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Abstract

We discuss the relation of the trigonometric Calogero-Moser (CM) system to Yang-
Mills gauge theories and its generalization to the elliptic case. This yields a lin-
earization of the time evolution of the elliptic CM system and suggests two promising
strategies for finding a fully explicit solution of this model. We also present a large
class of integrable spin-particle systems generalizing the elliptic CM system.

Prologue. Integrable systems associated with the name of Calogero [1, 2, 3, 4] seem to
have a strong attraction to me: on two different occasions I started to work on seemingly
unrelated problems, made progress, but at some point realized that the natural application
of our results was, unexpectedly for me, in the context of Calogero-type systems. One such
occasion was a project which was initially aiming at a better understanding of certain as-
pects of the fractional quantum Hall effect [5] but eventually led to a method for solving the
quantum elliptic Calogero-Sutherland system [6]. The present paper is based on the other
such occasion which started as a project on two dimensional quantum chromodynamics
[7, 8, 9] but eventually led to an alternative solution method for classical trigonometric
Calogero-Moser-type systems [10, 11] (this somewhat curious story is told in more detail
in the Epilogue of this paper). I will shortly review the solution method thus obtained
for the trigonometric Calogero-Moser system, explaining in particular its particle physics
motivation. I then show that this method has a matural generalization to the elliptic case,
and this leads to an explicit linearization of the time evolution of the (classical) elliptic
Calogero-Moser (eCM) model. I finally discuss possible strategies to turn this result into
a fully explicit solution of the eCM model. I should mention various closely related papers
[12, 13, 14, 15, 16, 17, 18, 19] and in particular [20, 21] whose relation to our work will
be also mentioned. However, I have tried to keep my discussion self-contained.

Copyright (© 2005 by E Langmann



424 E Langmann

This paper is based on notes which I wrote in 1999. They have remained unpublished
up to now since I have felt I was just one step away from a fully explicit solution of the
eCM system. However, I did not succeed with the final step since 1999, and I hope it could
be helpful to make available what I have: somebody else might be interested and able to
complete this story.

Francesco Calogero is an outstanding example for me, not only as a scientist but also
as a person. It is a pleasure for me to dedicate this paper to him.

1 Introduction

We begin by formulating the problem, mainly to fix notation. The Calogero-Moser (CM)
systems are classical many-body models which can be defined by the following system of

ODEs,

N
i) = =N V'(¢"(t) — " (1)) (L.1)
B=1
a#p
fora=1,2,..., N, which are the Newton’s equations for N > 2 identical particles moving

in one dimension and interacting via a 2-body potential V' which, in the general elliptic
case, is given by the Weierstrass elliptic p-functions, i.e.,

0 2 ..
V'(q) = a_qp(q) =_ g (ma T inb 7 ) (elliptic case); (1.2)
m,ne’l

the dots mean differentiation with respect to the time variable ¢, A is a real coupling
constant, and we write the periods of the elliptic function as 2w, = a, 2wy = ib with
a,b > 0; see e.g. [22]. The problem is to find the particle positions ¢®(t) for all times ¢ > 0
subject to the usual initial conditions

¢*(0) = g5, ¢°(0) = pg- (1.3)

The integrability of these equations was shown by Calogero [3]; for review see [23, 24|
and references therein. An explicit solutions for the limiting cases where both periods are
infinite,

01

= 5.2 (rational case), (1.4)
qaq

V'(q) = Via(q)

is know since a long time: the particle positions ¢®(¢) in this case are given by the eigen-
values of the N x N self-adjoint matrix with the matrix elements

ixt(1— 6,
DOOt) = 5 (a4 i) — L= 000), (15
90 — 9

see [23, 24]. A similarly explicit solution is known in the limiting case where only one
period is infinite

9 (n/a)®
dqsin(rq/a)?

V'(q) = Vinig(a) (trigonometric case); (1.6)
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see [23, 24]. Our aim is to find a similarly explicit solution also for the elliptic case. Despite
of various remarkable results in this direction [20, 16, 17|, this problem is still open, to
our knowledge.

The next section shortly reviews a solution method for the trigonometric CM (tCM)
model [10] which is alternative to the standard one [23, 24]. It is based on the well-known
relation of Yang-Mills gauge theories on a cylinder to the tCM model [13, 8, 25, 15].
In Section 3 we show how to generalize this to the elliptic case by using a particular
Yang-Mills gauge theory in 2+1 dimensions.! This provides an alternative derivation and
interpretation of Krichever’s Lax pair and linearization of the time evolution for the eCM
system [20] and a promising route to a fully explicit solution of this model. In the final
Section 4 we shortly discuss a natural generalization of our construction which leads to
integrable spin generalizations of the eCM system. As we argue, the quantum versions
of these systems seem to give generalizations of the Inozemtsev spin models [26] which
recently have received attention in the context of N = 4 supersymmetric Yang-Mills
gauge theories in 4 dimensions; see [27] and references therein.

