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Abstract

In a previous paper (Regular and Chaotic Dynamics 7 (2002), 351–391, Ref. [1]),
we obtained various results concerning reflectionless Hilbert space transforms arising
from a general Cauchy system. Here we extend these results, proving in particular
an isometry property conjectured in Ref. [1]. Crucial input for the proof comes from
previous work on a special class of relativistic Calogero-Moser systems. Specifically,
we exploit results on action-angle maps for the pertinent systems and their relation
to the 2D Toda soliton tau-functions. The reflectionless transforms may be viewed as
eigenfunction transforms for an algebra of higher-order analytic difference operators.

1 Introduction

In previous work we studied reflectionless second-order A∆Os (analytic difference oper-
ators) of Shabat type [1, 2, 3] and of Toda type [4, 5, 6, 7, 8] (cf. also [9, 10]). Their
eigenfunctions are of the form

W(a, b, µ;x, p) = eixp

(

1 −

N
∑

k=1

Rk(a, b, µ;x)

ep − bk

)

(1.1)

and satisfy

W(x, p) ∼ exp(ixp), Rex→ ∞, (1.2)

W(x, p) ∼ a(p) exp(ixp), Re x→ −∞, (1.3)

where

a(p) =
N
∏

k=1

ep − ak

ep − bk
. (1.4)
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Here we have a, b ∈ C
N , whereas the generalized norming ‘constants’, µ1(x), . . . , µN (x),

are i-periodic functions in the space

M∗ ≡ {f meromorphic, not identically zero}, (1.5)

obeying further restrictions, cf. Section 2. The ‘residue functions’, R1(x), . . . , RN (x) ∈
M∗, solve a linear Cauchy system we also specify in Section 2.

As was shown in [1], a great many features of the wave functions W(x, p) corresponding
to these two classes of A∆Os hold true for an extensive set of parameters, a, b, and µ,
that encompasses both the Shabat and Toda parameters. Moreover, for constant µ ∈ C

∗N

and under suitable reality restrictions, the same is true for the eigenfunction transforms
(generalized Fourier transforms)

F : Hp ≡ L2(R, dp) → Hx ≡ L2(R, dx)

φ(p) 7→ (2π)−1/2

∫ ∞

−∞
dpW(a, b, µ;x, p)φ(p). (1.6)

For the general case, however, we could not prove the isometry of F , though we stated a
conjecture (cf. [1] (4.41)). A principal aim of this paper is to prove this isometry conjecture.

For the Shabat and Toda specializations we could show the critical isometry property of
F via the time-dependent scattering theory associated to the relevant second-order A∆Os.
For the far larger parameter set at issue here, we are still able to show that the transforms
F diagonalize an algebra of higher-order A∆Os. It appears out of the question, however,
to use these A∆Os in the same way as before to arrive at an isometry proof.

Accordingly, the proof presented below proceeds along quite different lines, not involv-
ing A∆Os at all. As a starting point, we summarize in Section 2 various findings from
[1] regarding the general situation that play a role in the proof. Of particular relevance
is Theorem 4.2 in [1] (cf. Theorem 2.5 below), inasmuch as this amounts to an isometry
result for F∗ when the integer N+ vanishes.

In Section 3 we exploit the latter isometry feature and a duality argument to obtain
isometry of F for a special class of parameters. For the latter we can express the reflec-
tionless wave function kernel W(x, p) of F in terms of the positions and momenta of a class
of relativistic Calogero-Moser systems. The pertinent class IIrel(c,N+,N−), c ∈ (0, π/2],
was studied in great detail in [11]. We have occasion to use some of the findings of [11],
especially as concerns the spectral characteristics of the Lax and dual Lax matrices. They
enable us to show that W(x, p) admits an alternative (‘dual’) representation such that
isometry of F can be deduced from the N+ = 0 isometry result for F∗ already obtained
in [1].

Section 4 is concerned with isometry for general parameters. The main idea is to exploit
the isometry for the specializations obtained in Section 3; it enables us to deduce isom-
etry for a dense set in the full parameter space from an analytic continuation reasoning.
This strategy involves some formalism involving an ‘adjoint wave function’ and various
constructions from our paper [12]. More specifically, the notion of ‘fusion’ for 2D Toda
soliton tau-functions plays a pivotal role, just as it did in [12]. Using additional analytic
continuation arguments we can then obtain isometry for the parameters already specified
in [1] to complete the proof.

We should add that the previous paragraph attempts to give a very concise summary of
our general isometry proof. The technical details are quite involved, and we have relegated
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long proofs of two key lemmas to Appendix A. Moreover, we have tried to follow a line
of exposition that explains the main ideas before we embark on the technicalities and
somewhat elaborate notation we were unable to avoid. (Unfortunately, we simply did not
find an easy answer to the main question we address: How do you recognize an isometric
operator when you see one?)

As we mentioned above, A∆Os play no role in the isometry proof. Even so, all of the
isometric transforms may be viewed as eigenfunction transforms for A∆Os whose order
is in general larger than two. More precisely, when the ‘pole number’ N is greater than
one, then W(x, p) can only be an eigenfunction for a second-order A∆O for nongeneric
parameters, whereas there are plenty of A∆Os whose order is greater than N and for which
W(x, p) is an eigenfunction. Due to our isometry results we can very easily address self-
adjointness questions, which would appear quite elusive otherwise. We devote Section 5
to a study of these matters.

Section 6 concludes the paper with a number of remarks. The first two remarks are
mostly concerned with data (a, b, µ) for which we do not know whether F is an isometry.
This issue is intimately connected to the eventual occurrence of tau-function zeros for
real x, which is the subject of remark (i). In remark (ii) we collect some open problems
that center around the character of the data subset where F might fail to be isometric.

Remark (iii) concerns eventual relations to hierarchies of nonlocal soliton evolution
equations. Though this is a quite interesting issue, we have very little to offer here.
Indeed, just as in our previous work on the special Shabat and Toda cases, the ‘soliton
perspective’ can be studied independently of isometry questions, but to date we simply
have not done this.

As already mentioned, we have occasion to use various results from our previous pa-
pers [11] and [12]. On the other hand, the connection between the IIrel(c,N+,N−) systems
studied in [11] and the fusion construction from [12] must be made in a different way in
the present setting. To bring this out more clearly we compare the two constructions in
remark (iv).

2 Some results from [1]

In this section we collect definitions and results from [1] we have occasion to use. We
begin by specifying the range of variation for the data a, b and µ(x). Let

C− ≡ C \ [0,∞). (2.1)

Then (a, b) varies over

Π−(N) ≡ {(a, b) ∈ C
2N | aj, bj , aj/bj ∈ C−, j = 1, . . . ,N, a1, . . . , aN , b1, . . . , bN distinct}.

(2.2)

Moreover, setting

R(c) ≡ {ν(x) = F (exp(2πx)) | F (z) rational, F (0) = c, F (∞) 6= 0}, c ∈ C
∗, (2.3)

we choose

µn(x) ∈ R(cn), n = 1, . . . , N. (2.4)
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Next we introduce the Cauchy matrix

C(a, b)jk ≡
1

aj − bk
(2.5)

and the diagonal matrix

D(a, b, µ;x) ≡ diag(d(a1, b1, µ1;x), . . . , d(aN , bN , µN ;x)) (2.6)

where d is defined by

d(α, β, ν;x) ≡ ν(x) exp(−ixLn(α/β)), ν ∈ R(c), α/β ∈ C− (2.7)

The branch of the logarithm occurring here is fixed by

Ln(w) ≡ ln(|w|) + iArg(w), Arg(w) ∈ (0, 2π), w ∈ C−, (2.8)

and

ln r ∈ R, r ∈ (0,∞). (2.9)

Now the vector function R = (R1, . . . , RN ) is the solution to the Cauchy system

[D(a, b, µ;x) + C(a, b)]R = ζ, ζ ≡ (1, . . . , 1)t ∈ R
N . (2.10)

Besides the wave function W(x, p) (1.1) and the (reciprocal) transmission coefficient
a(p) (1.4) we need the tau-function

τ(x) ≡ |1N +D(x)−1C|. (2.11)

We proceed by collecting crucial properties of the above functions. We begin with the
solution R to the system (2.10). By Cramer’s rule and (2.11), it can be written as

Rn(x) = En(x)/τ(x), n = 1, . . . ,N, (2.12)

where the functions En(x) are entire whenever all of µ1(x), . . . , µN (x) are constant. Less
obvious features now follow, cf. Lemma 2.1 in [1].

Lemma 2.1. (Properties of R(x)) We have R(x) ∈ M∗N . The limits of R(x) for
|Re x| → ∞ exist and are given by

lim
Re x→∞

R(x) = 0, (2.13)

lim
Re x→−∞

R(x) = C−1ζ. (2.14)

More precisely we have

Rn(x) = O(exp[−Arg(an/bn)Rex]), Re x→ ∞, n = 1, . . . ,N, (2.15)

Rn(x) − (C−1ζ)n = O(exp(ρRe x)), Rex→ −∞, n = 1, . . . ,N, (2.16)

where

ρ ≡ min
n∈{1,...,N}

Arg(an/bn). (2.17)

The bounds are uniform for Imx in compact subsets of R. Moreover, for µ(x) constant
the bounds are uniform for (a, b, µ) in compact subsets of Π−(N) × C

∗N , and R(a, b, µ;x)
is meromorphic in a, b and µ for (a, b, µ) ∈ Π−(N) × C

∗N .
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We continue with properties of the functions (1.4) and (2.11), cf. [1] Lemma 2.2. For
m(x) ∈ M we define the conjugate meromorphic function by

m∗(x) ≡ m(x), x ∈ C. (2.18)

Lemma 2.2. (Properties of a(p) and τ(x)) We have the identity

a(p) = 1 −
N
∑

k=1

(C−1ζ)k
ep − bk

. (2.19)

Now suppose that a, b and µ(x) are restricted by

aj = bj , j = 1, . . . , N, (2.20)

µ∗j(x) = −µj(x)bj/aj , j = 1, . . . ,N. (2.21)

Then we have

τ∗(x) = τ(x− i). (2.22)

Finally we focus on W(x, p), cf. [1] Lemma 2.3.

