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Abstract—To resolve the tracking problem of nonlinear/non-
Gaussian systems effectively, this paper proposes a novel 
combination of the cubature kalman filter(CKF) with the 
particle filters(PF), which is called cubature kalman particle 
filters(CPF). In this algorithm, CKF is used to generate the 
importance density function for particle filter. It linearizes the 
nonlinear functions using statistical linear regression method 
through a set of Gaussian cubature points. It need not compute 
the Jacobian matrix and is easy to be implemented. Moreover, 
it makes efficient use of the latest observation information into 
system state transition density, thus greatly improving the filter 
performance. The simulation results are compared against the 
widely used unscented particle filter(UPF), and have 
demonstrated that CPF has higher estimation accuracy and less 
computational load. 

Keywords- particle filter; cubature kalman filter; importance 
density function 

I. INTRODUCTION 

Over the past years, PF has been widely applied with 
great success in solving nonlinear/non-Gaussian filtering 
problem, such as vision tracking, robot localization, image 
processing, data fusion, navigating and so on. PF is a 
technique for implementing a recursive Bayesian filter by 
Monte Carlo simulations. The basic idea of PF[1] is to 
represent the required probability density function (PDF) by 
a set of random samples with associated weights and to 
compute estimations based on these samples and weights. 
There are mainly three problems in PF. One common 
problem is the particle degeneracy, that is to say, after a few 
iterations, only few particles keep high weights and the 
estimation may become unreliable. Fortunately, importance 
resampling has been developed by [2] to overcome this 
drawback. The objective of resampling is to eliminate 
samples with low importance weights and multiply samples 
with high importance weights. Several resampling methods 
have been developed[2], such as multinomial resampling, 
residual resampling and systematic resampling. The choice 
of the important density function is the second problem in PF, 
which is generally hard to design. The popular choice is the 
transition prior density as it simplies many calculations, but 
it doesn’t adopt the latest measurements, the proposal 
distribution is very inefficient sometimes, and the estimation 
result is poor. To overcome this drawback, the methods of 
local linearization are used to generate the proposal 
importance distribution, it’s shown that proposals based on 
EKF and UKF have better performance. These filters are 
known as extended kalman particle filter(EPF) and 

unscented kalman particle filter(UPF)[3,4,5]. Subsequently, 
we also get the Gaussian Hermite particle filter(GHPF)[6], 
quadrature kalman particle filter(QPF)[7], improved 
unscented kalman particle filter(IUPF)[8] respectively by 
using GHF, QKF, IUKF. Finally, instead of analytical 
solution or numerical approximation of a given nonlinear 
and/or non-Gaussian problem, it performs a considerable 
amount of computations in order to approximate the 
posterior PDF, the central idea is to represent the required 
PDF by a set of random samples with associated weights. In 
this paper, we propose a new particle filter, the cubature 
kalman particle filter(CPF), which uses the cubature kalman 
filter(CKF)[9] to generate the important density function. 
Because CKF has superior performance than EKF and 
UKF[10], so the new CPF approximates more accuracy.  

II. PARTICLE FILTER 

Nonlinear discrete time dynamic system can be modeled 
by  

1 ( )k k k kx f x w+ = +                         (1) 

( )k k k kz h x e= +                            (2) 

where 1n
kx R ×∈  is the state of the system, 1q

kw R ×∈  is the 
process noise caused by disturbances and modeling errors, 

1m
kz R ×∈  is the observation vector, and 1r

ke R ×∈  is additive 

measurements noise. kf and kh are vector–valued functions. 