2 Gauge theories and the trigonometric CM system

This section is mainly to motivate our construction, and to explain some particle physics
terminology which we use.

2.1 Yang-Mills theory on a cylinder

We recall the definition of classical Yang-Mills theory in 1+1 spacetime dimensions with
gauge group U(NN) in the fundamental representation. We consider the Yang-Mills fields
A, = A,(t,x) and matter currents J, = J,(t,x) which are functions of the time variable
t € R and space variable z € [—m, | and with values in the self-adjoint N x N matrices,
with u = 0,1 a spacetime index. We assume that space is a circle, i.e., all functions above
are periodic. We are interested in equations of motion which are invariant under gauge
transformations

A, — Al =UT"AU-UT U, J, - =010 (2.1)

for unitary matrix valued functions functions U = U(t,x), with i = /-1, 9y = 9y and

01 = 0,.2 The natural such equations are the non-Abelian analog of Maxwell’s equations,>
(D, F*] = J" (2.2)
with the covariant derivatives D, = 0,, +1iA,, where
F,, = —i[D,,D,] = 8,4, — 8,A, +i[A, A); (2.3)

we use the metric n*¥ = diag(1, —1) to rise and lower spacetime indices p,v. By standard
computations one convinces oneself that the equations above indeed are gauge invariant.
It is important to note that gauge transformations are periodic, U(t,z) = U(t,z + 27).

!This construction is similar to one in [21]; see also [18, 19].
2We write 8; for 0/0t, ete.
3It is only in the following equation that we use the summation convention in this paper.
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2.2 Relation to the trigonometric CM system

We now explain that this Yang-Mills theory on a cylinder restricted to matter fields with
J' =0 can be solved exactly and, for particular initial conditions, is gauge equivalent to
the time evolution of the tOM system defined by Egs. (1.1), (1.8) and (1.6).*

For that we find it convenient to rewrite the equations of motion above as follows,
E = —i[Dy, D1], [Do, E] =0, [D1, E] = J°, or more explicitly,

OA1 = E+ 0, A0+ i[Al, AQ] (24&)
O, +i[Ag, E] = 0 (2.4D)
0. E+1i[A1,E]=p (2.4c)

where we introduce the notation £ = Fp; and p = JY. We will refer to Eq. (2.4c) as
Gauss’ law in the following.® It is important to note that these equations also determine
the time evolution of the matter fields as follows,%

Op +i[Ao, p] = 0. (2.4d)

We now use the gauge invariance of these equations to impose additional gauge conditions:
the first such condition is usually called azial gauge in the particle physics literature,

Ay = 0; (2.5)

we will show below that this condition is indeed consistent. If we impose this condition
the time evolution equations above become trivial, % F = d;p = 0 and 0; A1 = F, and thus
can be solved explicitly as follows, E(t,z) = E(0,x), p(t,z) = p(0,z), and

Aq(t,x) = A1(0,2) + E(0, x)t. (2.6)

It is important to note that Gauss’ law is then fulfilled for all times ¢ if it is fulfilled at
t = 0: Gauss’ law gives a constraint on possible initial conditions.

To obtain non-trivial time evolution equations we impose another gauge conditions,
namely the so-called diagonal Coulomb gauge”

A% (t,2) = 643¢°(t)  independent of x (2.7)

where A‘fﬁ ,a,0=1,2,..., N, are the matrix elements of Ay, etc.; we will show below that
this condition is consistent as well. A straightforward computation shows that the ¢®(t)
obey precisely the equations of the tCM system provided we choose the initial conditions
for the Yang-Mills equation as follows,

L pec(0,0) =g, p*(0,0) = A(1 - da)oe)i (28)

A(lxﬁ(ovx) = aﬁqgv / g

see [11] for details.

4We will set a = 1 in the rest of this section, to simplify notation.

®Since this is the standard name of the corresponding Maxwell equation V - E= p.

%Since [Do, p| = [Do, [D1, E)] = [[Do, D1], E] + [D1, [Do, E]] = —i[E, E] = 0, due to the Jacobi identity.
"This name is motivated by the Coulomb gauge V - A=0in electrodynamics.
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2.3 Gauge fixing

In our discussion above we used two different gauge conditions. It is important to convince
oneself that these conditions are consistent. Consistency of a gauge condition means
that, for any solution A,(t,x) of our Yang-Mills equations (2.4) one can find a gauge
transformation U such that the gauge transformed Ag obeys this condition. One then can
impose this condition and will not loose anything.

