
SecGOT: Secure Global Offset Tables in ELF Executables

Chao Zhang, Lei Duan, Tao Wei, Wei Zou
Beijing Key Laboratory of Internet Security Technology

Institute of Computer Science and Technology, Peking University
Beijing, China

{chao.zhang, lei_duan, wei_tao, zou_wei}@pku.edu.cn

Abstract—Global Offset Table (GOT) is an important feature
to support library sharing in Executable and Linkable Format
(ELF) applications. The addresses of external modules’ global
variables and functions are runtime resolved and stored in the
GOT and then are used by the program. If attackers tamper
with the function pointers in the GOT, they can hijack the
program’s control flow and execute arbitrary malicious code.
Current research pays few attentions on this threat (i.e. GOT
hijacking attack). In this paper, we proposed and implemented
a protection mechanism SecGOT to randomize the GOT at
load time, and thus prevent attackers from guessing the GOT’s
position and tampering with the function pointers. SecGOT is
evaluated against 101 binaries in the /bin directory for Linux.
The results show that it introduced quite low load-time
overhead and provides an effective protection against GOT
hijacking attacks.

Keywords-Global Offset Table Hijacking; Function Pointer;
Randomization; Dynamic Linker; ELF

I. INTRODUCTION

Library sharing is a common development skill to
provide services to independent programs. This skill
encourages code and data sharing in a modular fashion, and
thus is widely used in modern software developing.

Libraries can be statically linked to or dynamically
linked to a main module to generate the final executable
binary file. Statically linked libraries will be included in the
final executable file after compiling and linking. This will
increase the executable file’s size and restrain code and data
sharing, however.

Dynamic linked libraries are loaded from individual file
into memory at load time or run time. And thus their
memory addresses are not fixed in order to avoid memory
conflicts with other libraries. Code or data in the library
which reference absolute memory addresses should be
relocated after loading. In addition, the security mechanism
ASLR (Address Space Layout Randomization [1]), which
are widely adopted by modern operating systems to mitigate
attacks like buffer overflows [2], will randomize each
module’s address at load time. And thus, not only the
libraries, but also the main module will be loaded into
random addresses at runtime.

Further, if the code in the main module or libraries
references an absolute address, it has to be relocated at load
time. And thus, the library code cannot be shared between
different processes, because the referenced absolute
addresses are different in these two processes (i.e. the

library code for these two processes are different). This
problem also restrains the code sharing feature of libraries.
A solution called PIC (Position Independent Code [3]) is
proposed for the ELF (Executable and Linkable Format [4])
executable binaries which are common in Linux.

In libraries or main modules supporting PIC, the code
section does not reference any absolute addresses in order to
support code sharing between processes. However, absolute
addresses are unavoidable in programs. As a result, a GOT
table (Global Offset Table [4]) is introduced in the library.
This table resides in the data section and is not shared
between processes. All absolute addresses referenced by the
code section are stored in this GOT table. The code section
utilizes relative offsets to access these absolute addresses.
And thus, the library code can be shared among processes,
even if they are loaded into different memory address spaces.

The GOT table may also contain function addresses (i.e.
function pointers), such as functions imported from external
modules. These function pointers will be called at some
time during the program execution. If lazy binding [4] is
applied by the linker, this GOT table will be writable during
the execution. As a result, if the function pointers in GOT
tables are overwritten by attackers, the program’s control
flow will be hijacked and thus arbitrary code execution is
triggered. This kind of attack, i.e. GOT hijacking attack, is
first introduced by c0ntex [5].

Researchers pay few attentions on this specific threat.
More vulnerable and attractive targets such as return
addresses on the stack are the main battlefield between
attackers and defenders. Modern operating systems widely
deploys security enhancements like ASLR (Address Space
Layout Randomization [1]), DEP (Data Execution
Prevention [6]) and SafeSEH (Structured Exception
Handling [7]) and greatly raises the bar for attackers to
exploit these vulnerabilities. However, function pointers are
seldom protected and will become the next attack targets.

