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Abstract

An algorithm for an asymptotic model of wave propagation in shallow-water is proposed and
analyzed. The algorithm is based on the Hamiltonian structure of the equation, and corresponds
to a completely integrable particle lattice. Each “particle” in this method travels along a
characteristic curve of the shallow water equation. The resulting system of nonlinear ordinary
differential equations can have solutions that blow up in finite time. Conditions for global
existence are isolated and convergence of the method is proved in the limit of zero spatial step size
and infinite number of particles. A fast summation algorithm is introduced to evaluate integrals
in the particle method so as to reduce computational cost from O(N2) to O(N), where N is the
number of particles. Accuracy tests based on exact solutions and invariants of motion assess the
global properties of the method. Finally, results on the study of the nonlinear equation posed
in the quarter (space-time) plane are presented. The minimum number of boundary conditions
required for solution uniqueness and the complete integrability are discussed in this case, while
a modified particle scheme illustrates the evolution of solutions with numerical examples.

1 Introduction

The nonlinear partial differential equation (PDE) of evolution

ut + 2κux − uxxt + 3uux = 2uxuxx + uuxxx (1.1)

results from an asymptotic expansion of the Euler equations governing the motion of an inviscid
fluid whose free surface can exhibit gravity driven wave propagation [9, 14]. The small parameters
used to carry out the expansion are the aspect ratio, whereby the depth of the fluid is assumed
to be much smaller than the typical wavelength of the motion, and the amplitude ratio, or ratio
between a typical amplitude of wave motion and the average depth of the fluid. Thus, the equation
is a member of the class of weakly nonlinear (due to the smallness assumption on the amplitude
parameter) and weakly dispersive (due to the long wave assumption parameter) models for water
wave propagation. However, at variance with its celebrated close relatives in this class, such as the
Korteweg-de Vries (KdV) and Benjamin-Bona-Mahony (BBM) equations, these small parameters
are assumed to be linked only by a relative ordering, rather than a power law relation. This allows
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to retain terms on the right hand side that would be of higher order with respect to both the
KdV and BBM expansions, and, in principle, consider dynamical regimes in which nonlinearity is
somewhat dominant with respect to wave dispersion.

The choice of the dimensional form (1.1) is dictated by its relative simplicity. In fact, the
equation written in this way refers to a frame of reference moving at uniform speed, which allows
to eliminate extra terms arising from the derivation of the equation in the lab frame of reference
(where the fluid can be considered at rest at some boundary). Thus, in the form presented here
the dependent variable u refers to the horizontal fluid velocity along the x-direction as measured at
time t by an observer moving at speed κ. This speed is related to the critical shallow water wave
speed

√
gh0, where g is the gravity acceleration and h0 is the undisturbed water depth.

The physical foundations of equation (1.1) are accompanied by some peculiar mathematical
features. These have received some attention in the recent literature, and no attempt will be
made here to provide a detailed reference list. Suffices to say that, like the KdV model, the
equation possesses the remarkable property of complete integrability, as evidenced by its Lax-
pair representation. Moreover, this property is complemented by the existence of a class of weak
solutions that can serve as a natural projection of the general solution of (1.1) to an approximating
(but still completely integrable) finite dimensional dynamical system [6, 9]. This system of ordinary
differential equations (ODEs) can be viewed as describing particles interacting through a long range
potential (here position and momentum dependent), which expresses advection of the particles by
the velocity u of the shallow water equation (1.1). The velocity is in turn determined by the particle
positions and momenta.

The present work focuses on developing and analyzing a numerical scheme based on the above
mentioned projection to weak solutions. Our emphasis is on simplicity and efficiency, rather than
high-order accuracy, though increased accuracy can be achieved with a modicum of extra effort. In
Section 2 we review the integrable formulation for the shallow-water equation (1.1) and show how
the particle method arises from this formulation in a straightforward manner. We then establish
the properties of the method from the viewpoint of ODEs, and, in particular, show that for a
relatively wide class of initial data there are no particle collisions in finite times. This no-collision
property is followed by the theory of convergence for the particle method presented in Section 3.
Next, Section 4 improves the particle algorithm by implementing a fast summation to reduce the
computational cost from O(N2) to O(N), where N is the number of particles. Sections 5 presents
a few tests of the particle method. The tests for the case κ = 0 show evidence of instability, which
turns out to be related to clustering of particles, in theory forbidden for finite times but in practice
occurring due to the exponentially fast decay of inter-particle distance. A simple redistribution
algorithm to prevent instabilities of this kind is then introduced in Section 5.1. Finally, Section 6
ventures briefly into the study of the initial-boundary value problem for the nonlinear evolution
equation (1.1).

2 The integrable formulation

By introducing the characteristics x = q(ξ, t) emanating from x = ξ at t = 0,

dq

dt
= u(q(ξ, t), t) , q(ξ, 0) = ξ , (2.1)
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a solution of equation (1.1) follows formally from the Hamiltonian system

qt(ξ, t) =
1

2

∫ ∞

−∞
e−|q(ξ,t)−q(η,t)| p(η, t) dη − κ ,

pt(ξ, t) =
1

2

∫ ∞

−∞
sgn(ξ − η) e−|q(ξ,t)−q(η,t)| p(ξ, t) p(η, t) dη .

