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34095 - MONTPELLIER (France) Cedex 05.
E-mail : sabatier@lpta.univ-montp2.fr

This article is part of the special issue published in honour of Francesco Calogero on the occasion

of his 70th birthday

Abstract

Inverse Scattering methods for solving integrable nonlinear p.d.e. found their limits
as soon as one tried to solve with them new boundary value problems. However, some
of these problems, e.g. the quarter-plane problem, can be solved (e.g. by Fokas linear
methods), for related linear p.d.e., (e.g. LKdV). It is shown here that a nonlinear
algebraic inverse scattering method, which we already applied to nonlinear KdV, but
with only partial results, gives the full solution of the quarter-plane problem of another
linear p.d.e. associated to KdV. The method makes use of generalised Lax equations
and their solutions.

1 Introduction

It is well known that the “Inverse Scattering Method” solves(1) nonlinear integrable p.d.e.
When the boundary value condition is given on an axis where it enables one to calculate
scattering coefficients by solving the “direct scattering problem”, whereas, after translating
the axis, the coefficients can be recalculated, the method yields the p.d.e. solution by
solving the “inverse scattering problem”. Attempts to generalize it to other boundary
value problems were never really successful. Yet, we showed(2) that several integrable
nonlinear p.d.e. are associated to a generalisation of scattering called “global scattering” in
the x, t plane where Lax equations are the scattering equations such that enforcing both

of them reduces the solutions to a two-dimensional set. As a consequence, it enables us to
make a generalisation of Potential Scattering whose several mathematical tools reappear.
Inverse Scattering Method is a quite trivial consequence of this “global scattering” process.
However, we were not able to use it for solving the quarter-plane boundary value problem
of KdV, defined by equations (1.1) and (1.2) :

∂V

∂t
+

1

4
V ′′′ −

3

2
V V ′ = 0 (1.1)
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where “prime” denotes x−derivatives,

Data : V (x, 0), V (0, t), x > 0, t > 0. (1.2)

On the other hand, starting also from Lax equations, linear Fourier methods used by
Fokas(3) gave a full solution to the quarter-plane boundary value problem of LKdV, i.e.
(1.2) and

∂V

∂t
+

1

4
V ′′′ = 0 (1.3)

Using a generalisation of Fokas method into the framework of global scattering we
obtained a method that applies to (1.1), (1.2), but is not satisfactory outside of a poorly
identified iteration range.

The global scattering process does not hold in the case of linearised KdV equations
because what we call the corresponding Lax equations are not homogeneous. However,
part of its results can be derived (we did it(2) for LKdV) if we reformulate the (consistency)
relation between Lax equations that is equivalent to the (linear or nonlinear) p.d.e. we
study. Such reformulations will be generalised in the present paper and then applied to
yield full solutions of another linear p.d.e. associated to KdV :

∂a

∂t
+

1

4
a′′′ −

3

4
(aV ′ + a′V ) = 0 (1.4)

where V (x, t) is now a given solution of KdV, a(x, t) the solution of (1.4) we are seek-
ing and the boundary condition may be either a one axis condition or condition (1.2). Of
course, V itself is a special solution of Eq. (1.4), but, a priori, with different boundary
conditions.

2 Correspondence between the p.d.e. and its “Lax” equations

In previous papers (2,4) we wrote down the Lax equations for KdV or for NLS as a system
of two linear first order p.d.e. (variables x and t) which have a common solution such that
its second order cross derivatives be invariant under the (x, t) permutation (the so-called
consistency condition). Here, for any function F which has second order derivatives, we
define its “δ2−shift” as

δ2/F = :
∂2F

∂t∂x
−

∂2F

∂x∂t
(2.1)

The condition δ2/F = 0, called “consistency condition”, is very important. If we try to
construct F from either ∂F

∂t or ∂F
∂x , and its value at, say, (x0, t0), as it can be done from

equations below, the various possible integral equations give the same F if the consistency
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condition is fulfilled ; they are then equivalent to one integral equation where the cross-
derivatives common value is integrated over a rectangle as (x0, t0) · (x, t0) · (x, t) · (x0, t).

We shall be interested by three systems of two p.d.e. for two-vector functions:

∂E

∂x
= M0E ;

∂E

∂t
= N0E (2.2)

∂G

∂x
= (M0 + V) G ;

∂G

∂t
= [N0 + W] G (2.3)

∂Φ

∂x
= M0Φ + AG ;

∂Φ

∂t
= N0Φ + BG (2.4)

where

M0 =

(
0 1

−k2 0

)
; N0 = k2

M0 (2.5)

V =

(
0 0
V 0

)
; W =

(
V1 V0

k2V0 + V2 −V1

)
(2.6)

A =

(
0 0
a 0

)
; B =

(
a1 a0

b −a1

)
(2.7)

E =

(
e
e′

)
; G =

(
g
g′

)
; Φ =

(
ϕ
ϕ′

)
(2.8)

Assumption A
V (x, t) has at least a first order time-derivative and third order x derivative.
We set

