
Scheduling of Periodic Tasks with Data Dependency on Multiprocessors

Jinlin Wang
Laboratory of Embedded Systems

School of Computer Science and Engineering, Beihang University
100191, Beijing, China

wangjinlin@les.buaa.edu.cn

Abstract—This article studies the scheduling problem of a set
of tasks with time or data constraints on a number of identical
processors with full connections. We present an algorithm, in
which a set of static schedule lists can be obtained, each for a
processor, such that each task starts executing after its release
time and completes its computation before its deadline, and all
the precedence relations between tasks resulting from data
dependency are satisfied. The data dependency relations
between tasks are represented by Synchronous Dataflow
Graphs (SDF) as they can indicate tasks’ concurrency and
enable effective scheduling on multiprocessor platforms. The
SDF, however, does not support the time constraints of tasks
directly, thus an adaption is applied to conform to the time
limits. With this adaption, the periodic tasks of implicit-
deadline or constrained-deadline can be scheduled on
multiprocessor platform effectively.

Keywords-multiprocessor; scheduling; real-time; SDF; data-
dependency

I. INTRODUCTION

Currently, the studies of multiprocessor scheduling
algorithm of real-time tasks are mostly focused on time
constraints and the utilization of the processor. The
precedence relationship, which arises from inter-task
communication between periodic tasks, has not been well
discussed yet and a mature solution is still lacking. In the
existing reliable embedded real-time operating systems, such
as OSEK [1] for automotive, RTEMS [1] for aerospace and
VxWorks 653[3] which respecting the ARINC 653 standard
[4] for aeronautics, scheduling policies for dependent tasks
are not provided directly, meaning that the determinism of
task communications is usually ensured manually by the
programmers[5][6].

In DSP systems, the existing algorithm is able to better
schedule tasks with data dependence relations. Edward
Ashford and David G. Messerschmitt in [7] proposed an
algorithm to convert an SDF into Directed Acyclic Graph
(DAG), and then can get the static schedule lists. However,
these scheduling algorithms in DSP are data driven, and they
are difficult to deal with real-time tasks which are
characterized by time constraints.

There are several related works on this topic before. In
order to guarantee the data dependencies between the
periodic tasks, in [5], the task time constraints are restricted
more strictly: the first release time of the task is put off, and
the deadline is shifted to an earlier time. So the weakness of
this algorithm is that when there are many data precedencies
between tasks, it is likely that they become unable to be

scheduled because of the excessively tight time limits. Jia Xu
in [6] proposed an algorithm that can statically schedule
tasks with release times, deadlines, precedence and exclusion
relations, but he did not take into consideration the periodic
tasks, which is one of our main objectives. A fast heuristic
for parallel software with respect to energy as well as time
constraints was presented in [8], in which the constraint
specifies how much time can pass between the moment when
all data necessary for the execution of the node is available
and the moment when the execution of the node finishes.
This is also different from our problem.

In our algorithm, the tasks to be scheduled can either
have a periodic time constraint or some data dependencies
with other tasks. There should be at least one constraint on
each of the tasks, either time or data. The resulting schedules
are static schedule lists, each for one processor. The
advantage of static schedule is that it is easy to be verified
whether all the time and data constraints are met and whether
the schedule is free from deadlock. This algorithm can be
flexible as well, for the tasks can be scheduled preemptive or
non-preemptive according to the 3rd step of the algorithm.

In Section II, we describe the problem formally. Then, a
brief introduction to the algorithm is presented. In Section III
and IV, we discuss the algorithm in detail. An example is
given in Section V and the paper is concluded in Section VI.

II. PROBLEM DESCRIPTION AND NOTATIONS

The problem can be described as follows:
• Given a set of tasks T ൌ ሼݐ௜|i ∈ ሾ1, nሿሽ, each task has

a worst case execution time (WCET), which denoted
as ܥ௜ for task ݐ௜.

