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Abstract

It is shown that any decomposition of the loop algebra over a simple Lie algebra into
a direct sum of the Taylor series and a complementary subalgebra is defined by a pair
of compatible Lie brackets.

1 Introduction

Let G be a finite-dimensional Lie algebra. Denote by G(())) the loop algebra over G, i.e.
the Lie algebra of all Laurant series with respect to a parameter A with coefficients being
elements of G. Suppose that the loop algebra is decomposed into a direct sum of vector
spaces:

g((\) =A@ G[[A], (L.1)

where G[[A]] is the subalgebra of all Taylor series and A is a complementary Lie subalgebra.
Using the terminology by I. Cherednik [1], we will call A a factoring subalgebra. There
exist deep relationships between solutions of the classical Yang-Baxter equation [2] and
factoring subalgebras that are isotropic with respect to the invariant bilinear form

< X(\), Y(\) >= res (X()\), Y()\)), X\, Y(\) € G((V), (1.2)

where (-, -) is the Killing form on G. Non-isotropic factoring subalgebras have been studied
in [4, 5].

One of important objects related to a factoring subalgebra A is the (associative) algebra
of multiplicands. A Laurant series

[e.e]
m= Z e\, c el
=N

is called a multiplicand if m A C A. The number n is called the order of the multiplicand
m.
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Theorem 1. (see [3]) Let G be a simple Lie algebra. Then for any factoring subalgebra
the following statements are fulfilled:

e i) Do not exist multiplicands of negative orders;

e ii) The complement of the set of orders of all multiplicands to the set of natural
numbers is finite.

We don’t know whether the Theorem 1 holds for semi-simple Lie algebras G.
Since the algebra A is defined up to transformations of the form

A=k A4+ ko X2 F kA3 4o ki #0, (1.3)

without loss of generality we can assume that m = A™".

The case when A admits a multiplicand m of order n = 1 have been considered in [6].
Such factoring subalgebras are called homogeneous. It follows from item i) of Theorem 1
that any multiplicand for a homogeneous factoring subalgebra is a polynomial in m with
constant coefficients.

An one-to-one correspondence between homogeneous factoring subalgebras and com-
patible Lie brackets on G have been established in [6]. Two Lie brackets are called com-
patible if any linear combination of these brackets is a Lie bracket as well (see [7, 6, §]).
We recall the main result of the paper [6].

Let A()\) be a formal series of the form

A=E+RX+S XN+, (1.4)

where the coeflicients R, .S, ... are linear operators from G to G and F is the identical
operator.

Theorem 2. e i) Any homogeneous factoring subalgebra A can be represented as
k .
A={> X" A(g), | gi€G, keN}, (1.5)
i=1
where A(N) is a formal series of the form (1.4).

e i) The vector space (1.5) is a Lie subalgebra iff the following identity is fulfilled for
any X,Y € G and some Lie bracket [-,-]1 compatible with [-,-]:

[MXLAWN:AOXS@+AM}HO. (1.6)

e i) For any homogeneous subalgebra the bracket [-,-] is given by the formula
(X, Y] = [R(X), Y]+ [X, R(Y)] - R([X, Y]), (1.7)
where R is the coefficient of X in (1.4).

In this paper we generalize Theorem 2 to the case n > 1. Using our construction and
results from [2], one can derive new interesting examples of compatible Lie brackets on

Ggag.
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2 Compatible Lie brackets for factoring subalgebras.

Let A be a factoring subalgebra having the multiplicand m = A™". Denote by V the
vector space

V =XT"G[A]NA. (2.1)
It follows from (1.1) that dimV = ndimG. It is easy to see that

[V, V]CAX"VaV (2.2)
and

[V, [V,V]]CA2"Ve A"V V. (2.3)

Using (2.2), we define two brackets [--]; and [-, /]2 on V by the formula

[a, b] = A""[a, b]1 + [a, b]2. (2.4)

Proposition 1. The bilinear operations [--|1 and |-, -|o are compatible Lie brackets.