(2.2)

Here the characteristics q(ξ, t) play the role of positions conjugate to the momentum-like vari-
ables p(ξ, t) [6] in the Hamiltonian

H =
1

4

∫ ∞

−∞

∫ ∞

−∞

(

e−|q(ξ,t)−q(η,t)| p(η, t) p(ξ, t) − κ
(

p(ξ, t) + p(η, t)
)

)

dη dξ , (2.3)

which yields system (2.2) by the (standard) Poisson structure

qt =
δH

δp
, pt = −δH

δq
,

with functional derivatives δ/δq, δ/δp with respect to the functions q(ξ, t) and p(ξ, t) at fixed time t.
The choice of initial condition for the position variable, dictated by the characteristics condition,
implies qξ(ξ, 0) = 1, so that the constraint

qξ(ξ, t) =
p(ξ, 0)

p(ξ, t)
(2.4)

is maintained at all times of existence of the solution (q(ξ, t), p(ξ, t)). Thus, the momentum variable
p(ξ, t) could be eliminated from the system to obtain an evolution equation containing only the
dependent variable q(ξ, t) and its first derivative with respect to the initial label ξ. Vanishing of
this derivative generically corresponds to crossing of characteristics curves, with loss of unique-
ness of solutions ξ(x, ·) to the equation x = q(ξ, ·). Constraint (2.4) implies that if the initial
condition p(ξ, 0) does not have zeros, then qξ(·, t) is bounded away from zero, thereby preventing
characteristics from crossing, for as long as |p(·, t)| <∞ [6].

The relation of system (2.2) with the original form (1.1) of the shallow water equation results from
the definition of the velocity u(x, t) in terms of characteristics q(ξ, t) and the conjugate momentum
p(ξ, t),

u(x, t) = −κ+
1

2

∫ ∞

−∞
e−|x−q(η,t)|p(η, t) dη . (2.5)

Equation (1.1) assumes a particularly compact form [9] by defining the auxiliary field m(x, t) as
m(x, t) ≡ (1 − ∂2

x)u(x, t). Replacing u− uxx by the auxiliary m, equation (1.1) can be written as

mt + umx = −2(m+ κ)ux . (2.6)

Substituting (2.5) into m, we obtain

m(ξ, t) = −κ+
p(ξ, t)

qξ(ξ, t)
, (2.7)

Notice that the initial condition qξ(ξ, 0) = 1 and relation (2.7) imply m0(ξ) + κ = p(ξ, 0), where
m0(·) is the initial value of m(·, t). Hence the constraint (2.4) can also read [5, 6, 12]

p(ξ, t) =
m0(ξ) + κ

qξ(ξ, t)
. (2.8)
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For the numerical algorithm to be developed later, it is convenient to put system (2.2) in a
slightly different (but entirely equivalent) form,

qt(ξ, t) =
1

2

∫ ∞

−∞
e−|q(ξ,t)−q(η,t)|

(

p(η, t) − κ
∂q

∂η
(η, t)

)

dη, (2.9a)

pt(ξ, t) =
1

2
p(ξ, t)

∫ ∞

−∞
sgn(ξ − η) e−|q(ξ,t)−q(η,t)|

(

p(η, t) − κ
∂q

∂η
(η, t)

)

dη , (2.9b)

where we have used the properties of the kernel exp |x−y| to take the constant κ under the integral
sign.

3 Discrete integrable system

The numerical algorithm proposed in [6] approximates the integrals in equation (2.2) by their
Riemann sums, thereby yielding Hamiltonian systems for “particles” with coordinates

qi(t) ≡ q(ξi, t)

and momenta

pi(t) ≡ p(ξi, t),

where ξi = Ξ + ih for some real Ξ, step-size h > 0 and i = 1, · · · ,N .
If we replace qη in the integrand of equation (2.9a, 2.9b) by formula (2.4), then the finite

dimensional system of ODEs for N particles for equation (2.9) can be written as

q̇i =
h

2

N
∑

j=1

e−|qi−qj |pj −
h

2
κ

N
∑

j=1

e−|qi−qj |
p0

j

pj
,

ṗi =
h

2
pi

N
∑

i6=j=1

sgn(qi − qj)e
−|qi−qj| pj −

h

2
κpi

N
∑

i6=j=1

sgn(qi − qj)e
−|qi−qj |

p0
j

pj
,

(3.1)

where p(ξj , 0) ≡ p0
j . We will refer to system (3.1) as the particle method for solving the shallow-water

equation (1.1).
We remark that particle methods have been discussed in the context of evolution equations with

similar structure in [10], and, while different from ours, the approach used therein can result in a
similar system of ODEs.