• There are two possible types of constraints for each
task: time and data dependency. For the time
constraint, the task has a set of real-time attributes ሺ ௜ܶ, ௜ܱ , ௜ is periodic, andݐ ௜ሻ, that is to say the taskܦ
the period is T௜ . O௜ is the release time of the first
instance of the task. D௜ is the relative deadline of the
task. The data dependency constraint is designated in
SDF, which will be discussed in next section. There
should be at least one constraint on each task.

• The number of processors on the target platform is
M. All the M processors are completely connected.

In view of the above conditions, a static schedule S ൌ ሼݏ௜|i ∈ ሾ1,Mሿሽ should be generated according to the
constraints. Schedule list s௜ indicates when and which task
should be executed on processor i.

Here are some more symbols that to be used later:

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0699

• ܴ௜ሾnሿ is the release time of the n-th instance of task i.
 .௜ሾnሿ is the finish time of the n-th instance of task iܨ •
 ௜ሾnሿ is the absolute deadline of the n-th instance ofܦ •

task i.
Our algorithm can be divided into 3 steps: first an SDF of

the tasks is constructed with respect to the time and data
dependency, then we convert the SDF into a DAG with the
method from [7], and finally the schedule is obtained from
the DAG using a modified Hu-level algorithm [9]. In the
next section, we give a brief introduction to SDF first, and
then discuss how to add time constraints in the SDF. A proof
of correctness will also be provided.

III. SDF WITH TIME CONSTRAINTS

A. Synchronous Dataflow Graph

The Synchronous Dataflow (SDF) [7] model of
computation is widely used for Digital Signal Processing
(DSP) applications. In this model, the exchange of data
between different parts of a program is clearly revealed. The
model consists of nodes, representing different tasks, and
arcs between the nodes. Data are exchanged via these arcs in
a FIFO manner. Figure 1(a) shows an SDF graph where the
data production and consumption between tasks are given as
arc annotations at the start-point and end-point respectively.
The mark “2D” on the arc, indicating 2 Delays, means that at
the initial time of the program, there are only 2 valid data for
task B, so the first instance of B can only begin to execute
after the finish time of execution of the first instance of task
A. This is the precedence relation resulting from data
dependency.

B. Time constraint

Generally, if two tasks are connected from A to B by an
arc, on which the data production of task A is p, the data
consumption of task B is c and the delay is b, then the
number of instances of task A on which the j-th instance of
task B is dependent can be calculated by the following
equation as stated in [7]:

 ݀௕௔ሾjሿ ൌ ቒ௝௖ି௕௣ ቓ (1)

The notation ⌈ ⌉ indicates the ceiling function.
The data transferred through arcs in an SDF can be

virtual tokens, in which case we can add new precedence
relations between tasks by (1). For example, if task B should
be run after every three executions of task A, then a new arc
from A to B can be added to the SDF, with the production
and consumption labeled as in Figure 1(b). Figure 2 shows a
variety of precedence relations that can be noted by SDF.

Based on this idea, in Figure 3, the time constraints ሺ ௜ܶ, ௜ܱ , ௜ሻ of periodic task t௜ can be appended to our SDF asܦ
follows:

• Add a new self-dependent virtual task (t଴) node
marked as V in the SDF. The WCET, period, offset
and deadline of this virtual node are 1, 1, 0 and 1
separately.

• For each periodic task t௜, add an arc from the virtual
node to the task node, on which the data produced by

the virtual node is 1 and the data consumed by node t௜ is T௜. The delay on this arc is assigned to ݀௜௧ ൌ ௜ܶ െ ௜ܱ.
• For each periodic task t௜, add an arc from the task

node to the virtual node, on which the data produced
by the task node is T௜ and the data consumed by the
virtual node is 1. The delay on this arc is assigned to

Figure 1. Example of SDF Graphs: (a) Data exchanged via the
arc. (b) The first instance of task B can only be executed after 3

executions of task A have finished.

Figure 3. Add time constraints to a periodic task t௜

Figure 2. Several precedence relations denoted by SDF.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0700

݀௜௙ ൌ ௜ܦ ൅ ܱ௜.
• When arranged to scheduling lists, the virtual task

instances should be run one after another
sequentially without time interval between two
adjacent instances, thus the j-th execution of the
virtual task is from time (j-1) to time j.