Lemma 2.3. (Properties of W(x, p)) We have the limits

lim
Re x→∞

e−ixpW(x, p) = 1, lim
Re x→−∞

e−ixpW(x, p) = a(p), (2.23)

and the identity

W(x, p) = eixp|1N+diag((ep−a1)/(e
p−b1), . . . , (e

p−aN )/(ep−bN )).D(x)−1C|/τ(x) (2.24)

We now turn to features of the transform F (1.6) already established in [1]. For the
case of general data (a, b, µ) given by (2.2)–(2.4) it need not be true that R(x) has no poles
on the real axis. Generically, however, this is the case. Clearly, for F to be a bounded
operator we should insist on the absence of real poles. If we do so, F is indeed bounded.
This is one of the results for general data listed in the following theorem (cf. Theorem 4.1
in [1]).

Theorem 2.4. Suppose that the data (a, b, µ) satisfy (2.2)–(2.4) and R(x) has no real
poles. Then W(x, p), p ∈ C, satisfies

p+ 2πik 6= Ln(a1), . . . ,Ln(aN ), ∀k ∈ Z ⇒ W(x, p) /∈ Hx, (2.25)

and

W(x,Ln(an)) ∈ Hx ⇔ Arg(an) < Arg(bn), n = 1, . . . ,N. (2.26)

The transform F (1.6) is a bounded operator with adjoint given by

(F∗ψ)(p) = (2π)−1/2

∫ ∞

−∞
dxW(a, b, µ;x, p)ψ(x), ψ ∈ Hx. (2.27)
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When µ(x) is nonconstant, it seems quite unlikely that F can be isometric. Accordingly
we assume µ ∈ C

∗N from now on (so that µn = cn, cf. (2.4)). For the same reason, we
assume that a and b are related by (2.20). Therefore bj either belongs to the (open) upper
half plane (UHP) or to the lower half plane (LHP). By permutation invariance we may
choose

b1, . . . , bN+
∈ LHP, bN−N−+1, . . . , bN ∈ UHP, N+ +N− = N. (2.28)

Thus Theorem 2.4 entails

ψn(x) ≡ W(x,Ln(bn)) ∈ Hx, n = 1, . . . ,N+, (2.29)

whereas W(x, p), x ∈ R, is not square-integrable for other values of p (mod 2πi, of course).
By virtue of the asymptotic behavior

ψn(x) ∼ cn(C−1ζ)n exp(x[2π + iLn(bn)]), Re x→ −∞ (2.30)

(cf. [1] (4.21)) and the distinctness of b1, . . . , bN+
, the vectors ψ1, . . . , ψN+

∈ Hx are linearly
independent. Setting

Hbs ≡ Span(ψ1, . . . , ψN+
), (2.31)

we deduce

dim(Hbs) = N+. (2.32)

For the next result we need a further restriction on µ: It should be of the form

µn ≡ (ibnνn)−1, νn ∈ R
∗, n = 1, . . . ,N. (2.33)

(Observe this implies (2.21).) Then the following theorem amounts to [1] Theorem 4.2.

Theorem 2.5. Suppose that the data a, b and µ satisfy (2.28), (2.20) and (2.33), and
assume R(x) has no real poles. Then we have

(F∗f1,F
∗f2) = (f1, f2) −

N+
∑

n=1

νn(f1, ψn)(ψn, f2), ∀f1, f2 ∈ C∞
0 (R), (2.34)

with ψn given by (2.29).

The next result is of a very general nature, cf. Theorem 4.3 in [1].

Theorem 2.6. Assume that F is an isometry satisfying (2.34), with ψ1, . . . , ψN+
linearly

independent and ν1, . . . , νN+
∈ C

∗. Then we have

ν1, . . . , νN+
∈ (0,∞) (2.35)

and

(ψm, ψn) = ν−1
n δnm, n,m = 1, . . . ,N+. (2.36)
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On account of this theorem (2.35) is necessary for F to be isometric. More generally
we believe, but cannot prove, that νN++1, . . . , νN must also be positive for F to be an
isometry. Therefore we require henceforth that

ν1, . . . , νN ∈ (0,∞), (2.37)

together with our previous assumptions, namely,

an = bn, µn(x) = (iνnbn)−1, n = 1, . . . ,N, (2.38)

b1, . . . , bN+
∈ LHP, bN++1, . . . , bN ∈ UHP, b1, . . . , bN , b1, . . . , bN distinct. (2.39)

From now on we denote the set of parameters (a, b, µ) obeying (2.37)–(2.39) by P(N).
To prove isometry of F we need one more restriction on (a, b, µ): We require that

τ(a, b, µ;x) 6= 0, ∀x ∈ S, (2.40)

where S is the strip

S ≡ {x ∈ C | Imx ∈ [−1, 0]}. (2.41)

In view of (2.12) and the entireness of En(x) for constant µ, this last assumption implies
in particular that R(x) has no real poles. In Section 6 we show by example that (2.40)
need not hold for all (a, b, µ) ∈ P(N). Moreover, for the examples in hand isometry of F
indeed breaks down. (It seems plausible that this happens whenever (2.40) is violated.)

At face value our final restriction (2.40) may seem elusive (especially as compared to
the restrictions (2.37)–(2.39)). In fact, however, it can be shown to hold true when either
N+ or N− vanishes. By contrast, for N+N− > 0 it is indeed far less accessible. On the
other hand, when the numbers b1, . . . , bN+

lie in the fourth quadrant and the numbers
bN++1, . . . , bN in the second one, (2.40) is valid. These facts are summarized in the last
theorem of this section (Theorem 4.4 in [1]).

Theorem 2.7. Assume that the parameters (a, b, µ) belong to P(N). Then (2.40) holds
for N− = 0 and for N+ = 0; for N+N− > 0, (2.40) is satisfied when

Re (bj) ≥ 0, j = 1, . . . , N+, Re (bN++l) ≤ 0, l = 1, . . . ,N−. (2.42)

3 Isometry for the IIrel(c, N+, N−) parameters

In this section we show that F is an isometry for the special parameters

bj =

{

ρje
−ic, j = 1, . . . , N+,

−ρje
−ic, j = N+ + 1, . . . , N,

, aj = bj, µj = (ibjνj)
−1, j = 1, . . . ,N, (3.1)

where

c ∈ (0, π/2], (3.2)

0 < ρN+
< · · · < ρ1, 0 < ρN < · · · < ρN++1, ν1, . . . , νN ∈ (0,∞), (3.3)

ρj 6= ρk, j 6= k (c = π/2). (3.4)
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Consequently the assumptions (2.37)–(2.39) and (2.42) of Theorem 2.7 hold true. (Ob-
serve that the extra restriction (3.4) for c = π/2 is needed to ensure distinctness of
b1, . . . , bN , b1, . . . , bN .) In particular, this entails that R(x) has no real poles, so that the
assumptions of Theorem 2.5 are met as well.

We proceed to tie in the above parameter choices with the relativistic integrable N -
particle systems denoted IIrel(c,N+, N−) in [12], which we previously studied in [11]. To
this end we introduce particle and antiparticle positions by setting

ρj = exp(x+
j ), j = 1, . . . , N+, ρN++l = exp(x−l ), l = 1, . . . ,N−, (3.5)

and define the positive pair potentials

f(c;x) ≡ [1 + sin2(c)/ sinh2(x/2)]1/2, c ∈ (0, π/2], x ∈ R
∗, (3.6)

f̃(c;x) ≡ [1 − sin2(c)/ cosh2(x/2)]1/2, c ∈ (0, π/2], x ∈ R, (3.7)

and the multiparticle potentials

V +
j ≡

∏

1≤k≤N+,k 6=j

f(x+
j − x+

k )
∏

1≤l≤N−

f̃(x+
j − x−l ), (3.8)

V −
l ≡

∏

1≤m≤N−,m6=l

f(x−l − x−m)
∏

1≤j≤N+

f̃(x−l − x+
j ). (3.9)

(Here and in the remainder of this section the indices j, k take the values 1, . . . ,N+, whereas
the indices l,m take the values 1, . . . , N−.) Next we introduce particle and antiparticle
momenta by reparametrizing ν as

νj = 2 sin(c) exp(p+
j )V +

j , νN++l = 2 sin(c) exp(p−l )V −
l . (3.10)

In order to make the connection to Section 2 in [11], we also define

De ≡ diag(e1, . . . , eN ), (3.11)

where the vector e is defined by

ej ≡ exp[(x+
j + p+

j )/2](V +
j )1/2, (3.12)

eN++l ≡ i exp[(x−l + p−l )/2](V −
l )1/2. (3.13)

Then it is straightforward to verify the relation (recall (2.6)–(2.8))

D(a, b, µ;x) =
exp(2cx+ ic)

2i sin c
D−2

e . (3.14)

Moreover, introducing

L ≡ e2cx+icD−1
e (D(x)−1C)De (3.15)

= 2i sin(c)DeCDe,

we readily calculate

Ljk = i sin(c)(V +
j V +

k )1/2 exp[(p+
j + p+

k )/2]/ sinh[(x+
j − x+

k + 2ic)/2], (3.16)
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LN++l,N++m = i sin(c)(V −
l V −

m )1/2 exp[(p−l + p−m)/2]/ sinh[(x−l − x−m + 2ic)/2], (3.17)

Lj,N++m = − sin(c)(V +
j V −

m )1/2 exp[(p+
j + p−m)/2]/ cosh[(x+

j − x−m + 2ic)/2], (3.18)

LN++l,k = sin(c)(V −
l V +

k )1/2 exp[(p−l + p+
k )/2]/ cosh[(x−l − x+

k + 2ic)/2]. (3.19)

Comparing (3.12)–(3.13) and (3.16)–(3.19) to (2.69)–(2.70) in [11], we see that we obtain
equality to the vector e (2.69) and Lax matrix L (2.70) when we substitute

β → 1, µ→ 1, τ = βµg/2 → c. (3.20)

At this stage this correspondence may seem intriguing at best. But now we proceed to
exploit it to rewrite the wave function W(x, p) (1.1). First, we set

W(a, b, µ;x, p) = eixp[1 −K(a, b, µ;x, p)], (3.21)

so that

K(a, b, µ;x, p) =
N
∑

n=1

Rn(a, b, µ;x)

ep − bn
. (3.22)

Now from (2.10) we deduce

R(x) = [D(x) + C]−1ζ, (3.23)

so that we may write K as the inner product

K(x, p) = (ζ, [ep1N −Db]
−1[D(x) + C]−1ζ), Db ≡ diag(b1, . . . , bN ). (3.24)

Introducing the dual Lax matrix

A ≡ diag(exp(x+
1 ), . . . , exp(x+

N+
),− exp(x−1 ), . . . ,− exp(x−N−

)) (3.25)

(cf. [11] (2.6)), we have

Db = e−icA (3.26)

for the case at hand, cf. (3.1) and (3.5). Using also (3.14), (3.15) and (3.11) we can rewrite
(3.24) as

K(x, p) = 2ie−ic sin(c) (e, [ep1N − e−icA]−1[e2cx1N + e−icL]−1e). (3.27)

Therefore K is now expressed in terms of the vector e and the matrices A and L from [11].

