25B02, and the Guangdong
Province University-Industry Cooperation Grant
#2011A090200008, and the Scientific Research Foundation,
Returned Overseas Chinese Scholars, State Education
Ministry.

REFERENCES

[1] J. Li,X. Zhu, N. Tang and J. Sui, "Study on ZigBee network

architecture and routing algorithm",2nd International Conference on
Signal Processing Systems (ICSPS), vol.2, pp.389-393, 2010.

[2] S.S.Riaz Ahamed, "The role of zigbee technology in future data
communication system", Journal of Theoretical and Applied
Information Technology,Vol.5, No.2, pp.129-135. 2009.

[3] G.Hu,"Key technologies analysis of ZigBee network layer",2nd
International Conference on Computer Engineering and Technology
(ICCET), Vol.7, pp. 560-563, 2010.

[4] Android, http://www.android.com

[5] M. Wagner, B.Kuch, C. Cabrera, P.Enoksson and A. Sieber,"Android
based Body Area Network for the evaluation of medical parameters,"
2012 Proceedings of the Tenth Workshop on Intelligent Solutions in
Embedded Systems (WISES), pp.33-38, 2012.

[6] M. Fahim, I. Fatima, S. Lee and Y.K. Lee, "Daily life activity
tracking application for smart homes using android smartphone", 14th
International Conference on Advanced Communication Technology
(ICACT), pp. 241-245, 2012.

[7] O. Postolache, P.S. Girao, M. Ribeiro, M. Guerra, J. Pincho, et.al.,
"Enabling telecare assessment with pervasive sensing and Android
OS smartphone", 2011 IEEE International Workshop on MeMeA, pp.
288-293, 2011.

[8] C. Park, B. Park, K. Park, H. Uhm and H. Choi,"LR-WPAN based
weighing scales and smartphones",2011 IEEE International
Conference on Consumer Electronics (ICCE), pp.461-462, 2011.

[9] W.J. Yi, W. Jia and J.Saniie, "Mobile sensor data collector using
Android smartphone", IEEE 55th International Midwest Symposium
on Circuits and Systems (MWSCAS), pp. 956-959, 2012.

[10] P. Schleiss, N. Torring, S.A. Mikkelsen and R. H. Jacobsen,
"Interconnecting IPv6 wireless sensors with an Android smartphone
in the Future Internet" ,2nd Baltic Congress on Future Internet
Communications (BCFIC), pp. 14-18, 2012.

[11] N. He ,Z.H. Li,C.X. Jiang,C. Yang, S.Fan, et.al.,"A Sensing Platform
to Support Smartphones Accessing into Wireless Sensor Networks",
IEEE 8th International Conference on Mobile Adhoc and Sensor
Systems (MASS), pp.173-175, 2011.

[12] B. Koo,T. Ahn, J. In, Y. Park and T. Shon,"R-URC: RF4CE-Based
Universal Remote Control Framework Using Smartphone", 2010
International Conference on Computational Science and Its
Applications (ICCSA), pp.311-314, 2010.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0662