Proof. Consider the Jacobi identity in the loop algebra for arbitrary three elements of V
and calculate it’s projections on V, A"V, A72"V with respect to (2.3). It is easy to
check that the projection on V coincides with the Jacobi identity for [-, ]2, projection on
A~V leads to the Jacobi identity for |-, -];. Thus [, -]; are Lie brackets. The projection
on A~V gives rise to an identity, which means just the compatibility of these brackets. W

The standard example of factoring subalgebra is given by

k
At={>"gX" | g€G, keN}
=1

For this case, we have

Vst — )‘_ng[P‘H N Ast

and the condition

[Vst Vst] C Afnvst @Vst
yields two compatible brackets [ |5t and [-, -]5!. It is easy to check that these brackets are
given by A A o
AT p, AT )5t = AT [, for i4+j<mn,
AT Fp, AT g]st =0 for i+j>n
and
AT AT gl = AT p, g for i >,
AT AT gt =0 for i+ j <,
where 0 <i,5 <n, p,q€q.

Let A be a factoring subalgebra such that A™"A C A and V defined by (2.1). For any
b € V, we denote by 7(b) the principle part of b, i.e. the projection of b on V*! parallel
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to the Taylor series vector space. It follows from (1.1) that the map 7 : V — Vst i
invertible. The formula

b=m(b) + A"R(w(b)) + )\2"5<7r(b)> T (2.5)

uniquely defines the linear operators R, S,... on V¥,
The brackets (2.4) defined by (1.1) induce the following brackets on V¢ :

la, b]; = ﬂ<[w—1(a), W_l(b)]i>, abe Ve, =12

The following statement is a direct generalization of Lemma 2 from [6]:
Proposition 2. Let c,d be arbitrary elements of V5¢; then
e i) e, d1 = [c, d]$t;
o i)
le, dl2 = [¢, I3’ + [R(c), d]i' + [e, R’ — R([e, d]Y"), (2.6)
where R is the operator from (2.5);

e iii) Suppose that the operation (2.6) is a Lie bracket for some operator R; then
(2.6) is compatible with [-,-]1;

e w) The operators R and S - from (2.5) satisfy the following identity:

R(le, d]2) = [R(c), R(A)]{'+[S(c), d)i'+[c, ()Y =S([e, d]i') +[R(c), dJ5'+[c, R(d)]3;
(2.7)

e v) Suppose some operators R and S satisfy (2.7); then (2.6) is a Lie bracket.

Remark 1. It is easy to see that the Lie algebra defined by the bracket [, -]; is isomorphic
to G[u]/(1™). When n > 1 this algebra is not semi-simple. If R = Id then the second
bracket [, ]2 gives rise to the Lie algebra isomorphic to G[u|/(u™ — 1), which is in its turn
isomorphic to the direct sum of n copies of G. The same is true if |R — Id| is sufficiently
small.

Remark 2. The existence of the multiplicand m = A" is not destroyed under transfor-
mations A" = ki A"" + ko. Such transformations also preserve the first bracket. However
it follows from (2.5) that the operator R and the bracket [-, -]2 are deformed. In particular,
if ko =1 and k1 — oo, then R — Id and according to Remark 1 the Lie algebra with the
bracket [-, ]2 becomes isomorphic to n copies of G.

Thus starting with any factoring subalgebra, one can construct a pair of compatible
brackets on the direct sum of n copies of G, where n is the order of arbitrary multiplicand
(see Theorem 1).
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Example. Let r : G — G be a constant solution of the modified Yang-Baxter equation
(see [9])

r(a), r(0)] = r(Ir(a), 8] = [r(b), a}) — [a, b]. (2:8)
In [10] the following factoring subalgebra has been introduced:
A=A Z Ngi+ri(g)) | m>0, ¢ €g},

where by definition ro;, = —Id, 79,1 = r. It is clear that A™2A4 C A. The vector spaces
corresponding to this multiplicand have the following form

V={\?p+rlqg+r(q) —plpaeG}, V'={1p+Aq|p,qeg}.