It is also worth pointing out that the (q, p) system is in principle more general than the shallow
water equation (1.1), which follows from system (2.2) as a particular case once the constraint (2.4)
is taken into account. The constraint has the effect of removing one “degree of freedom” from
the system, by effectively projecting it to an invariant solution manifold where the dynamics is
governed by equation (1.1) where only the first time-derivative appears.

It is remarkable that system (2.2) itself follows from a more general class of systems which
possess a Lax-pair, and hence it belongs to the family of completely integrable equations. It can
be shown [6] that the isospectral problem

λφ(ξ, t) =

∫ ∞

−∞
k(ξ, η; t)φ(η, t) dη , φt(ξ, t) =

1

2

∫ ∞

−∞
sgn(ξ − η) k(ξ, η; t)φ(η, t) dη , (3.2)
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yields system (2.2) for the special choice of the symmetric kernel k(ξ, η; t) given in terms of q(ξ, t)
and (non-negative) p(ξ, t) by

k(ξ, η; t) =
1

2
e−

1

2
|q(ξ,t)−q(η,t)|

√

p(ξ, t) p(η, t) . (3.3)

The same Riemann sums approximation to integrals used to derive the particle systems now yields
its Lax pair through the matrix approximation to the kernel k(ξi, ηj ; t) ≡ hkij(t),

λφi(t) =

N
∑

j=1

kij(t)φj(t) , φ̇i(t) =





N
∑

j=i+1

−
i−1
∑

j=1



 kij(t)φj(t) . (3.4)

The numerical scheme based on the particle method relies on existence and uniqueness of so-
lutions of the initial value problem for system (3.1). Moreover, collisions among particles are un-
desirable, and it might be expected that these correspond to finite-time singularities in the ODEs’
solution.

For simplicity, let us consider the initial value problem for case κ = 0 of the Hamiltonian
system (3.1)

q̇i =
1

2
h

N
∑

j=1

e−|qi−qj | pj , ṗi =
1

2
h

N
∑

i6=j=1

sgn(qi − qj)e
−|qi−qj | pi pj . (3.5)

The above discrete system is integrable and possesses an important no-collision principle, namely,
if the initial momenta are positive, pi ≥ ǫ > 0, i = 1, . . . N for some constant ǫ, then the solution
of system (3.5) exists uniquely for all times. In particular, no two particles can occupy the same
position qi(t) = qj(t), for some i 6= j, at any finite time t [7].

The global existence result can be easily modified to include the case κ 6= 0, as it is evident
from the integrable formulation (2.2), which shows that the p-components are simply shifted by the
constant κ. In this case the restriction to positive initial momenta corresponds to m0(x)+κ > 0 by
definition (2.8), which has a natural physical interpretation within the asymptotic derivation of the
shallow water model (1.1) (Camassa, Huang and Lee, in preparation). Also worth noticing is that
while collisions lead to the blow-up of the solution in the momentum components, it is possible to
continue the solution past blow-up time(s) by defining an appropriate set of rules, such as energy
conservation, using the dynamical system structure of the ODEs [9].

For fixed h, the system of ODE (3.5) and its more general form (3.1) are members of the
(extended) Toda-lattice family [15, 16, 17]. This connection becomes particularly transparent when
viewed from the Lax-pair [6], but, as mentioned above, the complete integrability of the system
needs further study in order to be used for addressing issues of practical relevance for the continuum
(PDE) solutions of (1.1).

Let q(ξ, t), p(ξ, t) denote the solution to the continuous problem (2.9) corresponding to the initial
data

q(ξ, 0) = ξ, p(ξ, 0) = p0(ξ) , (3.6)

while q̃(t), p̃(t) will stand for the solution of the particle system (3.5) emanating from initial
conditions

q̃i(0) = q(ξi, 0) ≡ ξi, p̃i(0) = p0(ξi) . (3.7)
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Let qi(t) = q(ξi, t) denote the PDE solution evaluated at the grid points, and define the difference
between PDE and ODE variables as

φi = qi − q̃i , ψi = pi − p̃i . (3.8)

In what follows, the (discrete) l1-norm, is defined by ‖φ‖= h
∑

j |φj |.
Let the initial total momentum be P = h/2

∑N
i=1 pi < ∞. Suppose that (3.6) and (3.7) are the

initial data for the system (2.9) and (3.5), respectively, with κ = 0. One can show [7] if the function
p0(ξ) > 0 is sufficiently smooth and decays rapidly at infinity, for any finite time T > 0 there exists
a grid-step size h such that the difference between the continuum and discrete variable satisfies

‖ φ ‖ +
1

P
‖ ψ ‖≤ h2 C

2LP

(

e2LP t − 1
)

(3.9)

for 0 ≤ t < T , where C is a constant independent of T or h and L > (1 + h/2)/2. Thus, we have
established by this estimate a convergence theorem which guarantees a quadratic convergent rate
of the particle algorithm to the solutions of the PDE (1.1).

4 Fast summation algorithm

The major computational cost for solving the system of 2N equations (3.1) is the cost of evaluating
the Riemann sum at each time step. Computing the summations alone takes O(N2) operations for
an N -particle system, if no recursion formulas are used.