Let 0: 0 1{ , , , }k kX x x x=  and 1: 0 1{ , , , }k kz z z z=   be stacked 

vector of states and observations up to time step k . The 
Bayesian estimation is to estimate the posterior condition 
PDF 1 1: 1( | )k kp x z+ + recursively in the discrete time domain 
using prediction and updating procedures as follows:  
Prediction: Using (1) to obtain the predictive PDF of 1kx +  
via the Chapman-Kolmogorov equation for a known 
posterior PDF 1:( | )k kp x z  at time k : 

1 1: 1 1:( | ) ( | ) ( | )k k k k k k kp x z p x x p x z dx+ +=            (3) 

Updating: At time 1k + , the predictive PDF (3) is updated 
by the information contained in the measurement 1kz +  via 
Bayesian formula: 

1 1 1 1:
1 1: 1

1 1:

( | ) ( | )
( | )

( | )
k k k k

k k
k k

p z x p x z
p x z

p z z
+ + +

+ +
+

=            (4) 

where the normalizing constant is calculated as follows: 

1 1: 1 1 1 1: 1( | ) ( | ) ( | )k k k k k k kp z z p z x p x z dx+ + + + +=           

which depends on the likelihood function of 1 1( | )k kp z x+ + . 
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A.   Generic particle filter 

Particle filter uses sequential Monte Carlo methods to 
approximate the integrals found in the recursive Bayesian 
filtering method. Specifically, particle filters use a set of 
weighted particles that are samples drawn from the posterior 
distribution in order to approximate the required integrals as 
discrete sums. Given a set of pN  random samples, 

( ) ( )
0: 0:{ , : 1, , }i i

k k px w i N=  the posterior distribution is approxi-

mated as  

( ) ( )
1:

1

1
ˆ ( | ) ( )

pN
i i

k k k k k
ip

p x z w x x
N

δ
=

= −               (5) 

In practice, the particle set is finite and the major 
drawback of this algorithm is the degeneracy of the particle 
set. To avoid the problem, resampling is introduced to work 
with the sequential importance sampling(SIS). Combining 
SIS with a resampling method produces the generic particle 
filter. The implementation of the PF consists of three 
important operations: 1) generation of particles(sampling 
step). 2) computation of the particle weights (importance 
step). 3) resampling. An outline for the generic particle 
filter[11] is given in TableⅠ. 

Table I. The generic particle filter[8] 

 
 Initialization: at time 0k = . 

1. For 1, , ,i N=  sampling from the prior
( )
0 0( )ix p x . 

2. For 1, , ,i N=    

calculate
( ) ( )
0 1 0( | )i iw p z x= , 

  calculate the total weight 
( )
01

N i
T i

w w
=

= , 

normalize
( ) ( )
0 0
i i

Tw w w= . 

 Prediction and Update: For each time 1k ≥ . 

1. For 1, , ,i N=   Sample
( ) ( )

0: 1 1:( | , )i i
k k k kx q x x z− , calculate the 

importance weights: 
( ) ( ) ( )

( ) ( ) 1
1 ( ) ( )

0: 1 1:

( | ) ( | )

( | , )

i i i
i i k k k k

k k i i
k k k

p z x p x x
w w

q x x z
−

−
−

=                

2. Calculate the total weight
( )

1

N i
T ki

w w
=

= . 

3. For 1, , ,i N=   normalize
( ) ( )i i
k k Tw w w= . 

4.If ( )eff thN N< , set the weights
( ) 1i
kw N= , apply resampling 

algorithm 
( ) ( ) ( ) ( )

1 1[{ , } ] Re [{ , } ]i i N i i N
k k i k k ix w sample x w= == . 

III. THE CUBATURE KALMAN PARTICLE FLTER 

The choice of proposal or importance distribution is a 
critical design issues in implementing PF. The performance 
of PF depends on the proposal importance function heavily. 
The optimal proposal importance distribution is given by 

0: 1 1: 0: 1 1:( | , ) ( | , )k k k k k kq x x z p x x z− −= and fully exploits the 

information in both 0: 1kx −  and 1:kz [12]. However, it is 
impossible to sample from this distribution due to the 
unknown distribution 0: 1 1:( | , )k k kp x x z− . The most popular 

choice of proposal function is the transmission prior function 

0: 1 1: 1( | , ) ( | )k k k k kq x x z p x x− −= due to its convenience. But 

since this way has not incorporate the latest information 1:kz , 
the performance depends heavily on the variance of 
observation noise. The third choice is to use local 
linearization to generate the proposal importance distribution. 
Then, EKF, UKF, IUKF, QKF and GHF were used to 
generate this proposal distribution. Since all these filters use 
the latest information 1:kz , the choice of the method of local 
linearization is better than the transmission prior function. 
CKF linearizes the nonlinear functions using statistical linear 
regression method through a set of Gaussian cubature points 
that parameterize the Gaussian density. Ref.[10] has been 
proved that CKF has higher estimation accuracy than EKF 
and UKF, therefore, we will use CKF to generate proposal 
distributions in this paper. 

