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Abstract

We describe recent results on the construction of hierarchies of nonlinear evolution
equations associated to generalized second order spectral problems. The first results
in this subject had been presented by Francesco Calogero.

Introduction

In order to introduce the G-model considered recently in joint with L. Martinez Alonso
papers, one can exploit an invariance of this model under hodograph type transformations.
Namely, let us begin with the hierarchy of times ti, i ∈ Z and the corresponding set of
commuting diferentiations Di = ∂ti . Choose t0 as a basic independent variable and change
variables t = (. . . , t−1, t0, t1, . . . ) into x = (. . . , x−1, x0, x1, . . . ) by

x0 = q(t), xj = tj, j 6= 0 ⇒ b0dx0 = dt0 +

∞∑

1

gkdtk −

∞∑

1

bkdt−k. (0.1)

Then

D0(q) =
1

b0
, Dj(q) =





gj

b0
for j > 0,

−
bj

b0
for j < 0

(0.2)

and we see that

D1

(
D1q

D0q

)
= D0

(
D2q

D0q

)
⇔ D1(g1) = D0(g2). (0.3)

This three-dimensional nonlinear PDE for the function q(t) represents one of multi-
dimensional versions of equations of G-model considered in the last paper of ref. [3].

The full set of equations of the G-model can be introduced by

Dn(G) =< An, G >, < A, B >
def
= AD0(B) −BD0(A), (0.4)
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where G is an auxiliary function and, for any n > 0, we set

An
def
= λn + g1λ

n−1 + · · · + gn, A−n
def
=

b0

λn
+

b1

λn−1
+ · · · +

bn−1

λ
. (0.5)

In §1 we reformulate some results obtained by [3].
In §§2 and 3 we discuss applications of the G-model to the generalized second order

spectral problems

ψxx = U(x, λ)ψ, Dx ≡ D0

with potential

U = U(x, λ) = u0(x)λ
m + u1(x)λ

m−1 + · · · + um(x) +

∞∑

k=1

λ−kvk(x), x = t0. (0.6)

The main point is that this generalization allows us to prove (Theorem 3) that there
exist well-defined mappings U ↔ G of potentials (0.6) into solutions of the equations (0.4)
and vice versa.

All solitonic hierarchies are defined by the equations (0.4) up to this mapping and do
not depend from the particular spectral problem.

1 Integrability of G-models

Excluding an auxiliary function G from equations (0.4) by cross differentiation we get

Dn(Am) −Dm(An) =< An, Am >, for any n, m. (1.1)

Replacing the wronskian in the right hand side by the commuatator,

[AD0, BD0] =< A, B > D0, < A, B >= AD0(B) −BD0(A),

we get the zero-curvature representation of the G-model:

[Dn −AnD0,Dm −AmD0] = 0, for any n, m. (1.2)

Due formulae (0.5) one obtains for the infinite set of dynamical variables

. . . , bj , bj−1, . . . , b0, g1, g2, . . . , gj , . . . . (1.3)

the infinite set of equations which we take here for a definition of the G-model. It is
important to notice that the change of variables (0.1) gives rise to an analogous to (1.2)
set of commuting operators D̂j = ∂xj

:

D̂−n = D−n + bnD0, D̂0 = b0D0, D̂n = Dn − gnD0. (1.4)

It can be proved (Cf [3]) that equations (1.1) are equivalent to equations (0.4) if we
insert in the latter the asimptotic expansions

G =

{
1 + g1

λ1 + · · · + gn

λn + . . . as λ −→ ∞,

b0 + λb1 + · · · + λnbn + . . . as λ −→ 0.
(1.5)
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Thus, the function G can be used as the generating function of the hierarchy (1.2) and
the infinite set of equations of the G-model can be rewritten in very compact form

Dn(G) =< (λnG)+, G >, n ∈ Z,

where, for any n > 0,

(λnG)+ = λn + g1λ
n−1 + · · ·+ gn = An, (λ−nG)+ =

b0

λn
+

b1

λn−1
+ · · ·+

bn−1

λ
= A−n.