As a result we are in the position to invoke Section 2 in [11]. (In (2.71) there is an
inconsequential error: the factors 2µ should be replaced by µ.) We restrict attention to
points in the phase space Ω of the IIrel(c,N+,N−) system where L has spectrum of the
form

σ(L) = {er1 , . . . , erN }, rN+
< · · · < r1, rN < · · · . < rN++1. (3.28)
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(For N+ = 0 or N− = 0 this is true on all of Ω; we should also add that we sometimes
deviate from the notation used in [11] to prevent ambiguities.) Setting

L̂ = diag(er1 , . . . , erN ), (3.29)

we recall from Subsection 2A in [11] that there exists a J -unitary U such that

L̂ = U−1LU. (3.30)

Introducing

Â ≡ U−1AU, ê ≡ U−1e, ẽ ≡ U te (3.31)

(cf. [11] (2.8)–(2.9)), we can transform (3.27) into

K(x, p) = 2ie−ic sin(c) (ẽ, [ep1N − e−icÂ]−1[e2cx1N + e−icL̂]−1ê). (3.32)

Defining

b̂n ≡ − exp(rn − ic), ân ≡ b̂n, n = 1, . . . ,N, (3.33)

R̂n(x) ≡ 2ie−ic sin(c)ên

N
∑

i=1

[e2cx1N − e−icÂ]−1
in ẽi, (3.34)

we can now rewrite (3.32) as

K(a, b, µ;x, p) =
N
∑

n=1

R̂n(p/2c)

e2cx − b̂n
. (3.35)

We proceed to recall [11] (2.80):

Âin = êiC(1, 1,−2c; r, r)in ẽn. (3.36)

Putting

Fin ≡ ẽ−1
i (ep1N − e−icÂ)niê

−1
n , (3.37)

we deduce on the one hand from (3.36)

Fin = ẽ−1
i epê−1

n δin − e−icC(1, 1,−2c; r, r)ni (3.38)

and on the other hand from (3.34)

N
∑

n=1

FinR̂n(p/2c) = 2ie−ic sin c, i = 1, . . . ,N. (3.39)

Thus we have

R̂(x) = [D̂(x) + Ĉ]−1ζ, (3.40)
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where we have introduced

D̂(x) ≡ (2i sin c)−1e2cx+icdiag((ẽ1ê1)
−1, . . . , (ẽN êN )−1), (3.41)

Ĉ ≡
i

2 sin c
C(1, 1,−2c; r, r)t. (3.42)

We now use (B1) in [11] to calculate (recall (3.33))

Ĉin =
1

âi − b̂n
. (3.43)

Also, (2.40) and (2.42) in [11] yield

ẽj êj ∈ (0,∞), ẽN++lêN++l ∈ (−∞, 0). (3.44)

Thus we may reparametrize D̂(x) (3.41) as (cf. (2.6)–(2.8))

D̂(x) = D(â, b̂, µ̂;x), (3.45)

where

µ̂n ≡ (ib̂nν̂n)−1, ν̂n ≡ −2 sin(c)e−rn ẽnên ∈ R
∗, n = 1, . . . ,N. (3.46)

Comparing (3.23) and (2.5) with (3.40) and (3.43), resp., we deduce that

R̂(x) = R(â, b̂, µ̂;x). (3.47)

The crux is now that by (1.1), (3.47) and (3.35) we have

W(â, b̂, µ̂;x, p) = eixp

(

1 −
N
∑

n=1

R̂n(x)

ep − b̂n

)

(3.48)

= eixp(1 −K(a, b, µ; p/2c, 2cx))

= W(a, b, µ; p/2c, 2cx).

With these algebraic results at our disposal, we can turn to analysis.

Theorem 3.1. For all of the data a, b and µ given by (3.1)–(3.4), the operator F is an
isometry.

Proof. The matrix e2cx1N − e−icA is manifestly invertible for real x (cf. (3.25)), so it
is clear from (3.34) that R(â, b̂, µ̂;x) has no poles for real x. As a consequence, the data
â, b̂, µ̂ satisfy the assumptions of Theorem 2.5 with N+ = 0 (since (3.33) says all b̂n belong
to the UHP). Using (2.27) we can now write out (2.34) and substitute (3.48) to get

2π

∫ ∞

−∞
dxf1(x)f2(x) =

∫ ∞

−∞
dp

[∫ ∞

−∞
dx1W(a, b, µ; p/2c, 2cx1)f1(x1)

]

(3.49)

×

[∫ ∞

−∞
dx2W(a, b, µ; p/2c, 2cx2)f2(x2)

]

.
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Next we change variables

x, xj → q/2c, qj/2c, j = 1, 2, p→ 2cy (3.50)

and set

gj(p) ≡ f j(p/2c), j = 1, 2. (3.51)

Thus we obtain

2π

∫ ∞

−∞
dqg2(q)g1(q) =

∫ ∞

−∞
dy

[
∫ ∞

−∞
dq1W(a, b, µ; y, q1)g1(q1)

]

(3.52)

×

[
∫ ∞

−∞
dq2W(a, b, µ; y, q2)g2(q2)

]−

,

with [· · · ]− denoting the complex-conjugate of [· · · ]. Clearly, this can be rewritten as

(g2, g1) = (Fg2,Fg1). (3.53)

This holds for all g1, g2 ∈ C∞
0 (R), so that F is isometric, as claimed.

For N+ = 0 or N− = 0, (3.28) is valid for all of the above data, so that the theorem
now follows for these special cases. Assuming from now on that N+N− > 0, the spectrum
σ(L) is given by (3.28) on a non-empty open subset Ω+ of the relevant phase space Ω, but
Ω+ is smaller than Ω [11]. Thus we need additional arguments to obtain isometry on all
of Ω.

Our reasoning exploits real-analyticity in the particle/antiparticle positions and mo-
menta (x+, x−, p+, p−) ∈ Ω. Turning to the details we begin by noting that real-analyticity
is clear by inspection for the matrices D(x),D(x)−1 and C. Therefore τ(x) (2.11) is real-
analytic too. Fixing x ∈ R we may invoke Theorem 2.7 to infer that τ(x) cannot vanish
on Ω. (Alternatively we may derive this in an illuminating way from (3.15). Indeed, it
entails

τ(x) = |1N + e−2cxe−icL|. (3.54)

Since σ(L) belongs to the open right half plane on all of Ω [11], we deduce τ(x) 6= 0 for
real x.) Hence R(x) is real-analytic on all of Ω. Thus W(x, p) (with p ∈ R also fixed) is
real-analytic, and so is W(x, p).

Consider now (3.52). Since g1, g2 ∈ C∞
0 (R), the integrals in brackets yield functions

that are real-analytic on Ω. Now we split up the y-integral into three integrals over
(−R,R), (R,∞) and (−∞,−R), where R > 0 is at our disposal. Obviously the first
integral is real-analytic on Ω. The second one we rewrite as

∫ ∞

R
dy

[

∫ ∞

−∞
dpeiypg1(p) −

N
∑

n=1

Rn(a, b, µ; y)

∫ ∞

−∞
dp
eiypg1(p)

ep − bn

]

×

[

∫ ∞

−∞
dqeiyqg2(q) −

N
∑

n=1

Rn(a, b, µ; y)

∫ ∞

−∞
dq
eiyqg2(q)

eq − bn

]−

. (3.55)

On account of the uniform asymptotics (2.15) it now follows that (3.55) is also real-analytic
on Ω.
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To handle the third integral we use the identity (2.19) to obtain

∫ −R

−∞
dy

[

∫ ∞

−∞
dpeiypa(p)g1(p) −

N
∑

n=1

(

Rn(y) − (C−1ζ)n
)

∫ ∞

−∞
dp
eiypg1(p)

ep − bn

]

×

[

∫ ∞

−∞
dqeiyqa(q)g2(q) −

N
∑

n=1

(

Rn(y) − (C−1ζ)n
)

∫ ∞

−∞
dq
eiyqg2(q)

eq − bn

]−

. (3.56)

By the uniform asymptotics (2.16) the third integral (3.56) is real-analytic on Ω as well.
We have now shown that the rhs of (3.52) is real-analytic on Ω. As a consequence (3.52)

holds true on the connected components of Ω that contain subsets of Ω+. For c ∈ (0, π/2)
Ω is connected, so that (3.52) holds true on all of Ω. For c = π/2 the restriction x+

j 6= x−l
(cf. (3.4)) separates Ω into a finite number of components with distinct position orderings.
Even so, each of these contains subsets of Ω+ [11], so that (3.52) holds true on all of Ω for
c = π/2 as well. (Alternatively we can fix x+, x− such that x+

j 6= x−l and obtain (3.52) for
c = π/2 by continuity in c from the limit c ↑ π/2.) �

Corollary 3.2. For all of the data (3.1)–(3.4) the operator F satisfies

F∗F = 1, FF∗ = 1−

N+
∑

j=1

νjψj ⊗ ψj , (3.57)

with

(ψj , ψk) = ν−1
k δjk. (3.58)

Proof. This follows upon combining Theorem 3.1 with Theorems 2.5–2.7. �

To conclude this section we add some remarks. First, we note that F is unitary forN+ =
0, in accordance with the parameters and dual parameters having the same characteristics.
(Indeed, we have

bl = − exp(x−l − ic), b̂l = − exp(rl − ic), (3.59)

cf. (3.1), (3.5) and (3.33), whereas

νl > 0, ν̂l > 0, (3.60)

cf. (3.3) and (3.44) –(3.46), resp.)
Second, we point out that for N+N− > 0 the spectrum of L is not simple on all of Ω;

in fact, for the special case N+ = N− there are phase space points where σ(L) consists of
only one point [11]. For N+N− > 0 there is therefore no straightforward generalization of
the key identity (3.48) to all of Ω. Below, though, we obtain (A.10)–(A.12) as a substitute.