With the aim of reducing the computational cost for the algorithm, we propose a recursion
formula based on the principle of absence of particle collisions in any finite times. This principle
allows us to strip the absolute value notation in the power of the exponential function, which in
turn makes a recursion relation for evaluating the sums possible. With the help of this recursion
formula, the total operations needed for performing the summation is reduced to O(N) for the
N -particle system. We present the fast summation algorithm for the non-dispersive case κ = 0.
The case κ 6= 0 is completely analogous but leads to longer expressions.

By the no-collision property, the particle method (3.1) has qi > qj if i > j and vice-versa if
i < j. Hence equation (3.1) can be written as

q̇i =
h

2

( i−1
∑

j=1

e−(qi−qj)pj + pi +

N
∑

j=i+1

e−(qj−qi)pj

)

,

ṗi =
h

2
pi

( i−1
∑

j=1

e−(qi−qj)pj −
N

∑

j=i+1

e−(qj−qi)pj

)

.

(4.1)

Define new variables:

f l
i =

i−1
∑

j=1

e−(qi−qj)pj , f r
i =

N
∑

j=i+1

e−(qj−qi)pj . (4.2)

Equation (4.1) then becomes

q̇i =
h

2

(

f l
i + pi + f r

i

)

, ṗi =
h

2
pi

(

f l
i − f r

i

)

. (4.3)
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h 0.1 0.05 0.025 0.0125 0.00625

‖ u − uexact ‖ 6.90e-4 1.94e-4 4.65e-5 1.17e-5 3.03e-6

rate 1.83 2.06 1.99 1.93

Table 5.1. Convergence rate for the particle method.

One can see that with a pre-computed f l and f r the number of operations needed for the Riemann
sum is O(N) for the system of equations. Since the operations required for f l or f r are also growing
as O(N), the total number of operations is O(N). The quantities f l and f r can be solved via the
recursion relations

f l
i+1 = e−(qi+1−qi)

(

f l
i + pi

)

f r
i+1 = e−(qi−qi+1)f r

i − pi+1, (4.4)

where, because e−(qi−qi+1) leads to exponential growth, for numerical stability the recursion relation
for f r is better solved backward as f r

i =
(

f r
i+1 + pi+1

)

e−(qi+1−qi).

5 Numerical results

This section presents two examples of application of the particle method to the numerical solution
of equation (1.1), and examines the accuracy of the scheme via several error estimate criteria. The
first example tests the method on a traveling wave solution for the dispersive case κ 6= 0. The other
example deals with initial value problem of the non-dispersive case, κ = 0. The aim is to illustrate
the efficiency and the order of accuracy for the scheme. For both cases it may be expected that
the solution evolves free of singularities for all times (a priori bounds on the initial condition [9]
which ensure that a vertical slope is achieved in finite time at inflection points are not satisfied for
the initial conditions we consider). Nevertheless, for the dispersionless case κ = 0 the numerical
simulation shows that a rather sharply peaked solitary wave forms and moves away from the origin.
From the viewpoint of the particle method, the peaked solution arises from particles clustering
rapidly in the region of the peak of the solitary wave(s). Such clustering behavior causes problems
in the particle method, as the ordering of the particles becomes affected by numerical errors. An
efficient implementation is introduced in this section to remove this complication.

Example 1: Smooth traveling wave solution κ 6= 0. An explicit exact solution of equation (1.1)
is u(x, t) = U(x− ct) ≡ U(s) [8] , where c = 8κ/3 and U(s) is given by

U(s) =
8

3
κ

(

1 − 3
√

3 + 6 sin 2z

(1 + 2 cos 2z)(2
√

3 cos 2z −
√

3 cos 4z + 2 sin 2z + sin 4z)

)

, (5.1)

with z = arctan(es/2)/3. The initial condition u0(x) = U(x) yields the initial data for the particle
algorithm q(x, 0) = x and p(x, 0) = κ+m0(x), where

m0(x) = κ

(

c2

(c− U(x))2
− 1

)

. (5.2)

For our numerical simulation of the traveling wave solution (5.1), we choose κ = 1. All calculations
in this section use a fixed ratio ∆t/h = 1/2, where ∆t is the time step and h is the spatial grid size.
Time integration is performed by an explicit fourth-order Runge-Kutta method. We introduce the
(finite) l2-norm ‖ e ‖2= h

∑

j e
2
j , to study the numerical error between the exact and computed

solutions. On a fixed domain [-30, 30], at time t = 1, we list the error in Table 5.1. As the table
shows, in this case the particle method is second-order accurate in space, consistently with the
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theory. Next, we consider a wider domain, [-50, 50]. The traveling wave solution is computed
up to time t = 5. We compare the elapsed CPU time between the fast summation algorithm
and the original algorithm with different number of particles. This results in Table 5.2, which

seconds �N 1000 2000 4000 8000 16000

fast summation 1 2 4 9 19

ratio 2 2 2.2 2.1

original 17 74 290 1157 4505

ratio 4.35 3.92 3.99 3.89

Table 5.2. CPU time for the two summation algorithms. The table shows that the fast summation algorithm

is O(N), and the straightforward algorithm is O(N2), where N is the number of particles.

shows explicitly that the fast summation algorithm for N particles is O(N), while the original
straightforward algorithm is O(N2).