A.   The cubature kalman filter  

1) Spherical-radial rule 
CKF uses the spherical-radial rule to find the points and 

weights. For the third-degree spherical-radial rule, it entails a 
total of 2n  cubature points when the dimension of the 
random variable equals n . The cubature points and its 
corresponding weights will be given as: 

[1]
2i i

mξ =                                      (6) 

1
i m

ω = , 1,2, , 2i m n= =                          (7) 

For example, 2[1] R∈  represents the following set of points: 

1 0 1 0
, , ,

0 1 0 1

 −         
        −         

 

2) The cubature kalman filter 
This subsection summarizes CKF algorithm that computes 

both the time update and measurement update steps at each 
time-step. The cubature-point set { },i iξ ω should be 

calculated using (6) and (7) at first. CKF is depicted in the 
Table Ⅱ. 

Table II.  The cubature kalman filter 

 
 Time update step: 

1. Assume at time k  that the posterior density function 

1 1 1| 1 1| 1ˆ( | ) ( , )k k k k k kp x D x P− − − − − −=  is known. Factorize 

1| 1 1| 1 1| 1( )T
k k k k k kP S S− − − − − −=                            (8) 

here we can use Cholesky decomposition, the singular value decomposition 

to factorize the covariance 1| 1k kP − − . 

2. Evaluate the cubature points ( 1, 2, , )i m=   

, 1| 1 1| 1 1| 1ˆi k k k k i k kX S xξ− − − − − −= +                           (9) 

where 2m n= . 

3. Evaluate the propagated cubature points ( 1, 2, , )i m=   

*
, | 1 , 1| 1 1( , )i k k i k k kX f X u− − − −=                           (10) 

4. Estimate the predicted state 
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*
| 1 , | 1

1

1
ˆ

m

k k i k k
i

x X
m− −

=

=                    (11) 

5. Estimate the predicted error covariance 

* *
| 1 , | 1 , | 1 | 1 | 1 1

1

1
ˆ ˆ

m
T T

k k i k k i k k k k k k k
i

P X X x x Q
m− − − − − −

=

= − +       (12) 

 Measurement update step: 

1. Factorize 

| 1 | 1 | 1( )T
k k k k k kP S S− − −=                   (13) 

2. Evaluate the cubature points ( 1,2, , )i m=   

, | 1 | 1 | 1ˆi k k k k i k kX S xξ− − −= +                 (14) 

3. Evaluate the propagated cubature points 

, | 1 , | 1( , )i k k i k k kZ h X u− −=                  (15) 

4. Estimate the predicted measurement 

| 1 , | 1
1

1
ˆ

m

k k i k k
i

z Z
m− −

=

=                     (16) 

5. Estimate the innovation covariance matrix 

, | 1 , | 1 , | 1 | 1 | 1
1

1
ˆ ˆ

m
T T

zz k k i k k i k k k k k k k
i

P Z Z z z R
m− − − − −

=

= − +     (17) 

6. Estimate the cross-convariance matrix 

, | 1 , | 1 , | 1 | 1 | 1
1

1
ˆ ˆ

m
T T

xz k k i k k i k k k k k k
i

P X Z x z
m− − − − −

=

= −        (18) 

7. Estimate the Kalman gain 
1

, | 1 , | 1k xz k k zz k kW P P−
− −=                  (19) 

8. Estimate the update state 

         | | 1 | 1ˆ ˆ ˆ( )k k k k k k k kx x W z z− −= + −               (20) 

9. Estimate the corresponding error covariance 

| | 1 , | 1
T

k k k k k zz k k kP P W P W− −= −                (21) 

 

B.   The cubature kalman particle filter 

The cubature kalman filter substituting unscented 
transformation for linearization means relinearizing the 
measurement equation around more accurate state. The 
distribution generated by CKF matches the true posterior 
distribution better than EKF and UKF. So CKF is used to 
generate more accurate proposal distribution for particle 
filter. The cubature kalman particle filter is depicted in Table 
Ⅲ. 