Summing up we formulate for future references:

Theorem 1 ([3]) The nonlinear partial differential equations (1.2), (0.5) for the infinite
set of dynamical variables (1.3) are equivalent to either equation of the following triad

Dn(G) =< An, G >, Dn(H) = D0(AnH), D̂n(b0H) = λb0D0(An−1H), (1.6)

where the operators D̂n are defined by (1.4), H = G−1 and G is the generating function
(1.5).

The substituting formal expansions (1.5) into equation Dn(G) =< An, G > define the
action ofDn on the dynamical variables gn and bn, respectively. For example, for n = 1, we
have A1 = λ+ g1 and obtain in this case an infinite system of 1+ 1-dimensional equations

D1(gn) = D0(gn+1)+ < g1, gn >, D1(bn) = D0(bn−1)+ < g1, bn > . (1.7)

Analogous formal expansions of H = G−1 as λ −→ ∞ and λ −→ 0 yield the two series
of conservation laws for the equations Dn(G) =< An, G >. The coefficients of these formal
series for H are defined by inverting the series (1.5) as functions of dynamical variables
(1.3).

Coming back to the change of variables (0.1), which was our starting point and will be
used later on, we can now demonstrate the invariance of equations (1.2) by proving that

D̂n(H) = D̂1(An−1H), ∀n 6= 0. (1.8)

Thanks to (1.6) this equation means that the transformation x0 = q(t) does not change
the form of equations yet results in the shift of the numeration n 7→ n− 1 of independent
variables. Since

D1(Aj) = D0(Aj+1)+ < g1, Aj >,

the equation (1.8) is a corollary of the last equation in (1.6):

D̂n(H) − D̂1(An−1H) = D0(An)H + λAn−1D0(H) − (D1 − g1D0)(An−1H) = 0.

Integration

It is most natural to ask what kind of restrictions will arise if the dynamics in the G-model
is defind by a finite number of independent variables tn.
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Theorem 2. Let G(λ) be generating function from Theorem 1 and, for fixed N > 0,
there exist constants ε1, . . . , εN such that

DN + ε1DN−1 + ε2DN−2 + · · · + εND0 = 0.

Then there exist formal series with constant coefficients

ε(λ) = 1 +
ε1

λ
+
ε2

λ2
+
ε3

λ3
+ . . .

such that the product λNε(λ)G(λ) is a polynomial in λ:

Ĝ(λ) = ε(λ)G(λ) = 1 +
ĝ1

λ
+
ĝ2

λ2
+ · · · +

ĝn

λn
.

Proof. We have

D0(gn+1) = Dn(g1) = −[ε1Dn−1 + · · · + εnD0](g1) = −D0[ε1gn + · · · + εng1]

since Dng1 = D0gn+1 (see Theorem 1). We use now that

D0(g) = D0(h) ⇔ g = h+ const

which means that there exist a constant εn+1 such that

gn+1 + ε1gn + · · · + εng1 + εn+1 = 0.

It remains to notice that, for any m,

−gm+1 = ε1gm + · · ·+ εmg1 + εm+1 ⇒ −gm+2 = ε1gm+1 + · · ·+ εmg2 + εm+1g1 + εm+2

since

D0(gm+2) = D1(gm+1)− < g1, gm+1 > .

Indeed, insert gm+1 = −ε1gm − · · · − εmg1; we obtain

− < g1, gm+1 >= ε1 < g1, gm > + · · · + εm−1 < g1, g2 > −εm+1D0g1,

−D1(gm+1) = D1[ε1gm + · · · + εmg1] =

D0[ε1gm+1 + · · · + εmg2] + ε1 < g1, gm > + · · · + εm−1 < g1, g2 > .