Example 2: Sharp peaked traveling waves for κ = 0 and numerical particle collisions. In ref. [6]
during the evolution of the solution u(x, t) out of the initial condition u(x, 0) corresponding to
m0(x) = a sech2(x) (equivalent to q(ξ, 0) = ξ and p(ξ, 0) = a sech2(ξ) for the particle method),
a rather sharply peaked wave forms and moves to the right, followed by others emerging from
the location of the initial hump m0(x). During the simulation, one can observe that the particles
rapidly cluster in the region of the peak of the solitary waves. Such pile-up phenomenon suggests
that particles get very close to each other in this region. When the distance between particles is
so close that the machine precision can no longer distinguish between locations of the coalescing
particles, particle collisions occur numerically. This effect is of course purely numerical, as we have
mentioned in Section 3 that particle collisions cannot take place in finite time. As a consequence
of such a numerical artifact, the particle method breaks down shortly after the numerical collision
occurs. The first row in Table 5.3 shows the times when numerical collisions occur in the course of
computing p and q, with respect to increasing floating point precision. The table shows that higher
precision arithmetic extends the time for first occurrence of particle collisions, thereby providing
evidence that the numerical collision is dominated by the round-off error.

5.1 Redistribution algorithm

Taking advantage of the concentration of particles leading numerically to artificial collisions allows
to implement a redistribution algorithm rather efficiently: when two particles, with positions qi
and qi+1, are too close to be distinguished within machine precision, we replace them with one
particle at the same location carrying a momentum equal to the sum of pi and pi+1. After we
carry out this replacement, we relabel the rest of the particles from the original i + 2, . . . ,N to
i+1, . . . , N−1. In other words, we reduce the dimension of the system of ODEs from 2N to 2N−2
by combining any two clustering particles. Of course, this method is somewhat crude in that the
moving (Lagrangian) grid can become too sparse in regions away from the clustering particle, as
this process of replacement depletes the total number of particles. While it is not too difficult to
implement a true redistribution that conserves particles, we leave this out for simplicity.

As we indicate in the first row of Table 5.3, the numerical collision occurs at time t = 54.9
for the single precision calculation, and at t = 140.3 for the double precision calculation. There
are no numerical collisions for the quadruple precision calculation until t = 317.1. We perform a
calculation up to t = 150 at each of the three different precisions. The result from the quadruple
precision calculation is used as a relative exact solution, since there are no numerical collisions
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single precision double precision quadruple precision

time 54.9 140.3 317.1

u(x=50.6,t=150) 0.317747861146927 0.317904674362106 0.317904674362127

Table 5.3. First collision times vs. arithmetic precision of numerics. The second row shows the numerical

value of u at the first soliton peak location x = 50.6 and t = 150. The redistribution algorithm is employed

with the single and double precision arithmetic runs.
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Figure 5.1. (a) Evolution under equation (1.1) for κ = 0 of the initial condition (dash) m0(x) = a sech2(x),

with a = 1/2 for three different precisions, at time t = 150. (b) Magnification of the region around the

second emerging peaked solitary wave.

for this calculation at t = 150. After applying the redistribution algorithm for the single and
the double precision calculation, the second row of Table 5.3 is the computed solution for u at
x = 50.6 where the first peaked soliton is located. These values in the table show that the numerical
solution obtained by using the double precision arithmetic matches the relative exact solution up
to thirteen digits. The solution obtained by using the single precision arithmetic, however, has
only three matching digits. It seems reasonable to attribute this discrepancy to the nonlinearity
of the equation, which can amplify the round-off error and the error caused by the redistribution
algorithm, since they are both influenced by the different floating-point precision used. Thus, while
the same algorithm is used in the two computations, the overall errors for the numerical solutions
grow nonlinearly while approaching the near-singular clustering episodes.

Figure 5.1 is the plot of reconstructed solutions at t = 150 for the three different precisions. The
solid line is the result from the quadruple precision. The comparison shows that solutions computed
from the redistribution algorithm are indistinguishable from the reference high arithmetic precision
solution.

5.2 Error analysis and the isospectral problem

As indicated in §2, the field p(ξ, t) is tied to q(ξ, t) by the constraint (2.4). For the discretization of
system (2.9) offered by the particle method, this exact relation between the p and q variables does
not survive. However, convergence of the particle method to the PDE solution and its smoothness,
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inherited from appropriate classes of initial data, assures that given a certain time T there exists a
step-size h such that (abusing notation a little)

p(ξi, t) = pi(t) +O(h2) and p(ξi, t) =
2hp0

i

qi+1(t) − qi−1(t) +O(h3)
, (5.3)

for all times 0 < t < T .
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Figure 5.2. Evolution of error differences for the initial value problem of equation (1.1) with u(x, 0) =

1/2sech2(x), N = 8000, h = 0.1, ∆t = 0.05, and κ = 0. Solid curve: error monitor eh(t). Dashed curves:

individual particle error |pi(t) − 2hp0
i
/(qi+1(t) − qi−1(t))|, with i = 10 (long-dashed), i = 20 (short-dashed),

i = 60 (long-short-short-dashed), i = 100 (long-short-dashed).