Third, it is obvious from (3.27) that K(x, p) is iπ/c-periodic in x. Therefore, for any
A∆O of the form

Ac =

K
∑

n=−L

γn exp(−inπc−1d/dx), γn ∈ R, K,L ∈ N, (3.61)



578 S N M Ruijsenaars

we have an eigenvalue equation

AcW(x, p) = Ec(p)W(x, p), Ec(p) ≡

K
∑

n=−L

γn exp(nπp/c). (3.62)

Since we have

ψj(x) = W(x, x+
j + ic) (3.63)

(recall (2.29)), we deduce that

Acψj(x) = Ec,jψj(x), Ec,j ≡
K
∑

n=−L

(−)nγn exp(nπx+
j /c). (3.64)

In particular, this yields

Ec(p) ∈ R, p ∈ R, Ec,1, . . . , Ec,N+
∈ R. (3.65)

It easily follows that we may reinterpret Ac as a self-adjoint operator on Hx, whose action
on the core (domain of essential self-adjointness [13])

C ≡ FC∞
0 (R) ⊕Hbs (3.66)

coincides with the A∆O-action. In Section 5 we show that W(x, p) and F play a similar
role for an algebra of higher-order A∆Os with nonconstant coefficients. (For the latter the
step size π/c in (3.61) is replaced by 1.)

4 Isometry for general parameters

As we already mentioned, the assumptions of Theorem 2.7 imply that F∗ is a partial
isometry satisfying (2.34). To prove that F is isometric under the same assumptions it
therefore suffices to show that Fφ = 0, φ ∈ Hp, entails φ = 0. But to prove this directly
appears intractable, so that we proceed differently (just as we did in the previous section).

Since the details of our proof are quite substantial, we first explain the main steps in
general terms lest the ideas be drowned by technicalities. We henceforth denote the set of
parameters (a, b, µ) ∈ P(N) (given by (2.37)–(2.39)) that satisfy the restriction (2.42) of
Theorem 2.7 by P(r)(N).

We first focus on data in P(r)(N) for which R(a, b, µ;x) is iπ/c-periodic with c ∈

(0, π/2]. We denote this subset by P
(r)
c (N). At face value this periodicity require-

ment seems very drastic. As we have seen above, the parameters in Section 3 belong to

P
(r)
c (N), but, when we fix N and c, we can only vary 2N real parameters (e.g., ρ1, . . . , ρN

and ν1, . . . , νN , cf. (3.1)–(3.4)). By contrast, P(r)(N) involves 3N real parameters (e.g.,
Re bn, Im bn, and νn, n = 1, . . . , N).

In fact, however, the parameter set

P(r)
p (N) ≡ ∪c∈(0,π/2]P

(r)
c (N) (4.1)
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of ‘periodic’ parameters is dense in P(r)(N) as we now show. Consider parameters of the
form

bj =

{

ρje
−iφj , j = 1, . . . , N+,

−ρje
−iφj , j = N+ + 1, . . . , N,

, aj = bj, µj = (ibjνj)
−1, j = 1, . . . ,N, (4.2)

further restricted by

0 < ρN+
< · · · < ρ1, 0 < ρN < · · · < ρN++1, ν ∈ (0,∞)N . (4.3)

It is immediate that, when we also demand φj ∈ (0, π/2), j = 1, . . . ,N , we obtain a dense
subset of P(r)(N). Instead we now require that

φj = cj , cj ≡ njc, nj ∈ N
∗, j = 1, . . . ,N, (4.4)

with

c ∈ (0, cmax), cmax ≡
π

2max(n1, . . . , nN )
. (4.5)

Clearly this entails not only φj ∈ (0, π/2) but also that the data belong to P
(r)
c (N).

(Indeed, iπ/c-periodicity of D(x), hence of R(x), follows from (2.6)–(2.8).) The point is
now that, when we let n1, . . . , nN vary over N

∗ and c over (0, cmax), the resulting vectors

φ ≡ (φ1, . . . , φN ) are dense in (0, π/2)N , as is easily seen. Thus it follows that P
(r)
p (N) is

dense in P(r)(N), as announced.
So why is iπ/c-periodicity of R(x) crucial? This is because of the following lemma,

whose proof is relegated to Appendix A. (To some extent our proof is adapted from the
proof of Theorem 4.2 in [1].)

Lemma 4.1. Assume that (a, b, µ) belongs to P
(r)
c (N) for some c ∈ (0, π/2]. Let CR

denote the rectangular contour with corners −R,R,R+ iπ/c,−R + iπ/c. Set

IR ≡

∫

CR

dxW∗(a, b, µ;x, q)W(a, b, µ;x, p), q, p ∈ R, (4.6)

with

W∗(x, q) ≡ W(x, q), x ∈ C, q ∈ R, (4.7)

and suppose that IR vanishes for sufficiently large R. Then F is isometric. Moreover,
when a, b and µ satisfy the restrictions (3.1)–(3.4), we have

IR = 0 (R large). (4.8)

Of course we have already shown isometry of F for a, b and µ obeying (3.1)–(3.4),
cf. Theorem 3.1. Thus it may seem odd that we would like to reformulate this as (4.8).
The crux is, however, that we can use (4.8) as a starting point for an argument involving
analytic continuation to show that (4.8) is valid for all parameters given by (4.2)–(4.5).
(By contrast, the use of (3.52) as a starting point would not be viable, as becomes clear
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shortly.) From the first part of Lemma 4.1 we then deduce isometry of F for a dense
subset of P(r)(N). Rewriting isometry as (3.52) (with, as before, g1, g2 ∈ C∞

0 (R)), we
conclude just as in the previous special case (cf. (3.55)–(3.56)) that the rhs is real-analytic
on P(r)(N) in the 3N real variables Re bn, Im bn, and νn, n = 1, . . . ,N . Likewise we obtain
not only isometry on P(r)(N), but also on the connected component of P(N) determined
by the tau-function restriction (2.40). (We recall this yields all of P(N) for N− = 0 and
for N+ = 0.) Thus we obtain the main result of this section, Theorem 4.3.

After this outline of our strategy we prepare the ground for Lemma 4.2. We are going

to deduce the vanishing of IR (4.6) for large R and parameters in P
(r)
c (N) of the form

(4.2)–(4.5) (with further restrictions detailed shortly) from its vanishing on a tiny subset

of P
(r)
c (M), where

M ≡
N
∑

i=1

ni. (4.9)

The latter is given by data of the form studied in Section 3, but with N replaced by
M > N ≥ 1. (The case M = N is irrelevant.) Hence (4.8) holds true on the subset.

We arrive at the wave function for the above points in P
(r)
c (N) by starting with wave

functions for the special points in P
(r)
c (M), and defining a suitable path for analytic

continuation between these two types of wave functions. We continue by specifying the

starting points in P
(r)
c (M). First, we set

n+
i ≡ ni, i = 1, . . . , N+, n−i ≡ nN++i, i = 1, . . . ,N−, (4.10)

M+ ≡

N+
∑

i=1

n+
i , M− ≡

N−
∑

i=1

n−i , (4.11)

and choose parameters

bj =

{

ρje
−ic, j = 1, . . . ,M+,

−ρje
−ic, j = M+ + 1, . . . ,M,

, aj = bj, µj = (ibjνj)
−1, j = 1, . . . ,M, (4.12)

where

c ∈ (0, π/4M2), (4.13)

0 < ρM+
< · · · < ρ1, 0 < ρM < · · · < ρM++1, ν1, . . . , νM ∈ (0,∞), (4.14)

cf. (3.1)–(3.3). Now we define particle and antiparticle positions by (3.5) with N+,N− →
M+,M−, and then specialize to clusters of the form

x+
n+

1
+···+n+

j−1
+k

= η+
j + (n+

j + 1 − 2k)c, j = 1, . . . ,N+, k = 1, . . . , n+
j , (4.15)

x−
n−

1
+···+n−

l−1
+m

= η−l + (n−l + 1 − 2m)c, l = 1, . . . ,N−, m = 1, . . . , n−l . (4.16)

Here we choose cluster centers

η+
N+

<< · · · << η+
1 , η−N−

<< · · · << η−1 , (4.17)
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where << denotes distances large enough so that the clusters are separated. (In view
of (4.13) this is already true for distances larger than π/2M .) Defining particle and
antiparticle momenta via (3.10) with N+,N− →M+,M−, we indeed obtain special points
in the phase space of the IIrel(c,M+,M−) system, as announced.

Next we describe the path in general terms. (We postpone the precise definition to
ease the exposition.) It involves a continuous function z(t) ∈ C, t ∈ [0, 1], with z(0) =
1, z(1) = i; z(t), t ∈ (0, 1), stays in the first quadrant and satisfies |z(t)| > 1. This
function enters into (4.15) and (4.16) upon replacing c by cz(t). Thus we obtain complex
x+

α (t), α = 1, . . . ,M+, and x−β (t), β = 1, . . . ,M−. The corresponding path in the parameter
space is then given by

bα(t) ≡ exp(x+
α (t))e−ic, bM++β(t) ≡ − exp(x−β (t))e−ic, (4.18)

aj(t) ≡ bj(t)e
2ic, j = 1, . . . ,M, (4.19)

µj(t) ≡ (ibj(t)νj(t))
−1, j = 1, . . . ,M, (4.20)

where

να(t) = 2 sin(c) exp(p+
α )V +

α (x+(t), x−(t)), α = 1, . . . ,M+, (4.21)

νM++β(t) = 2 sin(c) exp(p−β )V −
β (x+(t), x−(t)), β = 1, . . . ,M−. (4.22)

It already follows from the properties of z(t) described thus far that the parameters
(a(1), b(1)) of the endpoint do not belong to Π−(M) (given by (2.2)) and that, when n+

j > 2
for some j, we must have (a(t0), b(t0)) /∈ Π−(M) for some t0 ∈ (0, 1). To understand the
first assertion note that our standing assumptionM > N entails that at least one nontrivial
cluster is present. Letting e.g. n+

1 > 1 we get

b1(1) = exp(η+
1 + i(n+

1 − 2)c), a1(1) = exp(η+
1 + in+

1 c),
...