Axial gauge. To show consistency of the axial gauge in (2.5) we need to find a gauge
transformation U such that Ay = 0, or equivalently, [0; +iAo(t,z)]U(t,x) = 0. This latter
first order ODE has always a solution which we write symbolically as follows,

t
U(t,z) = Pexp <—i/ dsAO(s,x)> (2.9)
0
where P exp is the path ordered exponential.®

Diagonal Coulomb gauge. This gauge is the closest one can get to the condition 4; =0
which is not consistent on a cylinder: Superficially space and time seem symmetric, and
our discussion above therefore suggests that it should be possible to impose A; = 0.
However, this is not possible in general since the solution

S(t, ) = P exp <—i / ' dyAl(t,y)> (2.10)

—T

of AY =0 is not a gauge transformation: a gauge transformation must be periodic, but
S(t,m) # I = S(t,—m) in general. However, one can correct for this as follows,

Ult,z) = S(t,z)V ()l @+me®) (2.11)

where V' is an invertible matrix and ) a diagonal matrix independent of z. Indeed,
U(t,—m) = U(t, ) leads to the following equation

V()L (t, )V (t) = e 2R (2.12)

which always has a solution: V(¢) has to be chosen as the unitary matrix diagonalizing
S(t,x), and exp(—Qﬂ'iQ(t)) is the diagonal matrix of eigenvalues. It is easy to see that,
with that gauge transformation U, AY = @, which implies that the diagonal Coulomb
gauge in Eq. (2.7) is consistent.

This discussion implies a simple recipe to transform from the axial gauge to the diagonal
Coulomb gauge: compute S(t,m), and the eigenvalues of this matriz are then equal to
exp(—27riqo‘(t)). This recipe provides a useful tool for finding explicit solutions for a large
class of integrable systems generalizing the tCM model [11].

8The r.h.s. of Eq. (2.9) can be defined as limit K — co of
[ = i(t/K) Aotre, DT — i(t/K) Aoltr—1, )] - [T — i(t/K) Aot )]

where t; = jt/K for j =1,2,..., K and I is the N X N unit matrix.
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2.4 Implications for the trigonometric CM system

The facts summarized above imply various interesting results for the tCM model [11]:
Firstly, Eq. (2.4b) has the form of a Lax equation, and to get the Lax pair for the tCM
model one only needs to compute L = F and M = iAy in the diagonal Coulomb gauge
which is a straightforward computation. Secondly, Eq. (2.6) gives a linear time evolution
which is gauge equivalent to the time evolution of the tCM system, and this yields a
strategy for constructing the explicit solution of the tCM system: compute E(0,z) by
solving Gauss’ law, and then transform the explicit solution in the axial gauge to the
diagonal Coulomb gauge. As shown in Section 4.2 of Ref. [11], this reproduces the well-
known explicit solution of the tCM model.

3 Generalization to the elliptic case

We now discuss the 2+1 dimensional gauge theory equivalent to the eCM system and
various implications of this relations. We start with the heuristic argument which led us
to this results.

3.1 Heuristic argument

The key to the result discussed in the previous section is the following well-known identity,
Snez(n + @72 = w%sin~?(mq), and it is essentially through this that the interaction
potential of the tCM model appears. This sum results from the Fourier transform of the
operator D in the diagonal Coulomb gauge, which is a diagonal matrix with elements
i(n+q“)dap [11]. Since the Weierstrass elliptic function p can be represented by a similar
sum, p(q) = Y.o(Q + ¢) 72 + const. with Q = ma + inb and m, n integers, this suggested
to us that one should be able to generalize this construction to the elliptic case if one
replaces the Fourier modes n of the circle by 2 = ma +inb, i.e., use a gauge theory where
the circle is replaced by a torus. This idea led us to the construction below.

3.2 2+1 dimensional gauge theory equivalent to the eCM system

We consider functions Ay = Ag(t,z,y), A = A(t,z,y) and p = p(t,z,y) of the variables
t € R (=time) and (z,y) € [-7,7|? (=space) and with values in the complex N x N
matrices (which no longer need to be self-adjoint). We define covariant derivatives

Dy=0;+iAy and D = a0, +ib0, +iA (3.1)

and the function £ = —i[Dy, D], and we consider the following system of partial differential
equations, [Dg,E] = 0 and [D1,E] = p. These equations imply [Do,p] = 0. More
explicitly, this system of matrix valued PDEs can be written as follows,