From the last point above, we know that the release time
of the j-th instance of the virtual node is

 ܴ଴ሾjሿ ൌ j െ 1, (2)

and the finish time of it is

଴ሾjሿܨ ൌ ܴ଴ሾjሿ ൅ 1 ൌ j. (3)

C. Proof of correctness

1) Release time constraints
According to the definition of time constraints, the

release time of the k-th instance of task t௜ is

 ܴ௜ሾkሿ ൌ ሺ݇ െ 1ሻ ௜ܶ ൅ ௜ܱ. (4)

With respect to (1), the k-th instance of task t௜ is
dependent on

 ݀௜଴ሾkሿ ൌ ቒ்೔௞ିୢ೔೟ଵ ቓ ൌ ሺ݇ െ 1ሻ ௜ܶ ൅ ௜ܱ (5)

instances of the virtual nodes. And in accordance with (3),
the finish time of the ݀௜଴ሾ݇ሿ times instance of the virtual
node is

଴ൣ݀௜଴ሾkሿ൧ܨ ൌ ݀௜଴ሾ݇ሿ ൌ ሺ݇ െ 1ሻ ௜ܶ ൅ ௜ܱ. (6)

From (4) and (6), it is clear that ܴ௜ሾ݇ሿ is equal to ܨ଴ሾ݀௜଴ሾkሿሿ. That is to say the start time of the k-th instance of
task ݐ௜ is later than the finish time of the ݀௜଴ሾ݇ሿ times
instance of the virtual node, which is equal to the release
time constraint of task ݐ௜. So the release time constraint is
satisfied.

2) Deadline constraints
The absolute deadline of the k-th instance of task ݐ௜ is

௜ሾkሿܦ ൌ ܴ௜ሾ݇ሿ ൅ ௜. (7)ܦ

Considering the ܦ௜ሾ݇ሿ ൅ 1 times instance of the virtual
node, by (1) we know that this node is dependent on

 ݀଴௜ሾܦ௜ሾkሿ ൅ 1ሿ ൌ ቒሺ஽೔ሾ௞ሿାଵሻିௗ೔೑்೔ ቓ ൌ ݇ (8)

instances of task ݐ௜. So if all the instances of the virtual nodes
can be scheduled sequentially without interval, the finish
time of the k-th instance of ݐ௜ should be no later than the
release time of the ܦ௜ሾkሿ ൅ 1 times instance of the virtual

node, which is ܴ଴ሾܦ௜ሾkሿ ൅ 1ሿ ൌ ௜ሾ݇ሿ, according to (2). Soܦ
the deadline constraint of task ݐ௜ is satisfied.

IV. MODIFIED HU-LEVEL ALGORITHM

Now we have the modified SDF in which the time
constraints have been considered. With the method
introduced in [7], the corresponding DAG can be obtained,
from which we can determine the scheduling lists of all the
processors. Paper [7] also cited the Hu-level algorithm from
[9] to translate a DAG into the scheduling lists, but in our
DAG, there are some virtual nodes, which should be treated
specially.

In DAG, the Static B-level (SBL) of a node is the length
of the path from this node to the farthest exit node in the
DAG. The length of the path is the sum of the WCETs of all
the nodes along the path.

Using the Modified Hu-level algorithm as in Algorithm 1,
all the virtual nodes are distributed on the virtual processor
while the normal task nodes are scheduled on real processors,
and these scheduling lists of the real processors are our final
results.

Algorithm 1: Modified Hu-level Algorithm
01. Add a virtual processor P଴ to the target platform;
02. Calculate the static B-Level (SBL) of each node in

DAG;
03. Arrange the nodes in a list according to the descendant

order of their SBL;
04. For each node n௜ in the list:
05. If n௜ is a virtual node then
06. assign this node to ଴ܲ
07. If there is an interval between n௜ and the previous

node on P଴ then
08. Cannot find a feasible schedule.
09. Stop the algorithm.
10. End if
11. Else
12. schedule this node on the processor where the

node can start at the earliest time.
13. End if
14. End for

Besides Hu-level, there are some other algorithms that

can be used to convert the DAG into static scheduling lists.
Paper [10] gives a comparison of some of these algorithms,
which can also be modified to handle the virtual nodes and
thus be used in our algorithm similarly.