PointGuard [8] protects function pointers by encrypting
and decrypting. It introduces a big runtime overhead and
causes compatibility issues. RELRO [9], defines the
LD_BIND_NOW environment variable to prohibit lazy
binding and then sets the GOT to read-only after loading.
However, it introduces a big overhead at load time because
a lot of unused symbols are resolved at load time.

In this paper, we proposed a protection mechanism
SecGOT based on randomization to mitigate GOT hijacking
attacks. More specifically, the GOT’s relative offset to other
sections are randomized at load time, and the entries’ order

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0995

inside the GOT are also randomized. In this way, attackers
can hardly guess the target GOT entry’s address, and thus
cannot overwrite the function pointers stored in the GOT
table.

The implementation of SecGOT consists of a plugin of
the disassembler IDA Pro [10] and a custom dynamic linker
(or the loader in Linux). The plugin recognizes the GOT
table and all function pointer entries in this table, and all
references to these pointers. Then this plugin stores this
information into a custom section in the binary executable
file. Our custom dynamic linker reads this section and
randomizes the GOT table and its entries at load time, and
then updates all references to these entries.

The evaluation of SecGOT against 101 binary
executable files shows that SecGOT is efficient and
effective. The extra introduced load time is less than 2
milliseconds. Besides, all function pointer entries in GOT
are randomized and thus are protected from GOT hijacking
attacks.

II. RELATED WORK

GOT hijacking attacks were first introduced by c0ntex
[5]. After tampering with the function pointers in GOT,
attackers can hijack the control flow and execute arbitrary
malicious code.

Previous research focused on protecting function
pointers’ integrity can mitigate this threat to a certain extent.
Methods which aim to defeat stack overflow attacks, such as
[11–14], can enforce the integrity of function pointers on the
stack. However, function pointers in GOTs are not on the
stack, and thus are out of the scope of their protections.

PointGuard [8] is a compiler technique to enforce the
integrity of all function pointers by encrypting pointers
when stored in memory, and decrypting them only when
loaded into CPU registers. It can also protect the function
pointers in GOT from tampering. However, it introduces a
large overhead, and causes compatibility issues. Even worse,
there still are weaknesses [15] in PointGuard. And thus,
PointGuard is not deployed in practice.

Other lightweight and efficient protection mechanisms,
such as DEP (Data Execution Prevention [6]) and ASLR
(Address Space Layout Randomization [1]), are widely
adopted in modern operating systems. These protections
greatly raise the bar for attackers to hijacking programs’
control flow. However, attackers can bypass DEP through
overwriting function pointers in GOT with a valid code
address, similar as advanced attacks return-to-libc [16] and
ROP (Return Oriented Programming [17]). For ASLR, it
makes it difficult for attackers to guess target memory’s
address. However, the current ASLR implementations are
limited to randomizations of relatively low granularity, e.g.
the relative offset between variables in a module is fixed.
And thus, ASLR is not sufficient to protect GOT.

Another straightforward protection against GOT
hijacking attacks is to limit the GOT to be read-only. This is
done through a load-time adjustment. If the environment
variable LD_BIND_NOW [9] is defined, the loader (i.e.
dynamic linker) will resolve all imported symbols and fill
the GOT after loading, and then set the GOT to read-only.

However, this will introduce a large overhead when loading
because all symbols (even though most of them are not used
at all) are resolved at load-time.

III. BACKGROUND AND THREAT MODEL

A. Function Pointers in GOT Table

The GOT table in ELF file stores imported global
variables or functions’ addresses. For function pointers in
the GOT table, they are referenced by the code through a
PLT (Procedure Linkage Table [4]).