OtA = E + (a0, +1b0y) Ag + 1A, Ao] (

O F +i[Ag, E] = 0 (3.2b
(a0y +1b0y)E +i[A,E] = p (3.2¢
Op +i[Ap, p] = 0. (3.2d
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It is interesting to note that these equations can be obtained from 241 dimensional gauge
theory of Yang-Mills fields coupled to non-dynamical matter by imposing gauge invariant
reduction conditions: The Yang-Mills theory is defined as in the last section but with
spacetime indices p,v = 0,1,2, and the reduction conditions are Fyi/2a — Fya/2ib = 0,
Fip =0, and J!' = J?2 = 0, where A = aA; +ibAy and E = Fy; /2a + Fya/2ib. We stress
the periodicity, i.e., invariance under x — x + 27 and y — y + 27, of all fields Ay, A and
p, which again is crucial for making the gauge theory non-trivial.
It is obvious that Eqgs. (3.2) are invariant under the following gauge transformations,

Ag— AY = U AU - iU oU, A— AV =U AU — iU Y (ad, + ib0,)U

E—-EY=UEU, p—p)Vl=U"1pU (3.3)
where U = U(t,z,y) is an arbitrary differentiable, periodic function with values in the
invertible N x N-matrices. Again it is possible to impose the Weyl gauge Ag = 0, and as in

the previous section this allows to solve these equations explicitly as follows, E(t,x,y) =
E(0,2,y), pt,z,y) = p(0,2,y), and

A(t,z,y) = A0, z,y) + E(0,z,y)t (3.4)

for arbitrary initial conditions E(0,z,y), A(0,z,y) and p(0,z,y) satisfying Gauss’ law in
Eq. (3.2¢c). Note that our solution satisfies Eq. (3.2¢) for all ¢ if it satisfies it for ¢ = 0.

We now state the precise relation of this gauge theory to the eCM model. As before
we denote the matrix elements of p as p®® with a, 3 =1,2,..., N, and similarly for A4, A
and F.

Proposition. The gauge theory equations in (3.2) with the initial conditions

AP(0,2,y) = bag 4§, / /dyEo‘“Ox,y):p&
PP (t,x,y) = (2m)% (1 — dap) AS(2)d(y) (3.5)

are gauge equivalent to the equations (1.1)—(1.8) defining the eCM system. More specifi-
cally, it is then possible to impose the gauge conditions

A(t,z,y) = Q(t) = diag (¢"(t), ¢° (1), ..., 4" (1)) (3.6a)
and
N
/ / v A3 (ta,y) = > Ap(q®®t) — ¢° (1)) (3.6b)
B=1
B

with the Weierstrass elliptic p-function defined as usual [22], and the equations (3.2) and
(3.5) in this gauge imply Egs. (1.1)-(1.3).

Proof. We make the following ansatz for the time evolution of the matter charges,

P (L, y) = (2m)2 AP (1)8(2)8(y): (3.7)



430 E Langmann

we will show below that this indeed is consistent. It is interesting to note that this has the
physical interpretation of matter charges localized at the point (z,y) = (0,0). We now
write Egs. (3.2) in the diagonal Coulomb gauge (3.6a) using Fourier transformation,

E“%(m,n) = / dx / dye M=y palip o) m,neZ, (3.8)
and similarly for Ay and p, suppressing the t-dependence. Eq. (3.2a) then reads
af 2 a _ faB : : a B rapB
Oin (2m)°0q" = E*"(m,n) +1(am +ibn + [¢* — ¢"] ) Ay" (m, n) (3.9

where we use the shorthand notation 5%% = 0080m,00n,0- Taking o = fand m =n =0
we obtain
E*2(0,0)

atqa = W = pa (310)

where the last equality introduces a suggestive notation. The time evolution of the p®
follows from Eq. (3.2b),

Z (Agﬁ(m,n)ﬁ}ﬁa(—m, —n) — Eaﬁ(m,n)Aga(—m, —n)) )
m,n,B#£a

a_ 1

The r.h.s. of this equation can be evaluated by taking the Fourier transform of Eq. (3.2¢),
i (am +ibn + [¢* — qﬁ]) E*B(m,n) = (2m)2 2\
where we used Eq. (3.7), and this yields

(1 — 698 (2m)2 A0
i(am +1ibn + [¢® — ¢7])"

EP(m,n) =625 (2m)2 p* + (3.11)

Similarly Eq. (3.9) determines all components of Ag except for the zero modes Ag‘o‘((), 0) =
(27)? h* which are arbitrary at this point,

(1 — 628 (2m)2 A8

A% (m,n) = 628 (27)% h® + . (3.12)
’ (am +ibn + [g* — ¢%))*
Inserting this we get
Ao oo
=2 ) == > AN (g = ¢°). (3.13)

; 3=
. (am +ibn + [q* — ¢°]) ol

We are left to determine the time evolution of the A*?. From Egs. (3.2d) and (3.7) we get