Corollary. The roots γ1, . . . , γN of the polynomial λNε(λ)G(λ) satisfy the hyperbolic
quasilinear system as follows

(D1 + ε1D0)γj = (
∑

k 6=j

γk)D0γj, j = 1, 2, . . . ,N. (1.9)

Indeed: the modifyed generating function Ĝ = ε(λ)G(λ) satisfies the same equations

DnĜ =< An, Ĝ >
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as the original generating function and

Ĝ(λ) =

N∏

1

(1 −
γk

λ
) ⇒ DnĜ|λ=γj

= −
Dnγj

γj

∏

k 6=j

(1 −
γk

γj

). (1.10)

If n = 1, this yields (1.9) since

A1 = λ+ g1 = λ−
∑

γk − ε1 ⇒ A1|λ=γj
= −

∑

k 6=j

γk − ε1.

The hyperbolic system (1.9) has many applications including the gas dynamics [4] as
well as finite-gap potentials in spectral theory [6].

Using the roots variables ~γ = (γ1, . . . , γN ) defined in (1.10) as dynamical ones we can
write down the whole set of equations DnĜ =< An, Ĝ >, where n = 1, 2, . . . ,N − 1, in
the form analogous to (1.9):

Dn(γj) = ajn(~γ)D0(γj), n = 1, . . . ,N − 1.

Introduce now an auxiliary vector field

D0(~γ) = X(~γ), X = (X1, . . . ,XN ).

Then the above N−1 equations for the roots variables can be rewritten as N−1 dynamical
systems

Dn(~γ) = Ân(~γ), where n = 1, 2, . . . ,N − 1. (1.11)

These dynamical systems can be integrated in quadratures with the help of

Ferapontov’s Lemma ([5]) Let

D0(γj) = zj(γj)


∏

k 6=j

γjk




−1

, γjk
def
= γj − γk (1.12)

where the N functions in one variable zj(γj) are arbitrary.
ThenN dynamical systems (1.12) together with (1.11) for root variables ~γ = (γ1, . . . , γN )

define N commuting vector fields.

Remark. Together with (1.12) the dynamical systems (1.11) can be rewritten as

d~γ = d~tA(~γ) or, equivalently, as d~t = d~̃γÃ(~γ) (1.13)

where

d~̃γ
def
= (z1(γ1)dγ1, . . . , zN (γN )dγN )

and the differential form in the right hand side (1.13) is a closed one by commutativity of
the corresponding vector fields.
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2 Generalized spectral problems

Applications of the G-model to the second order spectral problems

ψxx = U(x, λ)ψ (2.1)

are based on a mapping G 7→ U defined by the exact formula

U(x, λ) = {Dx,
1

G(x, λ)
} +

z(λ)

G(x, λ)2
, Dx ≡ D0 (2.2)

where z(λ) is an x-independent normalizing coefficient and

{Dx, F (x)}
def
=

3

4

F 2
x

F 2
−

1

2

Fxx

F
= ϕxx + ϕ2

x, if F = e−2ϕ. (2.3)

Rewriting (2.2) in the bilinear form

4UG2 +G2
x − 2GGxx = z(λ) (2.4)

and differentating it with respect to x we get the third order linear differential equation

Gxxx = 4UGx + 2UxG. (2.5)

On the other hand, the deffirentiating (2.2) with respect the “time” τ and using equa-
tions (1.6), (2.5) one gets

Dτ (G) =< A, G > ⇒ 2Dτ (U) = 4UAx + 2UxA−Axxx, x ≡ t0. (2.6)

Remark. Recall that if ψ1, ψ2 constitute a basis of the linear space of solutions (2.1)
then G = {ψ2

1 , ψ
2
2 , ψ1ψ2} is a fundamental system of solutions of (2.5). Vice versa, in order

to reconstruct ψ1, ψ2 from a given G and the wronskian w =< ψ1, ψ2 >= ψ1ψ2,x −ψ2ψ1,x

we have

G = ψ1ψ2 ⇒
Gx

G
=
ψ1,x

ψ1

+
ψ2,x

ψ2

,
< ψ1, ψ2 >

G
=
ψ2,x

ψ2

−
ψ1,x

ψ1

.