As shown in Fig.1, if an external function (e.g. printf) is
called in the code (e.g. step 1 in this figure), the control flow
jumps to the PLT’s n-th entry (e.g. step 2 in the figure). It is
worth noting that, the step 2 is done through a relative offset
rather than an absolute address of the PLT. The PLT
consists of several chunks of code. As shown in this figure,
the chunk related to printf then jumps to the address stored
in the GOT (e.g. the step 3).

Considering the performance, a lazy binding is
commonly used when the dynamic linker loads modules.
More specifically, the function pointer stored in the GOT
table firstly points back to the PLT code chunk (e.g. the step
4 in the figure). So, if printf is called for the first time, a
resolver of the dynamic linker is called (e.g. the step 5) to
retrieve the actual address of the target function. After the
resolving, the address of printf is written to GOT table (e.g.
the step 6) and then printf is called. If printf is called again
in the code, the resolver won’t be called again because the
address of printf is already stored in the GOT. Using this
lazy binding, function pointers which are not used at
runtime are not resolved. So, it saves a lot of running time.

B. Threat Model

The reference [5] shows a typical GOT hijacking attack.
In brief, due to the lazy binding, the GOT table is writable at
runtime. And thus, if attackers know where GOT is, they
can overwrite GOT entries with the shellcode’s address, and

Figure 1. Usage of PLT and GOT

thus hijack the program’s control flow. In this paper, we
assume attackers have the following abilities or limitations:

• Attackers can access the executable file on the disk.
And thus they know the relative offset between
sections, functions and so on.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0996

• Attackers may get the address of where the module
is actually loaded into memory. And thus, they know
all functions’ addresses in the module.

• Attackers are not able to read arbitrary memory. For
example, they cannot read out the GOT’s address
through reading the PLT memory.

Under these assumptions, we proposed our protection
scheme SecGOT which randomizes the GOT at load time to
protect GOT from tampering.

IV. DESIGN AND IMPLEMENTATION

SecGOT consists of two components, one plugin of the
disassembler IDA Pro to recognize function pointer entries
in the GOT table and all references to them, and one custom
dynamic linker which randomizes the executable module or
library at load time. Fig. 2 is the architecture of SecGOT.

A. Recognize GOT and Save Infromation

SecGOT first recognizes all GOT entries and their
references. An IDA Pro plugin is developed to finish this
work. The workflow of this plugin consists of three steps:

• Recognize the GOT table in the target ELF file. The
plugin reads the section named “.got.plt ” to locate
the GOT table. This section contains all function
pointers of the GOT table.

• Find all references to function pointer entries in the
GOT table. For each function pointer entry in the
GOT table, all references to this function pointer are
identified through the cross-reference information
provided by IDA Pro. All these references should be
updated if the GOT table is randomized after loading.

• Store all recognized function pointer entries and
references into the ELF file. A custom section
named “.secgot” is defined and inserted to the end of
the ELF file. This section consists of blocks related
to function pointer entries in the GOT table. More
specifically, each block records the address of a
function pointer entry in the GOT table and all
references to this entry. A custom structure is
defined to save this information efficiently.

ELF�file

IDA�Plugin
recognize

GOT

find
references

rewrite
ELF

new�ELF�file

custom�dynamic�linker

Parse ELF

randomize
GOT

update
references ELF�execution

Figure 2. Architecture of SecGOT

All these three steps can be done with the help of the
disassembler IDA Pro. The plugin we implemented has
about 200 lines of code.

In addition, this plugin also rewrites the section named
“.interp” in the ELF file. This section defines the absolute
path of the dynamic linker which will be invoked when
loading the ELF file. We change this path to our custom
dynamic linker’s path when rewriting the ELF binary.

B. Randomize GOT at Load Time

After the ELF is rewritten by the IDA Pro plugin and
launched to execute, a custom dynamic linker is invoked to
interpret the new section “.secgot” and to randomize the
GOT table. It also consists of three steps:

• Parse the ELF file and read out the “.secgot” section.
Contents in this section are read out, including the
GOT table’s length, each entry’s address and all
references’ addresses.