N
3t)\04/3 _ _iz (MOW)\VB _ )\OWMW?)
y=1
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where M7 = A%°(0,0) = (27)~2 > min A28 (m,n). Using Eqs. (3.11) and (3.7) yields, for
a# B, M*P = po(q* — ¢°)A*F where po(q) = Y ,c (X mez(ma + inb + ¢)~2) is equal to
the Weierstrass function p(g) up to an additive constant. Using M — MA% = p> — pf
we obtain

oA = =i (B = ) 27 i3 XN (e~ ¢7) — pla” ~ ¢)) (3.14)
v#o,B

where we could replace the function gg by p. Thus our gauge theory in the diagonal
Coulomb gauge is equivalent to the Egs. (3.10), (3.13) and (3.14). This corresponds to a
dynamical system of particles coupled to a spin degrees of freedom A*?. The functions
h% in Eq. (3.14) can be regarded as external time-dependent fields which can be chosen
arbitrarily. In particular, we can choose them such that the spin degrees of freedom
are time independent: for h* = > 5, Ap(¢* — ¢%), which is equivalent to (3.6b), one
finds that the unique solution of Eq. (3.14) with the initial condition in Eq. (3.5) is
AP (t) = (1 — 645) A, independent of ¢. With that, Eqs. (3.13) and (3.10) imply Eq. (1.1).
It is straightforward to check that the other components of Eq. (3.2b) are then obeyed.
Since the equations (1.1)—(1.3) have a unique solution ¢*(t) we also have shown that
the diagonal Coulomb gauge in (3.6a) is indeed consistent. This completes our proof. W

It interesting to note that our construction above actually gives the well-known spin-
generalization of the eCM system [28, 29].

3.3 Lax pairs

We now show that the construction above yields, in a simple manner, a family of Lax pairs
which is essentially Krichever’s [20].

Eq. (3.2b) is of the Lax form: F and Ay define a family of Lax pairs (depending on x
and y) for the elliptic CM system. They can be computed by taking the inverse Fourier
transform of £ in (3.11) and Ap in (3.12) and (3.6b). We obtain

EP(t,2,y) = bap p®(t) — (1 — 6ap) NGz, y: 4% (t) — °(1)) (3.15)

and

At y) = 0ap Y A(q™ () — (1)) + (1 = Gag) NG (2,556 (t) — ¢°(t))  (3.16)
YFo

where G'(z,y;q) = 9,G(z,y;q), with
eimeriny

Gz, y;q) = ) (am + ibn + q)

m,ne”

(3.17)

the periodic solution of (ad, + b9y + i¢)G(z,y;q) = i(27)?6(x)dé(y). To compute this
function G it is convenient to change from x and y to complex variables,

ay —ibr  _  ay+ibx
z=——, =
27

o (3.18)
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Note that z lives on the same spectral curve as ¢, i.e., y — y + 2m and * — = — 27
correspond to z — z + a and z — z + ib, respectively. Noting that

ady + ibd, = éag, c= % (3.19)

one can compute G and obtain (we will give some details of this computation below)

G, y;9) = e ¢(2;q) (3.20)
where
SN =g 0249 _2m
d(z;q) = ™ 70(2’) o) n= " c, (3.21)

and the constant 2n; = £(z+a) —&(z), with o and £ the usual Weierstrass elliptic function
[22].

It is easy to see that, up to a trivial transformation, this family of Lax pairs (E,14y) =
(L, M) coincides with Krichever’s [20].

In the rest of this subsection we sketch the computation of G in (3.17). This function
obviously satisfies i(cdz +1i¢) G = 0 for all z ¢ aZ + ibZ, which implies Eq. (3.20) for some
function ¢ depending only on z. The definition of G implies the following quasi-periodicity
properties of the function ¢,

(2 +Qq) = €M 6(z;q) = ¢(21q + Q) (3.22)
where
QO =ma+inb, Q=ma—inb, m,ncZ, (3.23)

are the periods for z and z. Moreover, from Eq. (3.17) it is obvious that, for fixed z ¢
aZ+ibZ, ¢(z; q) is meromorphic function of ¢ € C with first order poles in ¢ € aZ+ibZ and
lim, .0 g¢(2;q) = 1. The same is true with ¢ and z interchanged, as follows from (3.22)
and the fact that, close to (x,y) = (0,0), G behaves like the solution of (ad, + ib0,)G =
i(27)28(x)6(y) (with periodicity ignored), i.e., G ~ 27/(by — iazx) = 1/2. Using the well-
known properties of the Weierstrass function o [22] one then shows that the function

o(2)o(a)

flziq) =02

oGt q) ¢(z,q)

is holomorphic and periodic in both arguments ¢ and z, which implies f(z;¢) = 1 and
yields Eq. (3.21).

