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Abstract

In this paper an extension of the q-deformed Volterra equation associated with linear
rescaling to the general non-linear rescaling is obtained.

1 Introduction

One of the most famous non-linear differential-difference equations is

dcn

dt
= cn(cn+1 − cn−1), n ∈ Z, cn(t) > 0 (1.1)

often referred to as the Volterra equation or Volterra model as a tribute to the Vito
Volterra whose pioneering works stimulated a broad use of models based on such type of
equations in biological and ecological problems. This equation also proved to be quite
universal having many applications in Physics. For example it appears in the study of
the fine structure of the spectrum of Langmuir oscillations in plasma, it can be viewed
as a difference analogue of the famous Kortweg-de Vries equation [6], it is also shown to
be related to Liouville equation, and after suitable Hamiltonian interpretation, to provide
a latice deformation of the Virasoro algebra [3] important in String theory. A quantum
version has been investigated in [1, 2].

A starting point for this article is the following q-deformation of the Volterra model

q2DtRn = q2q2Tt(RnRn+1) −RnRn−1, n ∈ Z, (1.2)

where q2Dtf(t) = f(q2t)−f(t)
(q2−1)t

= q2
Ttf(t)−f(t)

(q2−1)t
is the Jackson q2-difference operator, and

q2Ttf(t) = f(q2t) is the operator of multiplicative rescaling by q2 with respect to t. The
differential-difference Volterra model is recovered in the limit for q = 1. This non-linear q-
difference difference equation is related to similarity reduction for the q-deformed Painlevé-
I equation and to our knowledge has appeared first in the work of Frank Nijhoff [5] and
further studied in depth by Sara Lombardo [4].

Some special features of this equation are connected with the fact that the “time” vari-
able t is rescaled linearly that is via multiplication by a parameter q. Such linear rescaling
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has rather simple dynamics. It is intriguing and from several respects important to have
models involving non-linear time rescalings. In this article we deduce a generalization of
the q-deformed Volterra equation to the situation of non-linear rescaling σ(t) in t instead of
multiplication by q2. Let σ(x) be a real-valued function as defined above. We will use the

following operator σDtf(t) = f(σ(t))−f(t)
σ(t)−t

called the σ-twisted derivative of f . The name is
justified by the observation that this operator obeys the so called σ-twisted Leibniz rule

σDt(fg)(t) = (σDtf)(t)g(t) + f(σ(t))(σDtg)(t) (1.3)

which is easily proved as follows

σDt(fg)(t) =
f(σ(t))g(σ(t)) − f(t)g(t)

σ(t) − t
=

=
(f(σ(t)) − f(t))g(t) + f(σ(t))(g(σ(t)) − g(t))

σ(t) − t
= (σDtf)(t)g(t)+f(σ(t))(σDtg)(t).

This operator generalizes the Jackson q2-difference operator q2Dt : f(t) 7→ f(q2t)−f(t)
q2t−t

obtained in the special case of linear rescaling σ(t) = q2t.

2 The σ-twisted Volterra equation

In our derivation of the σ-twisted Volterra equation, we will start with the following system
of equations

ψ̂n+1 +Rnψ̂n−1 = λψ̂n (2.1)

and

σDtψ̂n = Qnψ̂n−2. (2.2)

where Rn = Rn(t) and Qn = Qn(t). Equation (2.1) corresponds to the standard aux-
iliary linear problem for the Volterra model, and (2.2) is an equation defining the time
dependence of the spectral data [4]. Applying σDt to (2.1) we get

σDtψ̂n+1 + σDt(Rnψ̂n−1) = λσDtψ̂n = λQnψ̂n−2,

where the last equality is due to (2.2). By using the σ-twisted Leibniz rule (1.3) in
combination with (2.2), we find that

Qn+1ψ̂n−1 + (σDtRn)ψ̂n−1 +Rn(σ(t))Qn−1ψ̂n−3 = λQnψ̂n−2. (2.3)

Noting that λψ̂n−2 = ψ̂n−1 +Rn−2ψ̂n−3 by (2.1), and inserting this into (2.3), we get

Qn+1ψ̂n−1 −Qnψ̂n−1 + (σDtRn)ψ̂n−1 +Rn(σ(t))Qn−1ψ̂n−3 −QnRn−2ψ̂n−3 = 0

which is the same as

(Qn+1 −Qn + σDtRn))ψ̂n−1 + (Rn(σ(t))Qn−1 −QnRn−2)ψ̂n−3 = 0. (2.4)
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If coefficients are put to zero, then (2.4) holds for any {ψn}n∈Z. We have

σDtRn = Qn −Qn+1 (2.5)

and

Rn(σ(t))Qn−1 = QnRn−2(t). (2.6)

These equations reduce to (5) and (6) from [4] in the special case of the linear rescaling
σ(t) = q2t. Now, since

σDtRn =
Rn(σ(t)) −Rn(t)

σ(t) − t
= Qn −Qn+1

we find that

Rn(σ(t)) = Rn + (σ(t) − t)(Qn −Qn+1).