V0 =
1

2
V, V1 = −

1

4
V ′, V2 = −

1

4
V ′′ +

1

2
V 2 (2.9)

and we extend these assumptions and notations to a(x, t).
Now, it is easy to see that E is a linear combination of E+ and E−, with coefficients

depending neither on x or t :

E±(k, x, t) =

(
1

±ik

)
exp

[
±i(kx + k3t)

]
(2.10)

The δ2−shift of E+, or E−, vanishes. That of G is
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δ2/G =

(
0

V g

)
; V =

∂V

∂t
+

1

4
V ′′′ −

3

2
V V ′ (2.11)

In (2.11), we rediscover(4) that (2.3) is a set of Lax equations enforcing KdV if δ2/G = 0,
which is assumed hereafter :

δ2/G = V = 0 (2.12)

As a matter of fact, G(k, x, t) can be calculated at fixed x or at fixed t by solving in
each case the corresponding equation (2.3), with a function V (x, t) satisfying Assumption
A which is a solution of KdV (the equations are readily transformed(4) into linear Volterra
equations).

Contrarily to Eqs (2.2) and (2.3), the equations (2.4) are not homogeneous, so that
we cannot apply the zero trace theorem as we did it(2.4) previously to settle the “global
scattering” process. Setting b equal to a0V + a′1 + k2a0, we easily obtain

δ2/Φ =

(
0
ag

)
; a =

∂a

∂t
+

1

4
a′′′ −

3

4
(aV )′ (2.13)

Hence the equation (1.4) is implied by the consistency condition (a = 0) for Φ. For
V = 0, (2.3) reduces to (2.2), and (2.4) reduces to the equation we previously(2) introduced
to study LKdV, a(x, t) being therefore a solution of (1.3).

In this generalisation of our previous approach, we shall calculate δ2−shifts of the
determinants made of two solutions of the equations (2.2), (2.3), (2.4). In the “global
scattering” process, these determinants had the physical meaning of scattering coefficients.
Here we shall not seek a physical meaning in a global scattering process but only some
relations with scattering coefficients on fixed t axes.

Useful identities

Let X and Y be two 2-vectors (columns),

det(X,Y ) = X̃τY (2.14)

where ∼ stands here for the transposition, which takes a column vector into a line one,

and τ is the matrix

(
0 1
−1 0

)
.

One easily checks :

τ2 = −

(
1 0
0 1

)
; τ

(
α β
γ −α

)
τ =

(
α γ
β −α

)
(2.15)

Note that the transposition effect shown in (2.15) holds only if the matrix is zero-trace.
If the vectors X and Y are functions of x and t, Eqs (2.14) and (2.15) yield
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δ2/det(X,Y ) =
(
δ2/X̃

)
τY + X̃τ

(
δ2/Y

)
(2.16)

and for E,G, and Φ, using (2.2), (2.3) and (2.4)

∂2

∂t∂x

(
G̃±τΦ

)
=

∂

∂t

[
G̃±τ (AG − VΦ)

]
=

∂

∂x

[
G̃±τ (BG − WΦ)

]
+ δ2/G̃±τΦ (2.17)

∂2

∂t∂x

(
Ẽ±τΦ

)
=

∂

∂t

[
Ẽ±τAG

]
=

∂

∂x

[
Ẽ±τBG

]
+ Ẽ±τδ2/Φ (2.18)

∂2

∂t∂x

(
Ẽ±τG

)
=

∂

∂t

[
Ẽ±τVG

]
=

∂

∂x

[
Ẽ±τWG

]
+ Ẽ±τδ2/G (2.19)

So as to give a precise definition of G±, and use scattering techniques, we impose
Assumption B
V, a, and the derivatives cited in Assumption A vanish rapidly enough at x → ∞, this

meaning that
(a) we assume it as x → ±∞ if we work on a full x−axis, as x → +∞ if we work on

the x > 0 half axis.
(b) G and Φ are asymptotic to linear combinations of E+ and E− : we call G+(k, x, t)

the solution G of (2.3) which is asymptotic to E+(k, x, t) as x → +∞, and (if necessary)
G−(k, x, t) that which is asymptotic to E−(k, x, t) as x → −∞. G± can be constructed(4)

from V and E± by solving a convenient linear Volterra equation(2).

3 Boundary value condition on a full axis

Assume we know a(x, 0) for all x ∈ R, and we are given V (x, t) for all x ∈ R, all t > 0
finite, both going to zero, with derivatives, as x → ±∞, fast enough for our assumptions.
We seek a solution of (1.4) reducing to a(x, 0) for t = 0. We use equations (2.3), (2.4),
and choose in this section G = G+(k, x, t). We must enforce δ2/Φ = 0 and if we do it, a
satisfies (1.4). One can see from (2.16) that it is done if det [E+,Φ] and det [E−,Φ] have
both their δ2−shift equal to zero, so that, according to (2.18)

∂

∂t

[
Ẽ±τAG

]
=

∂

∂x

[
Ẽ±τBG

]
(3.1)