Because the sharpness of the convergence estimates (3.9) is not known precisely, the practical
question of how long the solution of the particle method can be trusted to stay close to that of
the PDE for a given h is not addressed by the convergence proof. The constraint (2.4) in its
version (5.3) offers a different and more systematic way to monitor the error. In fact, apart from
spurious cancellations, relations (5.3) show that the deviation

eh(t) ≡ sup
i

∣

∣

∣

∣

pi(t) −
2hp0

i

qi+1(t) − qi−1(t)

∣

∣

∣

∣

(5.4)

keeps track of the error between the exact PDE solution and its approximation by the particle
method. We show this error monitor applied to the general evolution out of an initial hump for
κ = 0, for an initial value where an exact solution is not available. Figure 5.2 shows that after an
initial transient the error eh(t) grows nonlinearly to saturate at some (mean) constant level. This
behavior is related to the evolution of the difference between p’s in the definition (5.3) for each
individual particle, when the first peaked wave of Figure 5.1 forms and moves towards the right.
This can be seen in the dashed curves of the figure, where this difference is plotted vs. time. Notice
that for locations sufficiently far from the origin where the initial hump is located, viz. i = 60 and
i = 100 in the figure, the pi(t)’s computed by both expressions in (5.3) relax back to zero after
the passage of the first wave, and hence so does the error. Also notice that for these particles the
individual error suffers a sharp order-of-magnitude increase after an initial slow growth at about
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the times when the first wave reaches these particles’ locations. This behavior is related to the
clustering effect which we examine in more detail next.

Another, more specific, error monitor can be based on the complete integrability of equa-
tion (1.1). If the discrete approximation has to faithfully represent the continuum evolution, the
spectrum of the continuum system (3.2) and its discrete counterpart (3.4) need to be close, and the
time advancing scheme must leave the spectrum invariant. (Monitoring the spectrum is equivalent
to monitoring the integrals of the motion of the shallow water equation through the formulae con-
necting it to the iterated kernels [6].) This is illustrated by Figure 5.3, where the initial spectrum
from the continuum system (3.2), the initial t = 0 spectrum of (3.4) and its snapshot at time t = 50
are plotted for the first significant 50 eigenvalues. Here we have taken κ = 0, m0(x) = sech2(x)/2,
which leads to closed form solution for the (infinite, purely discrete) spectrum of the continuum
problem (3.2) [6] λn = 1/(4n2 − 1), for n = 1, 2, .... As one can see, the discretized spectrum drifts
away from its continuum counterpart after the first O(N1/2) largest eigenvalues, which gives an
indication of the accuracy of the discretization, while the spectrum of the particle scheme remains
constant in time (at least within plotting accuracy) for these eigenvalues.
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Figure 5.3. Comparison of the first 50 eigenvalues between the continuum problem (3.2) and the discrete

system (3.4) with initial condition m(x, 0) = 1/2sech2(x), N = 4000, h = 0.025, ∆t = 0.0125, and κ = 0.

5.3 A transient phenomenon

As we have seen in the numerical example for κ = 0, the formation of the sharp (corner-like)
peaks shown in Figure 5.1 is associated with the particle clustering discussed in §5. The long-time
asymptotic of the corresponding discrete system studied in [6], however, predicts that each particle
in the discrete system eventually breaks out of the cluster and travels alone on a constant speed
trajectory, when t→ ∞. For a finite number of particles, it is hence evident that the phenomenon
of clustering is merely transient. Fully understanding this transient behavior of the discrete system
poses an interesting challenge for the analysis of the PDE (1.1).

With the aim of probing the transient behavior of the discrete system, we revisit the process
of formation of clusters by plotting the trajectories of particles in the (x, t) plane for a rather
coarse grid. The clustering process acts as a high particle-density front sweeping through the
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computational domain. This front corresponds to the first peaked solitary wave of Figure 5.1. The
trailing edge of this quasi-shock wave leaves behind a rarefaction wave. Particles in the rarefaction
wave region interact again and form the next clustering of particles, corresponding to the next
peaked wave of Figure 5.1; the onset of this second clustering can be seen at the final time in
Figure 5.4(a). (Notice that this rarefied area can increase errors due to lack of resolution, especially
when coupled with a redistribution algorithm that depletes the total number of particles.)