3.4 Towards an explicit solution of the eCM system
The results above give the following characterization of the solution of the eCM system.

Corollary: The solution q*(t) of the eCM system is given by the eigenvalues of the
following ‘chiral Dirac operator’ depending linearly on time t,

D(t) = a0, +ib0, +iA(t,x,y), A(t,z,y) = Qo+ E(0,z,y)t (3.24)
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with Qo = diag(qg, . .., qd) and E(0,z,y) in Egs. (3.15) and (3.20)—(5.21) a known matriz
valued function on the torus determined by the initial conditions ¢“(0) = qf and p*(0) =
py: There is some invertible-matriz valued functions U(t,x,y) on the torus such that

U(t,z,y) ' DO)U(t, x,y) = aby + ibdy + Q(t) where Q(t) = diag(q'(t),...,q"™ (t)).

This provides a linearization of the time evolution of the eCM model. However, it
would be desirable to make the solution ¢®(¢) more explicit. In the following we sketch
two possible strategies in this direction.

Strategy 1: Compute the determinant of D(t) — pI. The characterization above implies
that D(t) is a normal (diagonalizable) operator on the Hilbert space L?([—m,7]?) ® CV
with eigenvalues  + ¢®(t) where Q = am + ibn, m,n € Z. One thus could get the hands
on the solution ¢“(t) by computing the determinant of D(t) — pl: Formally,

re N reg N
S(ut) = det(D@) - ul) = [[ [+ @) =) = [[ol@®@® 1) (325)
a=1 Q a=1

where ‘reg’ indicates some natural (gauge invariant) regularization generalizing the one
used to define the Weierstrass elliptic function ¢ [22]. The explicit solution of the eCM
system is given by the zeros of this function 3(u,t). The problem is to find a simple,
explicit formula for 3. It is interesting to note that X (u,t) is identical with the object
which Krichever obtains in his solution [20], but his characterization of this function seems
less explicit than ours.

To compute this functions ¥ the following explicit formula of D(t) in Fourier space
could be useful,

it (1 — 5aﬁ5QQ/)

Doy () = dagdacr (2 + % +p™t) — Ot — (@ +q))
0 0

(3.26)

We have recently started to compute log 3(u,t) as a formal power series in A using this
latter formula, and our preliminary results seem promising.

It is interesting to note the following interpretation of Eq. (3.26): comparing with Egs.
(1.5), our solution of the elliptic CM model can be interpreted as the solution of a rational
CM system with and infinite number of particles ¢ = Q + ¢® where A = (o, Q). This
interpretation is also natural if one compares the time evolution equations for the elliptic
and rational CM models (this is well-known; see e.g. [4, 30]), and this provides therefore
a simple way to understand our result stated in the Corollary above.

Strategy 2. Compute a gauge transformation diagonalizing D(t). This amounts to
trying to generalize the explicit construction of the gauge transformation transforming to
the diagonal Coulomb gauge in Section 2.3.

Introducing the matrix

B (2) = 60§ — 1(1 = 6ap) AP(2 45 — ¢ (3.27)

and using (3.20), Eq. (3.15) implies E(0,z,y) = exp (—czQq) B(z) exp (czZQp) and the
following explicit solution of our gauge theory in the Weyl gauge,

At z,y) = e Q0 (Qo + B(z)t)eczQO. (3.28)
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Note also that the periodicity of A implies
B(z + Q) = Q0 B(z)e~ o (3.29)

with Q and Q defined in Eq. (3.23).
We now try to construct the gauge transformations U(t,z,y) transforming from the
Weyl- to the diagonal Coulomb gauge. It has to obey the equation

(ady + b0y +iA(t, z,y)) U(t,z,y) = U(t,z,9)iQ(t) (3.30)

where Q(t) is a diagonal matrix independent of x and y which we need to determine. A
straightforward computation yields

Ut,z,y) = e Q0e= =By (4 )o@ (3.31)

where V (¢, 2) is an arbitrary function with values in the invertible N x N matrices. We
now use that U has to be periodic in both arguments x and y with period 2w. Requiring
U(t,z —2mn,y + 2mm) = U(t, z,y) leads to the following condition,

o0 — V(t, 2+ Q)—lecQQoecQB(Z)tv(t, 2). (3.32)

This seems close to an explicit solution of the eCM system. We expect that V(¢,z) is
determined by the condition in (3.32), but we do not know how to compute is. In fact,
one does not really need V' (¢, z) to determine Q(t), all one needs is its periodicity properties
which might be easier to compute. The final missing step in an explicit solution of the
eCM system can thus be described as follows: Determine V (t, 2)V (t, z+Q)~! where V (¢, 2)
is some matriz valued functions which is holomorphic (except perhaps in z =0) and such
that the eigenvalues s*(t) of the matrixz on the r.h.s. in Eq. (3.32) are independent of z.
The solution of this monodromy problem would imply a simple recipe to compute the s(t),
and the explicit solution of the eCM model would then be given by ¢®(t) = (1/c¢Q) log s(t).