The operator R : VSt — Vs from (2.7) is given by
R(/\_Qp + /\_1q> =277 (T(Q) - p)

and the operator S is identically zero. The pair of compatible brackets on V*! is defined
by Proposition 2. According to Remarks 1,2 the Lie algebra defined by the second bracket
is isomorphic to G @ G after admissible change of A.

3 Generalized loop algebras generated by compatible brack-
ets.

Suppose that we have two compatible Lie brackets [--]; and [, -]o on a k-dimensional
vector space V. We assume that the bracket [--]; has the trivial center. Let us consider
the following vector subspace

L£L=A Z Nadig; + Nadaq;)) | meZ,q eV} (3.1)
in the loop algebra over linear operators on V. Here ad;q are linear operators defined by
It follows from compatibility of [--]; and [-, ‘]2 that

lad1p+ X adap, adiq+ X adaq] = ady [p, ql1+ A adap, g]1 +A(adi[p, gl + X adz[p, q]2). (3.2)

The latter formula implies that £ is a Lie subalgebra.
It can be easily checked that £L = £, & £_, where £, and L£_ are defined as the
intersections of £ with the Laurent polynomials and Taylor series:

—1
L= Z N(adiq; + Nadag;) | m >0, ¢ €V},

i=—m
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L_ = {Z )\i(adlqi + )\adgqi) ‘ q; € V}
1=0
It follows from the triviality of the common center for [--]; and [+, -]o that £, NL_ = {0}.
Suppose now that V, [-:]; and [, :]2 are generated by a factoring subalgebra A by
formulas (2.1), (2.4). It is clear that

G((N) ={>_ ANg|m>0,q €V} (3.3)

Define a mapping ® : G((\)) — L by the following formula:
CI)( Z )\mqi) = Z )\i_l(adlqi —l—)\aqui) (3.4)
Proposition 3. e i). The mapping ® is an isomorphism of Lie algebras;
o ii). D) =L,, BGIN]) =L

Proof. To verify that ® is a homomorphism it is suffices to compare formulas (2.4) and
(3.2). Since
®(q) = A 'ady q + ada q,

it follows from the triviality of the common center for [--]; and [-, ]2 that ® is bijective. The
statement ii) follows from (3.3) and from the definitions of the corresponding subalgebras.
[

Remark 3. Theorem 1 and Propositions 2, 3 show that any factoring subalgebra in the
loop algebra over simple Lie algebra G is defined by a pair of compatible brackets generated
by identity (2.7). Thus the classification problem for factoring subalgebras is embedded
into a finite-dimensional problem of the description of all solutions for operator equation

(2.7).

4 Integrable nonlinear hyperbolic systems and the general-
ized loop algebras.

In [6] the hyperbolic systems

ay = [q, ph, Pe = [Ps ql2, p,geV (4.1)

associated with two compatible Lie brackets [-, -]; on V have been considered. If one of
the bracket is semi-simple, a Lax representation for (4.1) have been constructed. The next
statement provides a different Lax representation for the same system.

Proposition 4. Let [--]; and [, -]2 be a pair of compatible brackets defined on a vector

space V. Suppose that the center of [ -]y is trivial. Then (4.1) is equivalent to the condition

d d
— + X ladig+adsq, — +adip+ Aadap| = 0. (4.2)
dx dy
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The proof follows from (3.2).

Remark 4. The Lax operators from Proposition 4 are rational functions in A in contrast
to operators constructed in [6].

Proposition 5. Suppose V is given by (2.1) and the compatible Lie brackets are defined
by (2.4); then (4.1) is equivalent to

% +4q, d% + \'p| = 0. (4.3)

The statement follows from (2.4).

It is evident that (4.1) admits the reduction p € Iy, ¢ € I, where I} is an ideal for
the bracket [-, -]x. In particular, suppose that the algebra defined by [-, -]; is isomorphic
to G[u]/(1™) and the algebra with [, -]; is isomorphic to G[u]/(u™ — 1) or, in other words,
is the direct sum of n copies of G (see. Remarks 1,2). Then taking I = ,u"_lg for I; and
one of the copies of G for Is, we get an integrable hyperbolic system with respect to two
elements of the algebra G.
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