Table III. The cubature kalman particle filter 

 
 Initialization: at time 0k =  

1. For 1, , ,i N=   sampling from the prior
( )
0 0( )ix p x . 

( ) ( )
0 0ˆ [ ]i ix E x=                         (22) 

( ) ( ) ( ) ( ) ( )
0 0 0 0 0ˆ ˆ[( )( ) ]i i i i i TP E x x x x= − −         (23) 

( ) ( )
0 0{ }i iS chol P=                      (24) 

where 0x̂ is the initial value of the fixed state estimation, 0P is the initial 

value of matrix square-root of the state covariance. 
2. For 1, , ,i N=   

  calculate 
( ) ( )
0 0 0( | )i iw p z x= , 

  calculate the total weight 
( )
01

N i
T i

w w
=

= , 

normalize
( ) ( )
0 0
i i

Tw w w= . 

where 0w is the initial important weights of support points. 

 Prediction and Update: For each time 1k ≥ . 

1. For 1, , ,i N=   update the particles 
( )

1
i

kx −  with CKF, then 

obtain
( ) ( )ˆ{ , }i i
k kx P . 

2. For 1, , ,i N=  sample the new particles 
( )

1{ }i N
k ix =  from the proposal 

distribution function: 
( ) ( ) ( )

0: 1 1:( | , )i i i
k k k kx q x x z−                  (25) 

( ) ( ) ( ) ( ) ( )
0: 1 1: ˆ( | , ) ( ; , )i i i i i

k k k k k kq x x z x x P− ≈           (26) 

that is to say, draw a sample from importance distribution: 
( ) ( ) ( ) ( )ˆ( ; , )i i i i
k k k kx x x P                    (27) 

where
( ) ( ) ( )( )i i i T

k k kP S S= , It incorporates the current observa- tions to 

proposal so improve the precision of particle sampling.   
3. For each 1, , ,i N=  calculate the importance weights:  

( ) ( ) ( )
( ) ( ) 1

1 ( ) ( )
0: 1 1:

( | ) ( | )

( | , )

i i i
i i k k k k

k k i i
k k k

p z x p x x
w w

q x x z
−

−
−

=           (28) 

where
( )( | )i

k kp z x is the likelihood function of the measurement kz , 

( ) ( )
1( | )i i

k kp x x −  is decided by system equation, and the 

( ) ( )
0: 1 1:( | , )i i

k k kq x x z−  is calculated by the 
( ) ( )ˆ{ , }i i
k kx P ,which is obtained 

by CKF, the detail calculated way is given by: 
( ) ( ) ( )

1

Ni i i
k k ki

w w w
=

=                      (29) 

( ) ( )ˆˆ ( , )i i
k kz h x measnoise=                    (30) 

( ) ( )
( ) ˆ ˆ( )( )

( | ) exp
2

i i T
i k k k k

k k

z z z z
p z x

R

 − −
=  

 
          (31) 

( ) ( ) ( ) ( )
( ) ( ) 1 1

1

ˆ ˆ( )( )
( | ) exp

2

i i i i T
i i k k k k

k k

x x x x
p x x

Q
− −

−

 − −
=  

 
      (32) 

( ) ( ) ( ) ( )
( ) ( )

0: 1 1: ( )( )

ˆ ˆ( )( )1
( | , ) exp

2det( )

i i i i T
i i k k k k

k k k ii
kk

x x x x
q x x z

PP
−

 − −
=  

 
(

33) 

where
( )i
kw  is the normalize weights, measnoise  is defined by ke  in 

equation (2). 