Thus

ψ1,x

ψ1

=
1

2

(
Gx

G
−
w

G

)
,

ψ2,x

ψ2

=
1

2

(
Gx

G
+
w

G

)
.

Recall also that the second equation in (2.6) which describes the evolution of the potential
U is the consistency condition for the equations

ψxx = Uψ, and ψτ = Aψx −
1

2
Axψ.

Lastly, one can notice that latter equation for ψ together with G = ψ1ψ2 yield the first of
equations (2.6) Dτ (G) =< A, G > .

In the general case the mapping G 7→ U defined by (2.2), where

z(λ) = λm + α1z
m−1 + · · · + α0 +

∑

j>0

βjλ
−j ,
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and G represented by the asimptotic expansion, yields the formal Laurent series

U = U(x, λ) = λm +u1(x)λ
m−1 + · · ·+ um(x) +

∞∑

k=1

λ−kvk(x), where x = t0. (2.7)

Equation (2.1) with the potential U represented as λ −→ ∞ by its asimptotic expansion
(2.7) is said to be the generalized spectral problem.

Theorem 3. Let the potential U(x, λ) of the generalized spectral problem (2.1) be
represented by the formal Laurant series (2.7) with m > 0. Then the third order equation
(2.5) associated with the spectral problem possesses a unique normalized solution G =
Y =

∑
ykλ

−k such that

Y (x, λ) = 1 +

∞∑

k=1

λ−kyk(x), −2YxxY + Y 2
x + 4UY 2 = 4λm. (2.8)

Proof. We need to prove that equation (2.8) uniquely defines the coefficients yk, where
k = 1, 2, . . . in terms of the coefficients of the formal powers series (2.7).

It suffices to verify that consequently equating in (2.8) the coefficients of equal powers
of λ

λm, λm−1, . . . , λ0, λ−1, . . .

we get a triangular type system. Thus we find

y1 = −
1

2
ũ1, . . . , yn = −

1

2
ũn + Φn(y1, . . . , yn−1; ũ1, . . . , ũn−1), . . . ,

where

ũj =

{
uj for j ≤ m

vj−m for j > m

and functions Φn(·; ·) are differential polynomials in their arguments. The first m coef-
ficients are obtained in a purely algebraic way since the equation (2.8) rewritten in the
form (2.2) implies that the coefficients u1, . . . , um of the potential coincide with the cor-
responding coefficients of the series λmY −2.

Now we can incorporate G-model into the theory of spectral problems. Namely, choose
Y (x, λ) defined in Theorem 3 as the initial data at tn = 0 for the dynamical equations
(1.6). Then, thanks to eq. (2.6), the mapping (2.2) transforms solutions of this initial
data problem into solutions of the hierarchy of evolutionary equations

2Dtn(U) = 4UAn,x + 2UxAn −An,xxx, An = (λnY )+, n = 1, 2, 3, . . . (2.9)

for the potential U = U(t, λ), where t0 = x, of the generalized spectral problem. In
particular, for the generalized Schrödinger spectral problem with

U = λ+ u1 +
v1

λ
+
v2

λ2
+ . . .
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we find, by setting A1 = λ+y1 and Dt = 2Dt1 , the following generalization of Korteveg-de
Vries equation:

ut −
1

2
uxxx + 3uux = 2v1,x, v1,t + 2v1ux + uv1,x = 2v2,x, . . . (2.10)

which is equivalent to eq. (1.7).
Proof of Theorem 3 describes the inversion of the mapping introduced by the basic

eq. (2.2) with z(λ) = λm. This mapping Y = G 7→ U defines a differential substitution
ũj = Ψj(~y) transforming equations (1.6) into (2.9). For example, expressing U in terms
of Y for m = 1 and m = 2 with