Figure 5.4(b) shows that the momentum of the front at t ≈ 15 is completely transferred to the
last particle around t = 110; thereafter this particle travels alone with linearly increasing distance
from the rest of the particles. This behavior can be described by the long time asymptotics based
on the completely integrable structure of the particle system [6].
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Figure 5.4. (a) Particle trajectories on the (x, t) plane for the particle method. Here h = 0.8, N = 81 and

the final time is t = 80. The shock-like wave of high particle-density sweeping through the domain at speed

∼ 1/3 can be clearly seen, as well as the next incipient collision near x = 10. (b) Same as (a) with fewer

particles N = 21; the momentum of the front seen at t ≃ 15 is completely transferred to the last (21st)

particle around t = 110. Also seen in this plot is the formation of the second front corresponding to the new

emerging peaked wave at t ≃ 130.

6 An initial-boundary value problem

The “quarter-plane problem” for equation (1.1) is obtained by restricting x to the positive semi-
axis and assuming boundary conditions at x = 0 and for x → ∞, besides the initial condition
u(x, 0) = f(x). For physical applications, it is natural to impose u(x, t) → 0 as x → ∞ together
with any number of derivatives for any finite time t. At x = 0 the situation is more delicate: it is
not immediately obvious how many boundary conditions one must assume without overdetermining
the problem. A complete discussion of the initial-boundary value problem is beyond the scope of
this paper. In this section, we will only show that assigning the boundary condition u(0, t) = g(t),
where g(t) is some smooth function of time with g(t) ≤ 0 for all t, is enough to guarantee uniqueness
of the solution. Clearly, this must also constitute a minimal set of boundary conditions. As usual,
only the special case when κ = 0 is discussed here since this restriction can be relaxed with little
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extra effort.
Consider the shallow-water equation (1.1) posed in a quarter plane, x ≥ 0. Assume that a strong

solution u(x, ·) exists in H4(0,∞), where Hn(0,∞) is the Sobolev space of (real valued) functions
f on the positive real line,

∫ ∞
0 (

∑n
k=0 |f (k)(x)|2) dx < ∞. Suppose the initial data u(x, 0) = f(x)

and smooth boundary data at x = 0, u(0, t) = g(t), are given, and these two conditions are
compatible at the origin, g(0) = f(0). One can show, by contradiction, that if g(t) ≤ 0 the (strong)
solution is unique for all times of existence [7]. Suppose in fact that there exist two (strong)
solutions u1(x, t) and u2(x, t) for the same data, together with their auxiliary fields m1(x, t) and
m2(x, t), respectively. The evolution equation for the difference variables u(x, t) = u1(x, t)−u2(x, t),
m(x, t) = m1(x, t) −m2(x, t) is

mt = −2(mux +mux) − (umx + umx) (6.1)

where u ≡ (u1 + u2)/2 (and m ≡ (m1 + m2)/2) denotes the algebraic mean of the two different
solutions. Thus, the linearized form of equation (2.6) around the algebraic mean of the hypothetical
multiple solutions, equation (6.1), governs the evolution of u(x, t) with homogeneous initial and
boundary data u(x, 0) = 0 and u(0, t) = 0. Estimates on the evolution of the H1-norm ||u||1
can be obtained by multiplying (6.1) by u(x, t) and integrating both sides of the equation. After
integration by parts and taking into account the homogeneous boundary condition u(0, t) = 0, one
gets

∂t ‖u‖2
1= −

∫ ∞

0

(

3uyu
2 + uy u

2
y − uyyy u

2
)

dy + u(0, t)u2
x(0, t) . (6.2)

The integral term can be easily bounded by the H1-norm and the sup-norm on ux and uxxx (or
mx, all bounded by the H4-norm we assumed to exist), so that (recall u(0, t) = g(t))

‖u(·, t)‖2
1≤ C

∫ t

0
‖u(·, s)‖2

1 ds +

∫ t

0
g(s)u2

x(0, s) ds , (6.3)

where the constant C is
C = sup

s∈[0,t]
{3|ux|∞(s), |uxxx|∞(s)} .

The case g(t) non-positive is manifestly handled with inequality (6.3), since the last (inhomoge-
neous) term generated by the boundary condition can be dropped if g(t) ≤ 0 while maintaining the
inequality. Applying Gronwall’s lemma, and taking into account the initial condition u(x, 0) = 0,
shows that ‖u(·, t)‖1= 0, which contradicts the assumption of existence of two distinct (strong)
solutions u1 and u2.

6.1 Numerical experiments

For the initial-boundary value problem, an equivalent formulation to (2.2) for the particle method
is

qt(ξ, t) = −κ+
1

2

∫ ∞

Ξ

(

e−|q(ξ,t)−q(η,t)| − e−(q(ξ,t)+q(η,t))
)

p(η, t) dη,

pt(ξ, t) =
1

2
p(ξ, t)

∫ ∞

Ξ

(

sgn(ξ − η) e−|q(ξ,t)−q(η,t)| − e−(q(ξ,t)+q(η,t))
)

p(η, t) dη,

(6.4)

where the location Ξ(t) is defined by q(Ξ(t), t) = 0, and

1

2

(

e−|x−y| − e−x−y
)