It is tempting to conjecture that there exists some zy € C and 2 # 0 such that
V(t, 20 + Q) = Wa(t)" 'V (t, 20)Wa(t) for some invertible N x N matrix Wq(t), e.g. zo =
—Q/2. If that was true the above mentioned eigenvalues s(t) would be equal to the
eigenvalues of the matrix exp (cQQg/2) exp (cQB(z0)t) exp (c€2Qo/2). Even though this is
true in the trigonometric limit and reproduces the well-known solution of the tCM model
[23, 24] (see [11] for details), we checked that it is not true in the general elliptic case.
However, we could derive Eq. (3.31) only due to several “miracles” which occur on the
way, and we therefore feel that there should exist one more “miracle” which should allow
to solve the monodromy problem stated above.

4 Generalization to integrable elliptic spin-particle systems

Recently it was shown that N/ = 4 supersymmetric Yang-Mills theory in 4 dimensions
has an interesting relation to integrable spin systems [31], and this relation suggests that
elliptic deformations of the Heisenberg spin chain [26] are of interest in this context; see
[27] and references therein. It thus seems of interest to note that there exists a large class
of integrable spin-particle systems of elliptic type which can be obtained by a straight-
forward generalization of our construction in Section 3. These models correspond to the
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elliptic deformation of the trigonometric systems derived and solved in [10, 11]. Since the
derivation is a straightforward combination of the arguments in [10, 11] and Section 3, we
only give the result: generalizing the ansatz in Eq. (3.7) to matter charges localized at an
arbitrary number K of distinct points,

P (t,x,y) = (27) ZAO‘B (@ — 21)0(y — yi) (4.1)

where the (2, yx) € [~,7]? are arbitrary, one obtains an integrable spin-particle systems

which can be defined by the Hamiltonian”

N N N
1 1 1
Hic =53 (") + Z = WINPT TR (4
a=1 =1 j,k= a=1j k=1
#ﬁ
with
elm(a:j—xk)-‘rin(yj—yk) elm(a:j—a:k)-‘rin(yj—yk)
, _ o= 4.3
w@) = 3 (am +ibn +q2 9 2 (@m +ibn)> 43
m,ne” m,n€’
m24n2+#£0
and the following Poisson brackets,
70" = Gag AN = 0 (000”030 (4.4)
all other Poisson brackets are trivial. There is also the constraint
K
> =0 (4.5)
k=1

which is a remnant from Gauss’ law.

We now give a heuristic argument that the model above can be reduced to spin models
which provide a large generalization of Inozemtsev’s [26]. We first discuss the case K =1
where the Hamiltonian above reduces to Hy = 33" (p®)* + 3 D ats AN G0 (g — ¢P) +
23, AN where pg(z) = p(2) 4+ c. We now impose the following reduction procedure:
Assume N = JL with integers J,L > 0 and write o as a pair of indices, o = (A4,¥)
with A =1,2...,J and ¢ = 1,2...,L, and similarly § = (B, m). We now impose the
conditions

AADBM _ (1 g, NIB, 40 — ta/L,

assuming that the particles degrees of freedom can be frozen to equidistant equilibrium
positions (we assume here the existence of a classical counterpart of Polychronakos’ freezing
trick [32], waving our hands). This yields

Hi =YY pollt - mla/L)NP A0 (4.6)
A,Bl#m

9The following can be generalized by adding a term involving the diagonal zero model h* of Ag, but
we set this term to zero for simplicity.
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where we dropped the kinetic energy terms for the particles. This is essentially the classical
version of the Inozemtsev Hamiltonian. In a similar manner we formally obtain, for general

K

)

Hie =" > o[t = mla/L)NEAE, (4.7)
A,B j#k

which can be interpreted as an anisotropic 2D spin model. While the (z;,y;) are arbitrary
in the spin-particle system above, we expect that one has to choose them equidistant, e.g.
as (0,27j/K), for the freezing trick to work. This choice yields a translation invariant
model.