...
bn+

1

(1) = exp(η+
1 − in+

1 c), an+

1

(1) = exp(η+
1 − i(n+

1 − 2)c),

(4.23)

so that

b1(1) = a2(1), . . . , bn+

1
−1(1) = an+

1

(1). (4.24)

Hence the distinctness requirement of Π−(M) is violated. To see why the second assertion
holds true, let n+

1 > 2 and note that the path from the number b1(0) in the lower half
plane to the number b1(1) in the upper half plane must have crossed (0,∞); at this t-
value t0 (say) the requirement b1(t0) ∈ C− is violated, cf. (2.1)–(2.2). (The latter type of
pole crossing is the main reason why controlling analytic continuation of (3.52) would be
intractable.)

Since all of our functions in Section 2 are defined solely for parameters in Π−(M), we
are not entitled to use the notation R(a(t), b(t), µ(t);x) without further ado. In fact, we
now abandon this parametrization and the use of the linear system (2.10) in favor of a
new parametrization of the wave function that hinges on the alternative representation
(2.24).
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To detail this we first rewrite (2.24) for parameters in P(M) by using Cauchy’s identity
to expand the determinants. (We refer to Sections 1 and 2 of [12] for more details on the
combinatorics occurring in the sequel.) Since we use (2.24) only for the case

aj = bje
2ic, j = 1, . . . ,M, (4.25)

we specialize to points in P(M) that correspond to the IIrel(c,M+,M−) system (just as
the initial points). We write the result of the expansions as

Wc(b, ν;x, p) = eixpτ(c, b, κ(p);x)/τ(c, b, ν;x). (4.26)

Here we have

τ(c, b, ν;x) ≡
∑

s1,...,sM=0,1

exp





∑

1≤j<k≤M

sjskBjk +
∑

1≤j≤M

sj

[

ξ0j − 2cx− ic
]



 , (4.27)

with

exp(Bjk) ≡
e2ic(bj − bk)

2

(bje2ic − bk)(bj − bke2ic)
, j, k = 1, . . . ,M, (4.28)

exp(ξ0j ) ≡ νj/2 sin(c). (4.29)

(To check this equals |1N +D(x)−1C| for aj and bj related by (4.25) and µj = (ibjνj)
−1,

note we have

µ−1
j exp(ixLn(aj/bj)) =

νj(aj − bj)

2 sin(c)
exp(−2cx− ic), j = 1, . . . ,M, (4.30)

cf. (2.6)–(2.7).) Moreover, τ(c, b, κ(p);x) is given by the rhs of (4.27), with νj replaced by

κj(p) ≡ νj

(

ep − bje
2ic

ep − bj

)

, j = 1, . . . ,M. (4.31)

From this representation we deduce the following analyticity properties in the parame-
ters b and ν. First, τ(c, b, ν;x) is analytic for ν ∈ C

M and all b ∈ C
M such that the numbers

b1e
2ic, . . . , bMe2ic, b1, . . . , bM are distinct. Second, the same is true for τ(c, b, κ(p);x) pro-

vided that in addition bj 6= ep, j = 1, . . . ,M . When we now inspect the above path, we
see that in the initial point we have

W(a(0), b(0), µ(0);x, p) = Wc(b(0), ν(0);x, p). (4.32)

Next we define an ‘adjoint wave function’ by setting

W†
c (b, ν;x, q) ≡ e−ixqτ(c, b, κ†(q);x− i)/τ(c, b, ν;x − i), q ∈ R. (4.33)

Here we have introduced

κ†j(q) ≡ νj

(

eq − bj
eq − bje2ic

)

, j = 1, . . . ,M. (4.34)
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Thus the analyticity features of W†
c in b and ν are the same as those of Wc, except that

we now need bj 6= eq−2ic, j = 1, . . . ,M . Moreover, from the tau-function property (2.22)
and reality of exp(Bjk) for parameters given by (3.1)–(3.3) (with N →M) we deduce that

W∗(a(0), b(0), µ(0);x, q) = W†
c (b(0), ν(0);x, q), x ∈ C, q ∈ R. (4.35)

We can now rewrite (4.8) for a, b and µ given by (3.1) and (3.3) (with N → M and
c ∈ (0, π/2)) as

∫

CR

dxW†
c (b, ν;x, q)Wc(b, ν;x, p) = 0, q, p ∈ R (R large). (4.36)

When (x+, x−, p+, p−) varies over the phase space of the IIrel(c,M+,M−) system, the
parameters beic and ν vary over open subsets of R

M . By virtue of the above-mentioned
analyticity properties in b and ν it then follows that (4.36) still holds true for all (b, ν) ∈
C

2M that can be reached by a path such that we have not only

b1, . . . , bM , b1e
2ic, . . . , bMe

2ic distinct, (4.37)

bj 6= ep, bj 6= eq−2ic, j = 1, . . . ,M, (4.38)

along the path, but also no poles crossing the contour CR.

Returning to the above special path involving z(t), we see that (4.37) can be easily
satisfied for t ∈ [0, 1). Once z(t) is fixed, it is also clear that we can satisfy (4.38) along
the path by choosing q and p sufficiently large. Thus the main problem in continuing
(4.36) consists in showing that no poles cross the contour. More specifically we cannot
have pole crossings along the vertical parts if we choose R large enough, but the difficulty
is to show that τ(c, b, ν;x) has no real zeros along the path.

In the proof of Lemma 4.2 we show that z(t) can indeed be defined such that for t ∈ [0, 1)
we have (4.37)–(4.38) for b(t) and no real zeros for τ(c, b(t), ν(t);x). (This involves some
analysis.) Therefore (4.36) continues to hold for t ∈ (0, 1). But as we have already seen,
the distinctness requirement (4.37) is violated in the endpoint, since nontrivial clusters are
present (recall (4.23)–(4.24)). Thus we do not retain analyticity in the endpoint.

The proof that (4.36) does make sense and holds true in the endpoint z(1) = i involves
a straightforward adaptation of the fusion formulae in Section 2 of [12]. Briefly, these

formulae entail that for t ↑ 1 the functions W†
c (b(t), ν(t);x, q) and Wc(b(t), ν(t);x, p) con-

verge to W∗(α, β,m;x, q) and W(α, β,m;x, p) for certain (α, β,m) of the form (4.2)–(4.5).

Hence we are able to deduce that IR vanishes for points in P
(r)
c (N).

We proceed to present the details of the relevant fusion formulae. The first step is to
rewrite the tau-function expansion (4.27) in terms of the variables x+, x−, p+ and p− via
(3.5)–(3.10) (with N replaced by M of course). To avoid unwieldy formulae, however, it
is expedient to switch to slightly different variables given by

yj ≡ x+
j , j = 1, . . . ,M+, yM++l ≡ x−l + iπ, l = 1, . . . ,M−, (4.39)

pj ≡ p+
j , j = 1, . . . ,M+, pM++l ≡ p−l , l = 1, . . . ,M−, (4.40)

ηk ≡ η+
k , k = 1, . . . , N+, ηN++m ≡ η−m + iπ, m = 1, . . . ,N−. (4.41)
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Then we can rewrite (4.28) as (recall (3.6))

exp(Bjk) = 1/f2(c; yj − yk), j, k = 1, . . . ,M, (4.42)

and accordingly (4.27) becomes

τ(c, b, ν;x) =

M
∑

l=0

∑

I⊂{1,...,M}
|I|=l

exp

(

∑

k∈I

[pk − 2cx− ic]

)

∏

m∈I
n/∈I

f(c; ym − yn). (4.43)

Moreover, τ(c, b, κ(p);x) and τ(c, b, κ†(q);x) are given by the rhs of (4.43) with

pk → pk + ln((ep − eyk+ic)/(ep − eyk−ic)), (4.44)

pk → pk + ln((eq − eyk−ic)/(eq − eyk+ic)), (4.45)

cf. (4.31) and (4.34), resp.
We are now prepared to return to the special cluster variables (4.15)–(4.16) and the

path obtained by replacing c in these formulae by cz(t). Along this path η1, . . . , ηN and
p1, . . . , pM are constant, whereas y1, . . . , yM depend on t. Specifically we have

yn1+···+nj−1+k(t) = ηj + (nj + 1 − 2k)cz(t), j = 1, . . . ,N, k = 1, . . . , nj. (4.46)

Substituting this into the rhs of (4.43)–(4.45), we can not only verify the asserted continuity
for t ∈ [0, 1] but also calculate the t ↑ 1 limit explicitly by following the reasoning in [12]
leading from (2.21) to (2.27); in the present case we obtain in this way

lim
t↑1

τ(c, b(t), ν(t);x) =
N
∑

m=0

∑

J⊂{1,...,N}
|J |=m

exp





∑

j∈J

[Pj − 2cjx− icj ]





∏

j∈J
k/∈J

Fjk(ηj−ηk), (4.47)

with

Pj ≡

nj
∑

k=1

pn1+···+nj−1+k, j = 1, . . . ,N, (4.48)

Fjk(η) ≡

(

sinh2(η/2) + sin2(cj + ck)/2

sinh2(η/2) + sin2(cj − ck)/2

)1/2

, (4.49)

and the positive square root understood. The t ↑ 1 limits of τ(c, b(t), κ(p, t);x) and
τ(c, b(t), κ†(q, t);x) are given by the rhs of (4.47) with

Pj → Pj + ln((ep − eηj+icj )/(ep − eηj−icj)), (4.50)

Pj → Pj + ln((eq − eηj−icj)/(eq − eηj+icj)), (4.51)

resp.
If we now set

βj ≡ exp(ηj − icj), αj ≡ βj , j = 1, . . . ,N, (4.52)
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ζj ≡ 2 sin(cj) exp(Pj)
∏

j 6=k

Fjk(ηj − ηk), mj ≡ (iβjζj)
−1, j = 1, . . . ,N, (4.53)

then we obtain parameters (α, β,m) of the form (4.2)–(4.5) such that we also have

lim
t↑1

Wc(b(t), ν(t);x, p) = W(α, β,m;x, p), (4.54)

lim
t↑1

W†
c (b(t), ν(t);x, q) = W∗(α, β,m;x, q). (4.55)

To verify this one should start from the representation (2.24) for the wave function and
expand the determinants as before. (The key identities to be used are

1

Fjk(ηj − ηk)2
=

∣

∣

∣

∣

∣

1
αj−βj

αj−βk
αk−βk

αk−βj
1

∣

∣

∣

∣

∣

(4.56)

and (4.30) with c, aj , bj , νj and µj replaced by cj , αj , βj , ζj and mj , resp.)
We now have all of the algebraic ingredients in hand; hence it remains to supply the

analytic details that were omitted in the above road map. First we define a path z(t)
along which the tau-function has no real zeros and (4.37) holds true.