≡ G0(x, y) (6.5)
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Figure 6.1. A snapshot of numerical solutions of the particle method for the initial-boundary value prob-

lem (6.4), with g(t) = 0, κ = 0, u(x, 0) = xe−x/2, with N = 1000 and grid size h = 0.05, at time t = 100.

is the domain Green’s function with homogeneous Dirichlet boundary condition. For the special case

g(t) ≡ 0, we have
dΞ

dt
= 0 and hence Ξ = 0 at all time. For the numerical example that illustrates

our analysis for the initial boundary value problem of the nonlinear shallow-water equation (1.1),
we take the initial condition u(x, 0) = f(x) = x e−x/2 (so that m0(x) = e−x) and homogeneous
boundary condition g(t) = 0 at x = 0. A snapshot of the solution after some time is shown in
Figure 6.1. The grid-refinement study is documented in Table 6.1 for the case κ 6= 0, where at a
fixed time, the difference between solutions obtained by using grid size h and that obtained by 2h
decreases by a factor of 1/4, as we refine the mesh by a half grid size. Such a reduction of errors
gives evidence to the convergence of the numerical solutions.

6.2 Lax-pair for homogeneous boundary conditions

The quarter plane problem for equation (1.1) with homogeneous boundary conditions u(0, t) = 0,
u(x, t) rapidly decaying to zero as x → ∞, follows again from an isospectral problem. It can be
shown that in this case the spectrum of the matrix problem

λ

(

φ1(ξ, t)
φ2(ξ, t)

)

=

∫ ∞

0

(

0 k(ξ, η; t) + k+(ξ, η; t)
k(ξ, η; t) − k+(ξ, η; t) 0

)(

φ1(η, t)
φ2(η, t)

)

dη , (6.6)

h 0.0125 0.00625 0.003125 0.0015625 0.00078125

‖ uh − u2h ‖∞ 2.52e-5 6.77e-6 1.68e-6 4.18e-7 1.05e-7

ratio 3.72 4.03 4.02 3.98

‖ uh − u2h ‖2 4.19e-6 1.16e-6 2.66e-7 6.72e-8 1.69e-8

ratio 3.64 4.32 3.96 3.98

Table 6.1. The grid-refinement study on the second-order particle method in the infinity and l2 norms,

respectively, for the initial-boundary value problem (6.4), with g(t) = 0, κ = 1, u(x, 0) = xe−x/2. The

computational domain is [0, 50] with a uniform grid of size h, and the final time is t = 1. Decreasing the

grid size from h to h/2 decreases the difference between the solutions of the two grids by a factor of 1/4.
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Figure 6.2. Spectrum (first 50 eigenvalues) of the Riemann sums approximation of the eigenvalue prob-

lem (6.6) at time t = 0 (circles) and t = 100 (crosses), for the initial condition f(x) = xe−x/2, with κ = 0.

For this simulation N = 1000, h = 0.05 and ∆t = 0.025.

where k(ξ, η; t) is the kernel (3.3) and k+(ξ, η; t) is defined by

k+(ξ, η; t) =
1

2
e−

1

2
(q(ξ,t)+q(η,t))

√

p(ξ, t) p(η, t) , (6.7)

is invariant in time. Just as in the case of the real line problem, this provides an opportunity to
test the numerical scheme by monitoring the spectrum generated by the kernels (3.3) and (6.7) in
time. Figure 6.2 shows the evolution of the first significant eigenvalues from those corresponding
to the initial condition f(x) = x e−x/2, with κ = 0. As one can see, this part of the spectrum is
well preserved by our numerical scheme.

7 Conclusions

Our study shows that the particle method can be used as the starting point for implementing an
efficient algorithm for numerical solutions of the shallow water equation (1.1). Being completely
integrable, the particle method is also a natural choice for this class of integrable nonlinear equa-
tions. However, in this respect we notice that complete integrability plays only a marginal role
in our implementation, as we used a simple ODE solver to advance the initial data. The solution
formulae [1, 5, 6] for a large number of particles seem to require a numerical approach, which in
fact can be more involved than an ODE system solver. This is because of the need to compute
determinants of matrices that can be fairly ill-conditioned at sufficiently large times. This issue
deserves a more in-depth study, however, since there might be advantages to proceeding from the
solution formula. For instance, global accuracy estimates of the algorithm could be established
using this formula, in contrast to the simple local accuracy of ODE integrators.

Equations (3.1) have some interest of their own as an example of a completely integrable particle
system. Some remarkable generalizations of this system were found some time ago by Professor
Calogero in his studies devoted to extending the class of completely integrable equations [2, 3, 4]. As
usual, his approach has inspiring consequences. While some of these might not be grounded (yet)
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on physical phenomena, it would be mathematically interesting to follow Calogero’s generalizations
back to the level of PDE’s (as reference [13] demonstrates in a particular case). Results in this
direction will be reported in future publications.

Finally, we stress that the particle method is applicable to any equation admitting the same basic
integral formulation, regardless of complete integrability. Thus, extensions to other nonintegrable
equations with similar structure and, in particular, to more than one spatial dimension are possible
and are planned for future work.
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