U = λ+ u1 +
∑

k≥1

λ−kvk, and U = λ2 + λu1 + u2 +
∑

k≥1

λ−kvk,

respectively, we find, in addition to eq. u1 + 2y1 = 0 above, that

v1 = −2y2 + 3y2
1 +

1

2
y1,xx, 2v2 = −4y3 + 12y1y2 − 8y3

1 + y2,xx − y1y1,x −
1

2
y2
1,x (2.11)

if m = 1 and

u2 = −2y2 + 3y2
1 , 2v1 = −4y3 + 12y1y2 − 8y3

1 + y1,xx (2.12)

if m = 2.

The polynomial case

Under the conditions of Theorem 2 we have, with a slightly misused notations,

G(x, λ) = λNε(λ)Y (λ) =
N∏

1

(λ− γk(x)). (2.13)

The differential equations for the roots γ1, . . . , γN are now obtained (Cf Ferapontov’s
Lemma) by substitution λ = γj , where j = 1, . . . ,N in (2.4). This yields

d

dx
γj =


∏

k 6=j

γjk




−1

ẑ(γj), ẑ(λ) =
1

2

√
z(λ) (2.14)

since the potential U(x, λ) is assumed to be regular without movable singularities in the
λ−plane.

Dubrovin’s equations (2.14) are completely defined by the function z(λ). In its turn,
z(λ) is defined by the right hand side of (2.4) and has to be an (m + 2N)th degree
polynomial in λ for spectral problems with mth degree polynomial potentials. The other
way round, the formula (2.2) defines the potential as a degree m polynomial in λ for any
polynomial z(λ) of degree m+ 2N thanks to the following

Dubrovin’s Lemma Let z(λ) be meromorphic and the roots γj of an N−th degree
unitary polynomial G(x, λ) satisfy equations (2.14). Then

λ = γj ⇒ G(x, λ) = 0 ⇒ 2Gxx(x, λ) +
z(λ) −G2

x(x, λ)

G(x, λ)
= 0.
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Corollary Let us, under conditions of Dubrovin’s Lemma, denote by ẑ(λ,~γ) an N−th
degree polynomial in λ such that

ẑ(λ; ~γ)|λ=γj
= z(λ)|λ=γj

, ẑ′(λ; ~γ)|λ=γj
= z′(λ)|λ=γj

.

Then eq. (2.2) for potential U of the generalized spectral problem can be expressed as
follows

4U
∏

(λ− γj)
2 = z(λ) − ẑ(λ; ~γ).

3 The problem of constraints

The change of variables in the G-model defined by (2.2) allows us to reformulate the
problem of reductions (of an infinite set of dynamical variables to a finite one) in terms
of equations (2.9) for coefficients of the formal series (2.7). Thus the truncation vj = 0
for j ≥ 1 in (2.10) yields the classical KdV equation while the next possibility vj = 0 for
j ≥ 2 leads to the system of equations for u = u1 and v = 4v1 :

2ut = uxxx − 6uux + vx, vt + 2vux + uvx = 0.

The polynomial constraints have been considered in [3]. They correspond to the case
where U(t, λ) and z(λ) in (2.2) are polynomials of the same degree in λ and give rise to
some interesting modifications of the classical solitonic hierarchies (see next subsection).
These polynomial constraints are in good agreement with Dubrovin’s Lemma but one has
to keep in mind that this lemma and its corrolary do not forbid pole singularities in λ.

In order to highlight the possibility of more direct approach to the problem of con-
straints let us consider a simple example related with the Bürgers hierarchy. The infinite
system of equations

D1G =< λ+ g1, G > (3.1)

for the coefficients gj can be reduced, apparently, to a single evolutionary equation for the
function u = g1 in a very elementary way:

g2 = f(g1, g1,x) ⇒ ut = Df(u, ux), where u ≡ g1, Dt ≡ D1. (3.2)

Lemma Let an evolutionary equation of the second order ut = D0f(u, ux) possess the
conservation law with density g = g(u, ux). Then g = a(u)ux + b(u).