Lemma 4.2. Fix p+ ∈ R
M+, p− ∈ R

M− , η+ ∈ R
N+ and η− ∈ R

N− satisfying

η+
j−1 − η+

j > 4, j = 2, . . . , N+, η−l−1 − η−l > 4, l = 2, . . . ,N−, (4.57)

and define y(t) via (4.46) and (4.41), with c ∈ (0, π/4M2). Then the tau-function

M
∑

l=0

∑

I⊂{1,...,M}
|I|=l

exp

(

∑

k∈I

[pk − 2cx− ic]

)

∏

m∈I
n/∈I

f(c; ym(t) − yn(t)) (4.58)

has no zeros for real x along the following path z(t), t ∈ [0, 1]: (a) as t goes from 0 to 1/3,
z(t) moves from 1 to M along the real axis; (b) as t goes from 1/3 to 2/3, z(t) moves
from M to Mi along the arc |z| = M ; (c) as t goes from 2/3 to 1, z(t) descends along the
imaginary axis from Mi to i. Moreover, for t ∈ [0, 1) the numbers

exp(yj(t) − ic), exp(yj(t) + ic), j = 1, . . . ,M, (4.59)

are distinct.

The proof of Lemma 4.2 can be found in Appendix A. With Lemmas 4.1 and 4.2 at
our disposal we are in the position to obtain the main result of this section (and of the
paper). We define

P6=(N) ≡ {(a, b, µ) ∈ P(N) | τ(a, b, µ;x) 6= 0, ∀x ∈ R} (4.60)

and recall that P(r)(N) is a subset of P6=(N).

Theorem 4.3. The operator F is isometric on the connected component P
(r)
6= (N) of

P6=(N) that contains P(r)(N).
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Proof. The initial points in Lemma 4.2 belong to the subset of P(r)(M) that corresponds
to the IIrel(c,M+,M−) system. Thus the contour integral IR vanishes for large R, cf. (4.8).
Rewriting this as (4.36), we have shown in Lemma 4.2 that for t ∈ [0, 1) the path yielding
(b(t), ν(t)) stays in the region of C

2M where (4.37) holds true. Clearly, we can satisfy
(4.38) along the path by choosing p and q sufficiently large. Likewise, if we take R large
enough, there are no poles crossing the vertical parts of CR. By Lemma 4.2 there are no
poles crossing the horizontal parts either. Therefore we have

∫

CR

dxW†
c (b(t), ν(t);x, q)Wc(b(t), ν(t);x, p) = 0, t ∈ [0, 1), (4.61)

for p, q and R sufficiently large.
We now invoke the limits (4.54)–(4.55). Since the denominator tau-functions stay away

from 0 on CR as t ↑ 1, they entail
∫

CR

dxW∗(α, β,m;x, q)W(α, β,m;x, p) = 0. (4.62)

This result is obtained under various restrictions that we remove next. First, we use real-
analyticity in p and q to deduce (4.62) for all (p, q) ∈ R

2. Second, since the denominator
tau-functions stay away from 0 for c ∈ (0, cmax), we may use real-analyticity in c to extend
(4.62) from c ∈ (0, π/4M2) to c ∈ (0, cmax). Third, we use real-analyticity in η+ and η− to
extend the validity of (4.62) to all (η+, η−) ∈ R

N given by (4.17) with << replaced by <.
Since we have not imposed a restriction on p+ and p−, there is no restriction on Pj (4.48)
either. Therefore all ζj (given by (4.53)) vary over (0,∞).

The upshot is that we obtain
∫

CR

dxW∗(a, b, µ;x, q)W(a, b, µ;x, p) = 0 (4.63)

for all parameters of the form (4.2)–(4.5). From the first part of Lemma 4.1 we now deduce
that F is an isometry for these parameters. Rewriting isometry as (3.52) (with g1, g2 ∈
C∞

0 (R)) and recalling that the pertinent parameters form a dense subset of P(r)(N), we
can use real-analyticity in Re bj , Im bj and νj , j = 1, . . . ,N , to deduce isometry on all of
P(r)(N) (by the reasoning in the proof of Theorem 4.3, cf. (3.55)–(3.56)). Likewise we

deduce isometry on P
(r)
6= (N). �

Corollary 4.4. For all (a, b, µ) ∈ P
(r)
6= (N) the operator F satisfies

F∗F = 1, FF∗ = 1−

N+
∑

j=1

νjψj ⊗ ψj , (4.64)

where

(ψj , ψk) = ν−1
k δjk. (4.65)

Proof. Clear from Theorem 4.3 and Theorems 2.5–2.7. �
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5 Eigenfunction properties

As we mentioned above, we believe that, when the functions µ1(x), . . . , µN (x) are not
constant, F cannot be isometric. Therefore the reader may wonder why we did not
require µ ∈ C

∗N from the outset. Our reason for not doing so is that the principal result
of this section (Theorem 5.1) holds true when we only require (2.4). (Actually, though
i-periodicity is indispensable, the space R(c) (2.3) could be further enlarged for this to be
the case.) Theorem 5.1 involves Laurent polynomials of the form

L(z) =
K
∑

n=−L

γnz
n, γ0 ≡ 0, K,L ∈ N, (5.1)

with γK 6= 0 for K > 0 and γ−L 6= 0 for L > 0. Its proof is partly adapted from the proof
of Theorem 2.5 in [1].

Theorem 5.1. Suppose (a, b, µ(x)) satisfy (2.2)–(2.4). Let L(z) be a Laurent polynomial
of the form (5.1) that satisfies

L(aj) = L(bj), j = 1, . . . , N. (5.2)

Then there exists one and only one A∆O of the form

A =
K ′

∑

n=−L′

Vn(x) exp(−ind/dx), K ′, L′ ∈ N, Vn ∈ M, (5.3)

such that

AW(a, b, µ;x, p) = L(ep)W(a, b, µ;x, p). (5.4)

More specifically we have K ′ = K,L′ = L and

K > 0 ⇒ VK(x) = γK , (5.5)

L > 0 ⇒ V−L(x) ∈ M∗. (5.6)

Proof. We firstly assume that A is an A∆O of the form (5.3) that satisfies (5.4) and
prove that the coefficients Vn(x) are uniquely determined. It is convenient to introduce
the auxiliary wave function

A(x, p) ≡

N
∏

n=1

(ep − bn) · W(x, p). (5.7)

Hence exp(−ixp)A(x, p) is a polynomial in ep, cf. (1.1); more specifically we may write

A(x, p) = eixp
N
∑

k=0

ck(x)e
kp, c0(x) ∈ M∗, cN (x) = 1. (5.8)

(It is not immediate that c0 cannot vanish identically, but this can be verified by using
(2.13).)
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Obviously (5.4) entails

AA(x, p) = L(ep)A(x, p), (5.9)

so that we must have equality of coefficients of powers elp. Comparing coefficients of
e(N+K)p, we see that K ′ cannot be smaller than K. Assuming K ′ is larger than K, we
compare coefficients of elp for l = K ′,K ′−1, . . . ,K+1, to obtain Vl(x) = 0. Thus we have
K ′ = K, and (5.5) follows from equality of e(N+K)p-coefficients. More generally, equality
of e(N+K−m)p-coefficients for m = 0, . . . ,K − 1, yields

m
∑

l=0

VK−l(x)cN+l−m(x− i(K − l)) =
m
∑

l=0

γK−lcN+l−m(x). (5.10)

Likewise we deduce L′ = L and

L > 0 ⇒ V−L(x) = γ−Lc0(x)/c0(x+ iL) ∈ M∗ (5.11)

as asserted. Equality of e(−L+j)p-coefficients for j = 0, . . . , L, yields

j
∑

n=0

V−L+n(x)cj−n(x+ i(L− n)) =

j
∑

n=0

γ−L+ncj−n(x). (5.12)

We now show uniqueness of the coefficients VK(x), . . . , V−L(x), in several steps. First,
in the trivial case L,K = 0 we have L = 0, V0(x) = 0 and A = 0. Second, let L = 0 and
K > 0. Then we use cN (x) = 1 and (5.10) for m = 0, . . . ,K − 1, to deduce recursively
that the coefficients

VK(x), . . . , V1(x) (5.13)

are uniquely determined. Comparing the coefficients of elp with l = 0 and using c0 ∈ M∗,
we deduce that

V0(x) = 0 (L = 0). (5.14)

Third, let L > 0 and K = 0. Then we can use c0 ∈ M∗ and (5.12) for j = 0, . . . , L, to
deduce recursively that

V−L(x), . . . , V0(x) (5.15)

are uniquely determined.
Finally, for L > 0 and K > 0 we first invoke (5.10) with m = 0, . . . ,K − 1, to see

that the coefficients (5.13) are unique and then invoke (5.12) with j = 0, . . . , L, to obtain
uniqueness of the coefficients (5.15).

The upshot is that existence implies uniqueness. To prove existence we follow the
reasoning in the proof of Theorem 2.5 in [1]. It applies as it stands until we reach the
paragraph containing (2.52). (This is the first place where the Shabat A∆O AS enters
the proof.) Now we define A by determining the coefficients Vn(x) recursively, as already
detailed. Then the function

D(x, p) ≡ AA(x, p) − L(ep)A(x, p) (5.16)
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is manifestly of the form (2.58). Hence we can complete the proof as before, the assumption
(5.2) playing the same role as (2.61). �

Rewriting the condition (5.2) as

K
∑

n=−L

γnv
(j)
n = 0, v(j)

n ≡ an
j − bnj , j = 1, . . . ,N, (5.17)

it becomes clear that for given (a, b) ∈ Π−(N) there exist a great many Laurent polyno-
mials of ‘degree’ K +L greater than N satisfying (5.2); obviously these polynomials form
an algebra. Likewise it follows that for generic (a, b) ∈ Π−(N) no Laurent polynomial
with K + L ≤ N satisfying (5.2) exists. Thus any wave function W(a, b, µ;x, p) is a joint
eigenfunction for an algebra A of A∆Os of the form (5.3), whose order K+L is generically
greater than N . Moreover, any pair A1, A2 ∈ A commutes because [A1, A2]W = 0 implies
A = 0 by virtue of Theorem 5.1.