Therefore, (2.6) can be written as

(Rn + (σ(t) − t)(Qn −Qn+1))Qn−1 = QnRn−2.

This is equivalent to (Rn + (t − σ(t))Qn+1 + (σ(t) − t)Qn)Qn−1 = QnRn−2 which, after
introducing R̃n = Rn + (t− σ(t))Qn+1, takes the form

(R̃n + (σ(t) − t)Qn)Qn−1 = Qn(R̃n−2 − (t− σ(t))Qn−1),

becoming, after cancellations,

R̃nQn−1 = QnR̃n−2. (2.7)

Repeated use of the recurrence (2.7) yields
∏p

k=0 R̃n−kQn−p−1 = Qn

∏p+2
k=2 R̃n−k. From

this it can be deduced that Qn = −c(t)R̃nR̃n−1 for some c(t) independent of n. If we
insert Rn = R̃n + (σ(t) − t)Qn+1 into (2.5), we get using σ-twisted Leibniz rule, that

σDt(R̃n + (σ(t) − t)Qn+1) = σDtR̃n + σDt(σ(t)Qn+1) − σDt(tQn+1) =

= σDtR̃n +(σDtσ(t))Qn+1 +σ(σ(t))(σDtQn+1)− (σDt(t))Qn+1−σ(t)(σDtQn+1) =

= σDtR̃n +

(

σ(σ(t)) − σ(t)

σ(t) − t

)

Qn+1 + σ(σ(t))

(

Qn+1(σ(t)) −Qn+1(t)

σ(t) − t

)

−

−

(

σ(t) − t

σ(t) − t

)

Qn+1 − σ(t)

(

Qn+1(σ(t)) −Qn+1(t)

σ(t) − t

)

=

=σ DtR̃n +
σ(σ(t))Qn+1(σ(t)) − σ(t)Qn+1(σ(t))

σ(t) − t
−Qn+1 =

=σ DtR̃n +
σ(σ(t)) − σ(t)

σ(t) − t
σTtQn+1 −Qn+1 = Qn −Qn+1 (2.8)

where the last equality follows by (2.5), and σTt : f(t) 7→ f(σ(t)) is the composition or
rescaling operator by transformation σ. The equation above can be written as

σDtR̃n =
σ(t) − σ(σ(t))

σ(t) − t
σTtQn+1 +Qn.
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Finally, since Qn = −c(t)R̃nR̃n−1, we get

σDtR̃n =
σ(σ(t)) − σ(t)

σ(t) − t
σTt(c(t)R̃n+1R̃n) − c(t)R̃nR̃n−1

which can be expressed as

σDtR̃n = (σDtσ(t))σTt(c(t)R̃n+1R̃n) − c(t)R̃nR̃n−1. (2.9)

We call this equation the σ-twisted Volterra equation. When σ(t) = q2t and c(t) ≡ 1, this
equation becomes the q-deformed Volterra equation (1.2).

Integrability or solvability of this equation depends on the properties of the twisting
map σ. However, some general constructions of classes of solutions work for basically any
general σ. Of cause, under additional requirements on the allowed function spaces for
solutions, a need arises for further investigation of the compatibility of general solutions
with such extra requirements, often bringing dependence on further specific properties
of σ into play. In this paper, however it is reasonable to refrain from going into this
elaborate analysis, leaving its comprehensive account to future publications. Nevertheless,
at least one simple way to construct solutions can be mentioned here. Given any pair
R̃0(t), R̃1(t) of σ-invariant functions, i.e. functions that satisfy R̃0(σ(t)) = R̃0(t) and
R̃1(t)(σ(t)) = R̃1(t), the sequence defined by

R̃n(t) =











(

c(t)
c(σ(t))

1
σDt(σ(t))

)k

R̃0(t), if n = 2k
(

c(t)
c(σ(t))

1
σDt(σ(t))

)k

R̃1(t), if n = 2k + 1
, n ∈ Z

is a solution of (2.9) if σTt

(

c(t)
c(σ(t))

1
σDt(σ(t))

)

= c(t)
c(σ(t))

1
σDt(σ(t)) or, when reformulated in

terms of σ-twisted derivative, if σDt

(

c(t)
c(σ(t))

1
σDt(σ(t))

)

= 0.

In [4], one-soliton solution is explicitely constructed and time-dependence of the spec-
tral data is investigated for the q-deformed Volterra equation (1.2). There are strong
indications that extension of these results to the general twisted Volterra equation (2.9)
should be possible. But before a sufficiently complete account for this can be presented,
further understanding of the interplay between properties of the twisting map σ, spectral
data and symmetries is needed. Solution of this interesting problem should bring to light
several new interesting phenomena especially for non-linear twist maps σ when compared
to the linear twist case of q-deformed Volterra equation.
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