V. AN EXAMPLE

Here are two periodic tasks: A and B. The time attributes
of each task are as follows: ܥ஺ ൌ 1, ஺ܶ ൌ 2, ஺ܱ ൌ ஺ܦ,0 ൌ ஻ܥ 2 ൌ 2, ஻ܶ ൌ 3, ܱ஻ ൌ ஻ܦ,0 ൌ 3

The data dependency between A and B is represented by
SDF in Figure 4. With our algorithm described above, the
SDF is modified by adding a virtual node and 4 arcs, as
shown in Figure 5. Then in Figure 6, we translate the SDF
into a DAG using the method described in [7]. The numbers

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0701

beside each node of the DAG in Figure 6 is the SBL of it.
Finally, the static scheduling lists are determined by the

modified Hu-level algorithm, when scheduled on a two-
processor platform, as in Figure 7. It is clear that all the task
nodes are in their time constraints, and the data dependency
is satisfied.

VI. CONCLUSION

In this paper, we proposed a scheduling algorithm for
data dependent tasks with real-time constraints. The
algorithm is based on SDF. By adding a virtual task node, we
made it possible to deal with time constraints as well as data
dependency in an SDF graph. To obtain the corresponding
static scheduling lists, we also present a modification to the
Hu-level algorithm, so that the virtual nodes can be handled
specially and the other nodes are scheduled satisfying the
constraints.

ACKNOWLEDGMENT

The work is supported by the National High Technology
Research and Development Program 863 (No.
2011AA01A204)

REFERENCES
[1] OSEK, “OSEX/VDX Operating System Specification 2.2.1”, OSEK

Group, 2003, www.osek-vdx.org.

[2] RTEMS, “RTEMS C user’s guide”, Edition 4.9.2, for RTEMS 4.9.2,
OAR Corporation, 2009.

[3] VxWorks, “VxWorks 653 - DO-178B Certified ARINC 653 Real-
Time Operating System”, Wind River, 2006.

[4] ARINC, “ARINC Specification 653: Avionics Application Software
Standard Interface”, Aeronautical Radio INC, 2005.

[5] Julien Forget, Frederic Boniol, Emmanuel Grolleau, David Lesens
and Claire Pagetti, “Scheduling Dependent Periodic Tasks Without
Synchronization Mechanisms”, RTAS 2010, pp. 301-310,
doi:10.1109/RTAS.2010.26

[6] Jia Xu, “Multiprocessor Scheduling of Processes with Release Times,
Deadlines, Precedence, and Exclusion Relations”, IEEE Transactions
on software engineering, vol. 19, No. 2, Feb. 1993.

[7] Edward Ashford and David G. Messerschmitt, “Static Scheduling of
Synchronous Data Flow Programs for Digital Signal Processing”,
IEEE Transactions on computers, vol. C-36, No.1, Jan. 1987

[8] Margarete Sackmann, Peter Ebraert and Dirk Janssens, “A Fast
Heuristic for Scheduling Parallel Software with Respect to Energy
and Timing Constraints”, IEEE International Distributed Processing
Symposium, 2011, pp. 1397-1406, doi:10.1109/IPDPS.2011.284

[9] T.C. Hu, “Parallel sequencing and assembly line problems,” Operat.
Res., vol. 9, pp. 841-848, 1961.

[10] Ishfaq Ahmad, Yu-Kwong Kwok, “Analysis, evaluation, and
comparison of algorithms for scheduling task graphs on parallel
processors”, ISPAN 1996, pp. 207.

Figure 4. Data dependency between A and B

Figure 5. Modified SDF of task A and B

Figure 6. DAG of task A and B.

Figure 7. Static scheduling list for each processor.

Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012)

Published by Atlantis Press, Paris, France.
© the authors

0702