If we restrict attention to (a, b, µ) ∈ P
(r)
6= (N) and to Laurent polynomials obeying (5.2)

that have real coefficients γn, it is easy to see that the associated A∆O A (5.3) can be
reinterpreted as a self-adjoint operator on Hx with a core given by (3.66). Indeed, for
these data we may invoke Corollary 4.4, so on FC∞

0 (R) we may view A as the pullback of
the real-valued multiplication operator L(ep) under the isometry F , whilst the eigenvalues
L(aj) on the pairwise orthogonal bound states

ψj(x) = W(x,Ln(aj)), j = 1, . . . ,N+, (5.18)

are also real. (This follows from (5.2), γn ∈ R, and equality of bj and aj .) From this de-
scription it is also clear that the commutative A∆O algebra A gives rise to a commutative
algebra of self-adjoint operators on Hx.

6 Concluding remarks

(i) (Real tau-function zeros) We recall that we have

P
(r)
6= (N) = P(N) (N+ = 0 or N− = 0). (6.1)

Now assume that N+N− > 0. We claim that in this case P6=(N) (4.60) is a proper subset
of P(N). To show this it suffices to prove the existence of (a, b, µ) ∈ P(N) for which
τ(a, b, µ;x) has a real zero. To this end we specialize to data satisfying (3.1) and (3.3),
but now with c ∈ (π/2, π). Then we can proceed as before to obtain (3.5)–(3.20) and

τ(x) =
∣

∣1N + e−2cxe−icL
∣

∣ . (6.2)

Now from [11] it follows that

σ(L) ⊂ {λ ∈ C
∗ | Arg(λ) ≤ π − c}, c ∈ (π/2, π), (6.3)

and that points in the phase space Ω exist for which L has eigenvalues

λ± = κ exp(±i(π − c)), κ > 0. (6.4)
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Thus we need only choose x ∈ R such that exp(−2cx) = κ−1 to obtain a real tau-function
zero.

For the special case N+ = N− = 1 the tau-zeros corresponding to the above IIrel(c, 1, 1)
points occur if and only if

ν1 = ν2 = ν, b1 = −b2 = ρe−ic, ν, ρ ∈ (0,∞), c ∈ (π/2, π), (6.5)

as is readily verified. Thus the associated (a, b, µ) form a 3-dimensional submanifold of
the 6-dimensional manifold P(2).

(ii) (Some open problems) As we already mentioned, we do not know whether nonconstant
µ(x) exist for which F is an isometry. More generally, it is an open question whether
isometry is violated for (a, b, µ) /∈ P(N). From now on we restrict attention to (a, b, µ) ∈
P(N) with N+N− > 0. Then there are again quite a few questions we cannot answer.
Even for the simplest case, namely N+ = N− = 1, we do not know whether τ(x) can
have zeros in the strip S (2.41) when b1 and b2 are not on the same line through the
origin. (When they are on the same line, we can invoke the previous remark to rule out
the absence of zeros in the interior of S and the presence of boundary zeros if and only if
(6.5) holds true.)

A remarkable feature of the special case N+ = N− = 1 is that R(x) does not have real
zeros when (6.5) holds true. (This is because E1(x) and E2(x) in (2.12) have zeros at the
same real x as τ(x).) Hence the associated transform F is bounded. Even so, it is not
isometric. This claim can be substantiated by invoking results from [14]; the point is that
the wave function amounts to one of the wave functions studied in [14] and shown to be
non-isometric. (It fails to be isometric on a 1-dimensional subspace.)

More generally, for N+N− > 0 and N > 2, one may ask whether τ(x)-zeros for x real
can give rise to R(x)-poles for x real. We do not know whether this ever happens. Also, if
τ(x) has real zeros, whereas R(x) has none, is the associated bounded operator F always
non-isometric?

We surmise that τ(x) cannot have zeros in the interior of S (2.41). More generally, we
believe (but were unable to prove) that

P
(r)
6= (N) = P6=(N) (?) (6.6)

(iii) (Soliton equations) The reflectionless second-order A∆Os and wave functions studied
in [1] and [4, 5, 6] are closely related to nonlocal soliton evolution equations of Shabat
and Toda type, resp. We recall that the associated subsets of P(N) are characterized
by bj = 1 − iκj , κj ∈ R

∗, and bj = exp(irj), rj ∈ (−π, 0) ∪ (0, π), j = 1, . . . ,N , resp.
Presumably one can tie in the reflectionless higher-order A∆Os and wave functions at
issue in this paper with a nonlocal counterpart of the 2D Toda lattice, but we have not
pursued this angle. (There might also be a connection with the nonlocal soliton hierarchies
studied more than a decade ago, cf. Santini’s review [15].) To elaborate slightly on an
eventual nonlocal 2D Toda soliton hierarchy, it should be pointed out that the reflectionless
solutions cannot naturally be accomodated in fermion Fock spaces, as is the case for the
2D Toda lattice hierarchy [16, 17]. This is because the discrete index n ∈ Z of the tau-
functions is interpreted as a label for the charge sectors in fermion Fock space. Since we
replace n ∈ Z by x ∈ C, no such ‘Grassmannian picture’ appears to exist.
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Another remark of interest to basic soliton theory (for which we recommend [18, 19])
concerns the special points (6.5). If we also take ρ = 1, then these data belong to the
4-dimensional Toda submanifold of P(2). Now the t-dependent data

ν±(t) ≡ ν exp(∓2t sin c), b± ≡ ±e−ic, ν ∈ (0,∞), c ∈ (π/2, π), (6.7)

correspond to a right-moving / left-moving 2-soliton solution, cf. [5]. Due to the isometry
breakdown of F for t = 0, the asociated Lax operator A(t) (a second-order reflectionless
A∆O) fails to be self-adjoint for t = 0. This type of instability appears to be a novel
phenomenon.

(iv) (The role of IIrel systems: a comparison) For the 2D Toda and KP N -soliton solutions
and their well-known specializations, the connection to the IIrel(c,N+,N−) systems can be
made via the action-angle description of the latter. To be specific, the starting point for the
fusion procedure in [12] consists in clusters of action variables θ1, . . . , θM (cf. [12] (2.21)).
For the subset of phase space on which no bound states of particles and antiparticles
occur, the particle-antiparticle charges are encoded via the sign of the real quantities
exp(ξ01), . . . , exp(ξ0M ) in the tau-function (cf. [12] (1.1) and (1.10)), which involve the
generalized angles q1, . . . , qM (cf. [12] (2.16)–(2.17)).

By contrast, in our present context it is essential to start from clusters of particle-
antiparticle position coordinates (cf. (4.15)–(4.16)), whereas exp(ξ01), . . . , exp(ξ0M ) are pos-
itive numbers involving the particle-antiparticle momenta (cf. (4.29), (4.21)). More pre-
cisely, this change of starting point is necessary for the case N+N− > 0, since for N+ = 0
or N− = 0 both viewpoints are basically the same (by virtue of the self-duality of these
special cases).

In our previous work on nonlocal soliton equations of Shabat and Toda type we already
encountered this puzzling necessity to switch from action-angle to position-momentum
variables. Indeed, we could only relate soliton solutions consisting of N+ right-moving and
N− left-moving solitons to the IIrel(π/2,N+,N−) systems when we used a (non-obvious)
parametrization in terms of positions and momenta, cf. [1] and [5].

Appendix A. Proofs of Lemmas 4.1 and 4.2

Proof of Lemma 4.1. We begin by showing that (4.8) holds for the parameters of Section 3.
To this end we first consider a, b and µ that correspond to points in Ω+. (Recall this is
the subset of Ω where (3.28) holds true.) Then we have from (3.48) and (3.47)

W(a, b, µ;x, p) = eixp

(

1 −

N
∑

n=1

Rn(â, b̂, µ̂; p/2c)

e2cx − b̂n

)

. (A.1)

Choosing R large enough so that the points

b̂n ∈ UHP, b̂n ∈ LHP, n = 1, . . . ,N, (A.2)

are inside CR, the contour integral IR equals 2πi times the sum of the residues of the
integrand at the simple poles (A.2). Since all of b̂1, . . . , b̂N belong to the UHP, this residue
sum vanishes. (One need only adapt (C.12)–(C.16) in [1] to verify this.)
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As a consequence (4.8) holds on Ω+. Using real-analyticity in the variables x+, x−, p+

and p−, we now obtain (4.8) on all of Ω in the same way as in the proof of Theorem 3.1,
cf. the paragraph containing (3.54). (We need only choose R large enough so that no poles
cross the vertical parts of the contour upon continuation from Ω+ to Ω; the horizontal
parts cannot be crossed, since we have τ(x) 6= 0 for real x and iπ/c-periodicity of τ(x) on
all of Ω.)