We finally sketch that our approach can also be used to obtain integrable spin-particle
Hamiltonians involving higher powers of the spin interaction. The gauge theory Hamilto-
nian for our model is H = 2(2+)2 fde tr E2, i.e.,

N
H = ﬁ Z Z EB(m,n)E’(—m, —n), (4.8)

m,n€e’l o,f=1
and by inserting the solution of Gauss’ law in the diagonal Coulomb gauge,

(1 = 6%2)(2m)2 A8 (m, n)
i(am +ibn + [¢* — ¢7])

E°%(m,n) = 6,0, (2m)% p* + (4.9)
we obtain the Hamiltonian in Eq. (4.2) (see [11] for a detailed discussion of this method).
Higher order integrable Hamiltonians can be obtained, in a similar manner, from the gauge
theory Hamiltonian

H = / &’z aytr ¥ (4.10)
[_Wvﬂ]Q

k=2

with arbitrary real constants aj. These correspond, of course, to the family of commuting
“integrale of motion” for the elliptic spin-particles systems above. We expect that there
should exist integrable reductions of these to spin systems.

The models discussed here are all classical, but it is plausible that they have integrable
quantum counter parts. The discussion in [27] suggests that it would be interesting to
study and solve the quantum versions of some of the models above. As far as we see,
the method described in Section 3 allows to obtain information only about the classical
models. However, as already mentioned, we have worked for a quite a while on another
approach to the quantum versions of these models, and this has led to an explicit solution
of the quantum eCM system recently [6]. We have wondered since long whether that
approach can be related to the one discussed in the present paper. It seems that this
question has become more interesting now.
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Epilogue. As mentioned in the Prologue, this work on Calogero-Moser systems started a
long time ago in a project on quantum chromodynamics in 141 dimensions which, at first
stght, seems totally unrelated. I will now describe this story in more detail.

As discovered by Schwinger [33], quantum electrodynamics with massless fermions in
1+1 dimensions can be solved exactly, and this so-called Schwinger model became famous
since is allows to study several interesting aspects of quantum field theories in a precise
mathematical framework (this is discussed beautifully in a paper by Manton [34]). In 1991
I became postdoc at UBC in Vancouver, and I started to collaborate with Gordon Semenoff
on a project where we studied the non-Abelian analog of the Schwinger model: massless
fermions coupled to a non-Abelian Yang-Mills field in (1+1)D. We were mainly interested
in the short-distance aspects of this model and thus worked with a compact space equal to
a circle, and we used a Hamiltonian framework allowing us to make precise mathematical
sense of the model by well-defined operators on a certain Fock space [9]. At that time I
believed that this model should be exactly solvable like the Schwinger model, and I invested
quite some effort into trying to find a method of solution. After several assaults that led
to nowhere I gave up and concluded that trying to solve a model was risky business since
one can easily waste a year without getting anywhere. I thus decided to never again try
to work on integrable systems. I was not aware that, at that very moment, I was already
breaking this intention: one part of this project was on the problem of gauge fizing [7, 8],
and the solution of this very problem implies, as a special case, the equivalence of the
trigonometric CM system to a particular (1+1)D Yang-Mills theories [25].1° This result
became well-known in the physics literature through a paper by Gorsky and Nekrasov [15]
which appeared shortly after that. I should also mention closely related work by Hitchin
[14] and Polychronakos and Minahan [12, 13] about which I learned later; see also [35, 36].

After that my interests changed, and only a couple of years later I returned to this
problem in a collaboration with Jonas Blom who was PhD student in our group. Our main
motivation was to use this relation of CM systems to gauge theories to make integrability
manifest and obtain explicit solutions. We were able to demonstrate the usefulness of this
point of view by deriving and solving novel spin generalizations of the CM models [10, 11].
I also realized that this construction can be generalized naturally to the elliptic case, but
shortly thereafter I found a paper by Gorsky and Nekrasov on the arXiv explaining how
to generalize their approach to the elliptic case [21].*'  Since my generalization of the
trigonometric case seemed to me, at that time, rather obvious once the idea pointed out
in [21] was realized, I wanted to produce more explicit results before publishing my notes.
Somehow I never got back to working on this project again, and thus my notes remained
unpublished.'? In the beginning of this year Stefan Rauch invited me to nice meetings in
Sardinia this June, and I was glad about this opportunity to present my results from 1999

197 realized this relation in a discussion with Gorsky who visited UBC short after our paper [7] had
appeared. I explained our results to him, and after a short discussion it was clear to both of us that a
special case of Eq. (18) in [7] was (essentially) equivalent to the trigonometric CM system. I guess that
this relation must have been known to him before since, to my knowledge, he never has acknowledged our
discussion or our work. Unfortunately I did not write a paper on this at that time but only pointed out
this relation in a short paragraph in a paper which was mainly on gauge fixing in Yang-Mills theory in
higher dimensions; see Eq. (33) ffin [25].

" Curiously this paper never appeared in a journal.

1215 July 2002 Harry Braden visited me and I showed him my notes. We were planning to collaborate
and try to produce a fully explicit solution from my results, but this plan has remained a plan to this day.
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to a few expert colleges including Francesco Calogero. Their positive feedback prompted
me to write this paper.
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