Proof. Denoting by ∼ equivalence modulo ImD0 and setting g0 = ∂ug(u, u1) and
g1 = ∂u1

g(u, u1) we obtain by integration by parts

Dt(g) = g0D0f + g1D
2
0f ∼ D0f(g0 −D0g1) = f1g11u

2
xx + . . .

By assumption Dtg ∈ ImD0, so the right hand side should be represented by D0h(u, ux)
and thus f1g11 = 0.

The constraint (3.2) should be compatible with the original system if equations (3.1)
allow one to express all coefficients gj as differential functions of u (i.e., functions of u
and derivatives of u with respect to x). Using Theorem 1 and the above Lemma one can
readily prove the following
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Proposition The constraint (3.2) is compatible with the system of equations (3.1) if
and only if g2 = g2

1 + ε1g1,x + ε2g1 + ε3, where εj are arbitrary constants.

Camassa-Holm equation

Straightforward application of Theorem 3 to the polynomial potentials (2.7) gives rise to
the constraints v1 = Ψ(~y) = 0. Using formulae (2.11), (2.12) it yields, for example,

m = 1 ⇒ 2y2 = 3y2
1 +

1

2
y1,xx, m = 2 ⇒ 4y3 = 12y1y2 − 8y3

1 +D2
0y1.

These constraints correspond to KdV and NLS hierarchies, respectively.
Invoking Theorem 1 and hodograph type transformations one can substantially enlarge

the set of differential costraints defined by (2.2) in the polynomial case (see [3]). For
simplicity we confine ourselves to the case m = 1 and, accordingly, set z(λ) = λ + ε in
(2.2). In terms of H = G−1 this yields (Cf (2.3)):

U(t, λ) = {D0,H} + (λ+ ε)H2. (3.3)

The main point is that (3.3) allows us now to relate the Taylor series expansion of H at
λ = 0 (Cf (1.5)) with the asimptotic expansion H = 1 + h1λ

−1 + . . . at the λ−infinity
used in Theorem 3 and which implies that U = λ + ε + 2h1 in (3.3). Thus, at λ = 0 eq.
(3.3) implies a new form of the constraint:

H = a0 + λa1 + . . . ⇒ 2h1 = {D0, a0} + εa2
0 − ε

and a modified KdV equation (Cf [2]) as follows

(4D1 − 2εD0)ϕ = D3
0ϕ−

1

2
(D0ϕ)3 − 6εe2ϕD0ϕ, a0 = eϕ.

Considering equations with negative numbers in the hierarchy (1.6) it is natural to
introduce renormalization as follows

Ĥ = b0H, b0a0 = 1 ⇒ H −→ 1 (λ −→ ∞), Ĥ −→ 1 (λ −→ 0). (3.4)

Combined with the “hodograph” (0.1) change of variables t 7→ x and D̂0 = b0D0 it
transforms (3.3) into

Û(x, λ) = λb20 + ε = {D̂0, Ĥ} + (λ+ ε)Ĥ2, a0(t)b0(x) = 1 (3.5)

since

{D̂0, Ĥ}) = b20({D0,H)} − {D0, a0)}), D̂0 = b0D0, Ĥ = b0H.

In the notations

Dx = D̂0, Dτ = D̂−1, Ĥ = 1 + λu+ . . . , λ −→ 0

we obtain, with Theorem 1,

λDτ (Ĥ) = Dx[(1 − λu)Ĥ] ⇒ b0,τ + (ub0)x = 0. (3.6)

Eq. (3.5) yields the constraint

b20 = 1 + 2εu−
1

2
uxx

which together with the last equation in (3.6) is equivalent to the Camassa-Holm equation
[1].
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