We continue to prove the first assertion (isometry of F). Since P
(r)
c (N) is a subset of

P(r)(N), the tau-functions τ(x) and τ∗(x) have no real zeros. Since they are iπ/c-periodic,
it follows from (1.1) and (2.12) that the integrand in (4.6) has no poles on the horizontal
parts of CR. Furthermore, for sufficiently large R there are no poles on the vertical parts.
Hence the contour integral IR is well defined. By iπ/c-periodicity of R(x) and R∗(x), the
vanishing of IR can be rewritten as

0 = IR(q, p) + B+
R(q, p) − eπ(p−q)/cIR(q, p) + B−

R(q, p), (A.3)

where we have introduced

IR(q, p) ≡

∫ R

−R
dxW∗(x, q)W(x, p), (A.4)

B+
R(q, p) ≡

∫ R+iπ/c

R
dxW∗(x, q)W(x, p), (A.5)

B−
R(q, p) ≡

∫ −R

−R+iπ/c
dxW∗(x, q)W(x, p). (A.6)

Next we let g1, g2 ∈ C∞
0 (R), and note that by Fubini’s theorem and dominated conver-

gence we have

(Fg2,Fg1) =
1

2π
lim

R→∞

∫ ∞

−∞
dqg2(q)

∫ ∞

−∞
dpg1(p)IR(q, p). (A.7)

On account of (A.3) it therefore remains to prove

1

2π
lim

R→∞

∫ ∞

−∞
dqg2(q)

∫ ∞

−∞
dpg1(p)

B+
R(q, p) + B−

R(q, p)

exp[π(p − q)/c] − 1
= (g2, g1). (A.8)

To this end we first obtain a new representation for K(x, p), cf. (3.21)–(3.22). Since
R(x) is iπ/c-periodic, it follows from the linear system (2.10) that D(x) is iπ/c-periodic.
Hence the factors exp(−ixLn(aj/bj)), j = 1, . . . ,N , are iπ/c-periodic, cf. (2.6)–(2.7). By
(2.8) this implies

Ln(aj/bj) ∈ 2icN∗, j = 1, . . . , N. (A.9)

It easily follows that R(x) is a rational function of e2cx; likewise, R∗(x) is rational in e2cx,
so that K(x, p) is rational in e2cx. Since K(x, p) → 0 as x → ∞, it follows that K is of
the form

K(a, b, µ;x, p) =
J
∑

j=1

Nj
∑

l=1

cjl(p)

(e2cx − b̂j)l
. (A.10)
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Moreover, since K has no real x-poles, we have

b̂j ∈ C−, j = 1, . . . , J. (A.11)

Finally, in view of the definition (3.22) of K, the coefficients are of the form

cjl(p) =

N
∑

n=1

cjln
ep − bn

, cjln ∈ C. (A.12)

It is clear from this representation how large we should choose R so that all poles
b̂1, . . . , b̂J are inside CR: letting

M+ ≡ max
n∈{1,...,J}

|b̂n|, M− ≡ min
n∈{1,...,J}

|b̂n|, (A.13)

we should choose R ∈ [R0,∞) with R0 such that

exp(2cR0) > M+, exp(−2cR0) < M−. (A.14)

It is also obvious that the vanishing of IR amounts to the zero residue equation

J
∑

j=1

cj1(p) = 0. (A.15)

Next we use the K-representation (A.10) to rewrite the integrand W∗(x, q)W(x, p) of
B+

R(q, p) (A.5). Save for the term exp ix(p− q), all terms have poles (as functions of e2cx)
at one or two of the points

b̂1, . . . , b̂J , b̂1, . . . , b̂J , (A.16)

which are not necessarily distinct. Separating product terms into single pole terms (if
need be), we wind up with a sum of terms of the form

Tl(x) =
eix(p−q)C(q, p)

(e2cx − β)l
, l ∈ N

∗, (A.17)

where β denotes one of the points (A.16) and where the coefficients C(q, p) are bounded
on R

2.

We proceed to show that all terms of the form (A.17) yield a vanishing contribution to
the lhs of (A.8). To this end we set a ≡ p− q and introduce the functions

FR,l(a) ≡

∫ R+iπ/c

R
dx

eiax

(e2cx − β)l
, a ∈ R, β ∈ C−, |β| ∈ [M−,M+]. (A.18)

Since R ≥ R0, we have Re (1 − βe−2cx) > 0 on the line segment from R to R + iπ/c.
Choosing

Im (log(z)) ∈ (−π/2, π/2), Re z > 0, (A.19)
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we write

1

e2cx − β
=

1

2cβ
∂x log(1 − βe−2cx), (A.20)

and integrate by parts in the integral with l = 1 to obtain

FR,1(a) = −
ia

2cβ

∫ R+iπ/c

R
dxeiax log(1 − βe−2cx)

+
1

2cβ
eiaR(e−πa/c − 1) log(1 − βe−2cR). (A.21)

From this we infer that

|FR,1(a)| ≤ C1,L|a|e
−2cR, ∀a ∈ [−L,L], ∀R ≥ R0. (A.22)

Clearly this estimate implies that the contribution of the terms (A.17) with l = 1 to (A.8)
vanishes as R→ ∞.

To handle the terms with l > 1 we note that (A.21) entails

∂βFR,1(a) = −
1

β
FR,1(a) − iaFR,1(a) +

eiaR(e−πa/c − 1)

e2cR − β
. (A.23)

Now it is evident from (A.18) that we have

FR,l(a) =
1

(l − 1)!
∂l

βFR,1(a). (A.24)

Iterating (A.23) and using (A.22) we readily deduce

|FR,l(a)| ≤ Cl,L|a|e
−2cR, ∀a ∈ [−L,L], ∀R ≥ R0. (A.25)

Therefore the l > 1 terms yield vanishing contribution as well.
Turning to B−

R(q, p) we first write, using (2.19),

W(x, p) = eixp(a(p) − K̃(x, p)), (A.26)

with

K̃(x, p) ≡
Rn(x) − (C−1ζ)n

ep − bn
. (A.27)

Since K̃ → 0 as x→ −∞ (by (2.14)), we infer that K̃ is of the form

K̃(a, b, µ;x, p) =

J
∑

j=1

Nj
∑

l=1

c̃jl(p)
(

e−2cx − b̂−1
j

)l
. (A.28)

Proceeding in the same way for W∗(x, q), it is not hard to see that our previous estimates
can be used to conclude that the term a(p)a(q) exp ix(p−q) is the only one in the expansion
of the integrand of B−

R(q, p) that yields a nonvanishing contribution to the lhs of (A.8).
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It remains to show that the limit

1

2π
lim

R→∞

∫ ∞

−∞
dqg2(q)

∫ ∞

−∞
dpg1(p)

∫ R+iπ/c
R dxeix(p−q) + a(p)a(q)

∫ −R
−R+iπ/c dxe

ix(p−q)

exp[π(q − p)/c] − 1

(A.29)

equals (g2, g1). This follows in the same way as in the proof of Theorem 4.2 in [1], cf. p. 388
in [1]. �

Proof of Lemma 4.2. We begin by proving the distinctness assertion. Recalling (4.39) we
see that for j = 1, . . . ,M+ the phase of the numbers (4.59) stays close to 0 (in fact, it stays
in (−π/4M,π/4M)). Likewise it stays close to π for j = M+ + 1, . . . ,M . Thus we cannot
have collisions among these subsets. Due to (4.57) there cannot be collisions involving two
distinct clusters either. The points of a cluster have distinct moduli for t ∈ [0, 2/3), so
that it remains to study whether equality of exp(yj(t) − ic) and exp(yk(t) + ic) for j, k in
the same cluster and t ∈ [2/3, 1) can occur. But this can be excluded by noting that for
t ∈ [2/3, 1) the minimal angular distance within a cluster varies over (2c, 2Mc].

Next we show the absence of real zeros for (4.58). It is convenient to introduce closed
sectors

S(φ) ≡ {z ∈ C | |Argz| ≤ φ}. (A.30)

The l = 0 term in (4.58) equals 1, so it suffices to prove that for real x all other terms
remain in S(π/4) along the path. The l = M term equals

exp

(

M
∑

k=1

pk − 2Mcx− iMc

)

. (A.31)

Since c is smaller than π/4M2, it belongs to S(π/4M). If we fix I with |I| = l ∈
{1, . . . ,M − 1}, it remains to show that we have

exp(−ilc)
∏

m∈I
n/∈I

f(c; ym(t) − yn(t)) ∈ S(π/4), t ∈ [0, 1]. (A.32)

There are l(M − l) terms in the product. Since l(M − l) ≤M2/4, it suffices to prove

f(c; ym(t) − yn(t))2 ∈ S(π/M2), t ∈ [0, 1], (A.33)

for all m 6= n. We proceed to do so by a case analysis.
We begin by noting that

f(c; ym(t) − yn(t))2 = 1 +
sin2 c

sinh2((ηj − ηk)/2 + lcz(t))
, (A.34)

with

j, k ∈ {1, . . . , N}, |l| ≤ max(n1, . . . , nN ) ≤M. (A.35)
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Consider first the case j = k. Then we should show

γl(t) ≡ 1 +
sin2 c

sinh2(lcz(t))
∈ S(π/M2), l = 1, . . . ,M, t ∈ [0, 1]. (A.36)

Now we have

γl(t) ∈ [0,∞), t ∈ [0, 1/3] ∪ [2/3, 1], (A.37)

with equality to zero only for l = 1 and t = 1. Thus it remains to show (A.36) for
t ∈ (1/3, 2/3). Then we have |z(t)| = M , so we can invoke the elementary bounds

sin2 x > x2/2, x ∈ (0, π/4], (A.38)

| sinh(reiφ)|2 > r2/2, r ∈ (0, π/4], φ ∈ [0, 2π). (A.39)

First, from (A.39) we have
∣

∣

∣

∣

sin2 c

sinh2(lcz(t))

∣

∣

∣

∣

<
2 sin2 c

l2c2M2
, t ∈ (1/3, 2/3). (A.40)

Second, for a number of the form 1+w, |w|+ 1, to belong to the sector S(φ), φ ∈ (0, π/2),
it clearly suffices that |w| is smaller than sinφ. Thus we need only verify

2 sin2 c

l2c2M2
< sin(π/M2). (A.41)

Using sin c < c and (A.38), this is implied by the inequality

2

l2M2
< (π/M2)/21/2, (A.42)

whose validity is plain.
It remains to consider the case j 6= k. As before it suffices to show

sin2 c

| sinh2((ηj − ηk)/2 + lcz(t))|
≤ sin(π/M2), t ∈ (1/3, 1]. (A.43)

There are two subcases: ηj − ηk = 2ρ ± iπ, ρ ∈ R, and ηj − ηk = ±2ρ, ρ > 2. In the first
subcase we use

| cosh(x+ iy)|2 = cos2 y + sinh2 x, x, y ∈ R, (A.44)

to get

1

| cosh2(ρ+ lcz(t))|
≤

1

cos2(lcM)
≤

1

cos2(π/4)
= 2. (A.45)

Clearly we have

2 sin2 c < sin(π/M2), c < π/4M2, (A.46)

and so (A.43) follows. In the second subcase we use

| sinh(x+ iy)|2 = sin2 y + sinh2 x, x, y ∈ R, (A.47)

to get

1

| sinh2(ρ+ lcz(t))|
≤

1

sinh2(ρ− lcM)
<

1

sinh2(1)
< 1, (A.48)

so that (A.43) follows again. �
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