• Randomize the GOT table’s address and the relative
order of all its entries. The pseudo code of this
randomization is listed in Table I, i.e. the function
RandomGOT. It first picks up a random unused
memory address for the new GOT table. And then, a
record array which keeps the new order of entries is
created. A simple randomization algorithm is applied
on this record array. Finally, entries in the GOT table
are copied into the new GOT table according to this
record array, as shown in the function RandomGOT.

• Update each reference to the GOT entries. This
process is quite simple, as shown in function
UpdateRef in Table I.

The custom dynamic linker is built upon the existing
dynamic linker in the glibc library. In addition to all its
existing functionalities, we instrument the previous three
steps to the linker. After linking with this new custom linker,

TABLE I. ALGORITHM OF THE GOT RANDOMIZATION AND
REFERENCES UPDATING

function RandomGOT(got, length){
 newAddr = rand_unused_mem(); // pick up a random unused memory

newGOT = new_mem(newAddr, length); // new memory at newAddr
records = array(length); // record the new order of each entry
for(int i=0; i<length; i++)
 records[i]=i; // initialization
for(int i=0; i< length; i++){
 int j = randInt(0,i); // random number between 0 and i
 swap(records [i], records [j]);
}
for(int i=0; i< length; i++)
 newGOT[records[i]] = got[i]; // randomize entries in GOT
return (newGOT, records);

}

function UpdateRef(got, newGOT, records, length, references){

for(int i=0; i< length; i++){
 addr = got[i];
 newAddr = & newGOT[records[i]];
 for refAddr in references[addr]:
 // update each reference with the new GOT addr.
 update_memory(refAddr, newAddr);

}
}

the GOT table is randomized and compatible with the code
in the ELF file. And attackers can hardly hijack the GOT.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0997

V. EVALUATION

We evaluate SecGOT against the 101 ELF binary
executable files in the /bin directory of the Ubuntu 10.04.
All these 101 binaries are rewritten by the IDA Pro plugin
first, and then linked with our custom dynamic linker, and
finally executed as they are expected.

During this evaluation, we also measure the file size
increment, load-time overhead and correctness. These
evaluations show that SecGOT is efficient and effective.

• The file size increment after rewriting by the IDA
Pro plugin. The result shows that the file size
increment is quite small, i.e. all these increments
except one are smaller than 2KB.

• The load-time overhead introduced by the custom
dynamic linker. Our custom dynamic linker
randomizes the GOT before the control transfers to
the code section. As a result, an overhead is
introduced. The evaluation shows that, the
randomization of SecGOT only introduces negligible
overhead, less than 2 milliseconds.

• The correctness of the rewritten ELF file. The GOT
table is randomized by SecGOT. And thus, if any
reference to a GOT entry is missed to be updated,
the program will fail to behave correctly. For all
these 101 binaries hardened by SecGOT, they are
executed for several times. The results show that
they behave correctly. It means that SecGOT is
compatible with the existing system.

As we can see, the file size increment and the load-time
overhead are positively related to the size of the GOT table.
We also evaluate the size of the GOT table for each binary.

Table II shows the evaluation of the GOT table size. As
shown in the table, all of them have a small GOT table (i.e.
less than 200 entries), except for one application (i.e. edb).
Within the range 41~60, there are 32 applications (including
open and kill). And all these 32 applications’ GOT tables’
average size is 50.

In addition, the GOT entries are all randomized. And thus,
it can protect ELF executables from GOT hijacking attacks.

VI. CONCLUSION

GOT hijacking attack is an underestimated threat. In this
paper, we proposed a scheme SecGOT based on
randomization to protect function pointers in GOT tables.
Results show that it is an efficient and effective solution.