4. If  eff thN N<  , (
( ) 2

1

1 ( )
N

i
eff k

i

N w
=

=   is sample volume, thN is a 

some given threshold value), set he weights  
( ) 1i
kw N=  and apply 

resampling algorithm 
( ) ( ) ( ) ( )

1 1[{ , } ] Re [{ , } ]i i N i i N
k k i k k ix w sample x w= == .      (34) 

in this paper, we use residual sampling, see[4]. 
 Output:   

The experience probability distribution of filtering distribution, system 
state estimate and covariance are given respectively:  

( ) ( )
1:

1

( | ) ( )
N

i i
k k k k k

i

p x z w x xδ
=

= −               (35) 

( ) ( )
1:

1

( | )
N

i i
k k k k k

i

x E x z w x
=

= ≈                 (36) 

( ) ( ) ( )

1

( )( )
N

i i i T
k k k k k k

i

P w x x x x
=

= − −              (37) 
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IV. SIMULATION AND ANALYSIS 

In order to illustrate the performance of CPF proposed in 
this paper, simulations were carried out and the results are 
presented in this section. The background of simulations is 
target tracking problem in a planar surface at nearly constant 
speed, and the system models were shown as follows 

1

1 0 0

0 1 0 0
_

0 0 1

0 0 0 1

k k

dt

X X pro noise
dt −

 
 
 = +
 
 
 

       (38) 

2 2

1
_

tan ( / )
k

L x y
Z mea noise

y xα −

   += = +  
    

        (39) 

where [ , , , ]T
k k k k kX x x y y=   is the state vector, [ , ]T

kZ L α=  is 
the measurement vector, L is the distance from the radar 
sensor to the target, α is the target azimuth, dt  is the sample 
interval time, _pro noise is the system noise, and 

_mea noise  is the measure noise. 

The simulation time is 200 steps, 1dt s= . The initial 
state of the target 
is 0 [2000 , 180 / , 3000 ,200 / ]TX m m s m m s= − − , the initial 

covariance is 0 ([10,0.3,5,0.2])P diag= , and 

([20,0.001,20,0.001])Q diag= , ([5,5 4])R diag e= − . The 
radar is set at [ , ] [0 ,0 ]x y m m= , and its noise assumed 

uniform distribution, ( 15 ,15 )Ln unif m m− , 

( 2 2 )n unifα −   ， . 
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 (a) The full tracking 
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 (b) The local tracking (t=180s~195s) 

Fig.1 Tracking result (N=200) 
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Fig.2 Comparison of the RMSE of position (N=200) 
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Fig.3 Comparison of the particle posterior PDF(N=200) 

In the experiment, we compare CPF with UPF. After 50 
times simulations with 200 particles, the full tracking result 
is shown in Fig.1(a), and the local tracking result during in 
the180s~195s  is shown in Fig.1(b), Fig.2 shows the RMSE 
of the state estimation at every time step, and Fig.3 shows 
the comparison of the particle posterior PDF. The RMSE of 
different particle filters using different numbers of particles 
are given in Table , Ⅳ Time is the computing time, N is the 
number of particles used in each method. 
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Table IV. Comparison of position RMSE with different 
numbers of particles 

Filter N X-RMSE Y-RMSE Time(s)

UPF 

50 80.2468 35.3318 0.2459

100 58.3316 27.2073 0.2460

200 55.5252 24.4551 0.2467

500 52.3022 24.0646 0.2476

CPF 

50 42.9117 19.3071 0.1856

100 34.4937 17.1268 0.1858

200 33.8370 16.0061 0.1864

500 29.6364 14.2194 0.1874

 
Comparing the RMSE of the state estimate in Fig.2 , the 

particles posterior PDF in Fig.3 and the RMSE of the state 
estimate with the different numbers of particles in Table Ⅳ, 
it  shows that the performance of CPF is superior to UPF 
solutions when same numbers of particles used, because the 
proposal distribution based on CKF taken into approximate 
the true posterior distribution is more precise than UKF. We 
also find that the number of particles is very influential in 
determining the results of the filter. Using more particles can 
produce more accurate results, however, it also requires more 
calculations to be performed. Table Ⅳ shows that using as 
few as 50 particles can allow the particle filtering algorithms 
to produce results that are comparable to UPF in scalar 
simulations, and the calculation cost is decreased a little. 

V. CONCLUSION 

In this paper, we proposed CPF algorithm to estimate 
the state of the nonlinear and non-Gaussian system. The 

simulation result proved that CPF has a better performance 
than UPF. Therefore, CPF is an effective nonlinear filtering 
algorithm. 
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