TABLE II. EVALUATION OF THE GOT TABLE SIZE

GOT size 1~20 21~40 41~60 61~100 101~200 200~

#app 9 15 32 26 18 1

average
size

12 31 50 75 141 959

example
app

busy-
box

kill
echo

open
sleep

cat
ps

cp
tar

edb

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their valuable comments. This work is supported by the
National Natural Science Foundation of China under the
Grant No. 61003216.

REFERENCES
[1] PaX-Team, “PaX address space layout randomization (ASLR),” 2003.

[Online]. Available: http://pax.grsecurity.net/docs/aslr.txt.

[2] A. One, “Smashing The Stack For Fun And Profit,” Phrack Magazine,
vol. 7, no. 49, 1996.

[3] Yobot, “Position-independent code,” Wikipedia, 2012. [Online].
Available: http://en.wikipedia.org/wiki/Position-independent_code.

[4] System V Application Binary Interface: Intel386 TM Architecture
Processor Supplement, 4th ed. The Santa Cruz Operation, Inc., 1997,
p. 377.

[5] C0ntex, “How to hijack the Global Offset Table with pointers for root
shells.” [Online]. Available: http://www.open-security.org/texts/6.

[6] S. Andersen and V. Abella, “Data Execution Prevention: Changes to
Functionality in Microsoft Windows XP Service Pack 2, Part 3:
Memory Protection Technologies,” MSDN online library, 2004.
[Online]. Available: http://technet.microsoft.com/en-
us/library/bb457155.aspx.

[7] Microsoft Corporation, “Image has Safe Exception Handlers,” MSDN
online library. [Online]. Available: http://msdn.microsoft.com/en-
us/library/9a89h429(v=vs.80).aspx.

[8] C. Cowan, S. Beattie, J. Johansen, and P. Wagle, “PointGuard TM:
Protecting Pointers From Buffer Overflow Vulnerabilities,” in
Proceedings of the 12th conference on USENIX Security Symposium,
2003, pp. 91–104.

[9] J. Cohen, “RELRO: RELocation Read-Only,” 2011. [Online].
Available: http://isisblogs.poly.edu/2011/06/01/relro-relocation-read-
only/.

[10] Hex-Rays, “IDA Pro: a cross-platform multi-processor disassembler
and debugger.” [Online]. Available: http://www.hex-
rays.com/products/ida/index.shtml.

[11] M. Frantzen and M. Shuey, “StackGhost: Hardware facilitated stack
protection,” Proceedings of the 10th USENIX Security Symposium,
2001.

[12] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, Q. Zhang, and H. Hinton, “StackGuard�: Automatic
Adaptive Detection and Prevention of Buffer-Overflow Attacks,”
Proceedings of the 7th USENIX Security Symposium, 1998.

[13] S. Sinnadurai, Q. Zhao, and W. Wong, “Transparent Runtime Shadow
Stack�: Protection against malicious return address modifications,”
pp. 1–11.

[14] N. Tuck, B. Calder, and G. Varghese, “Hardware and Binary
Modification Support for Code Pointer Protection From Buffer
Overflow,” 37th International Symposium on Microarchitecture
(MICRO-37’04), pp. 209–220, 2004.

[15] S. Alexander, “Defeating compiler-level buffer overflow protection,”
USENIX;LOGIN, vol. 30, no. 3, pp. 59–71, 2005.

[16] H. Shacham, M. Page, B. Pfaff, E. Goh, N. Modadugu, and D. Boneh,
“On the effectiveness of address-space randomization,” Proceedings
of the 11th ACM conference on Computer and communications
security (CCS’04), p. 298, 2004.

[17] E. Buchanan, R. Roemer, and H. Shacham, “When good instructions
go bad: generalizing return-oriented programming to RISC,”
Proceedings of the 15th ACM conference on Computer and
communications security, pp. 27–38, 2008.

Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013)

Published by Atlantis Press, Paris, France.
© the authors

0998

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [1275.591 878.740]
>> setpagedevice