Integrating along R yields

∂

∂t

[∫ +∞

−∞

a(x, t)e±i(kx+k3t)g+(k, x, t)dx

]
= 0 (3.2)

or
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∫ +∞

−∞

a(x, t)e±i(kx+k3t)g+(k, x, t)dx

=

∫ +∞

−∞

a(x, 0)e±ikxg+(k, x, 0)dx (3.3)

For V = 0, a solves LKdV, and is readily obtained from (3.3) because the integral with
e+ is the Fourier transform ã(k, t) times e2ik3t. One may notice on the way that ã is the
Born approximation of a reflection coefficient. Inversing the Fourier transform yields a(x, t)
from ã and (3.3) is an evolution scheme quite similar to that known in the inverse scattering
treatment of KdV. These remarks hold for V 6= 0 except that the Fourier transform is
replaced by an expansion over products e+(k, x, t) g+(k, x, t). Of course, e−ik3tg+(k, x, t)
is the Jost solution of the Schrödinger equation obtained from the first equation (2.3)
and is known, since V (x, t) is given. The products e−2ik3te+(k, x, t)g+(k, x, t), given for
k ∈ R and for the discrete spectrum k = iκ1, iκ2, · · · iκN of the Schrödinger operator, have
completeness properties. There even exists an exact inversion formula, which is simple only
in the case without bound state : f+(k, x, t) being the Jost solution asymptotic to eikx as
x → ∞ (i.e. e−ik3tg+(k, x, t), and f−(k, x, t) the one asymptotic to e−ikx as x → −∞,
T (k) the transmission coefficient of the scattering problem by V (x, t) on the x line at fixed
t, for any h(x) ∈ L1(R), we can write(5) down if there is no bound state :

∫ x

−∞

h(y)dy = −
1

2πi

∫ +∞

−∞

dk
T (k)

k
e−ikxf−(k, x, t)

∫ +∞

−∞

eikyf+(k, y, t)h(y)dy (3.4)

and since we “know” T, f−, f+, Eq. (3.3) is readily solved in favor of a(x, t). As a matter
of fact, T, f−, f+, have to be calculated first so that a more indirect method, which we
state below, is not much heavier and works as well if there are bound states :

On the x line at fixed t, we first construct(6) the transformation kernel κ(x, y, t) corre-
sponding to V (x, t). This construction is equivalent to that of f+(k, x, t) which is given(6)

by

f+(k, x, t) = eikx +

∫
∞

x
κ(x, y, t)eikydy (3.5)

Notice by the way that (3.5) reminds us that f+ is holomorphic for Imk > 0, so that
(3.3) extends to this domain. Eq. (3.3) shows the time invariance of e(1±1)ik3ts±(k, t),
where

s±(k, t) =

∫ +∞

−∞

a(x, t)e±ikxf+(k, x, t)dx (3.6)

By the way, notice that s+ is analogous to the reflection coefficient of the Inverse
Scattering Method, and s− to the transmission coefficient. So as to go further with s+, we
calculate its Fourier transform then substitute (3.5) in (3.6):
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ã(z, t) = π−1

∫ +∞

−∞

s+(k, t)e−2ikzdk (3.7)

ã(z, t) = a(z, t) +

∫ z

−∞

dx κ(x, 2z − x, t) a(x, t) (3.8)

s+(k, 0) is given from the boundary value condition and s+(k, t) is e−2ik3t s+(k, 0) so that
ã(z, t) is derived by (3.7), and a(z, t) can be derived (in general) by solving the Volterra
equation (3.8). Since it is well known(6) how κ(x, y, t) takes into account the bound states,
we have here a good alternative to the formula (3.4). In addition, the motion invariant
s−(k, t) can be managed in the same way. First notice that it follows from (3.5) that
e−ikxf+(k, x, t) goes to 1 as Imk → +∞, and using this result in s−(k, t) shows an obvious
motion invariant of Equation (1.4),

∫ +∞

−∞
a(x, t)dx. If we insert (3.5) in (3.6) for s−, we get

the sum of this invariant and

J(k) =

∫
∞

0
eikzdz

∫ +∞

−∞

κ(x, x + z, t)a(x, t)dx (3.9)

which shows that for any z > 0,
∫ +∞

−∞
κ(x, x + z, t)a(x, t)dx is a time invariant.

4 Boundary condition on x > 0, t > 0, xt = 0.

We are given a(x, 0) for x > 0, a(0, t) for t > 0, of course continuous at (0, 0), with the
derivatives implied by our assumptions of section 2, all these functions going to zero rapidly
enough (for scattering problems), as x → +∞. We wish to determine a(x, t) for any finite
t > 0, x ∈ R

+, going to zero as x → +∞, and solution of (1.4). Hence, we have to enforce
δ2/Φ = 0 in the quarter-plane, implying therefore Eq. (3.1) and, by integration

∂

∂t

∫
∞

0
Ẽ±τ AGdx =

[
Ẽ±τ BG

]x=∞

x=0
(4.1)

In section 3, we had used G = G+(k, x, t) so as to emphasize the similarities with the
classical Inverse Scattering Transform. Here we shall write

G = G+(−k, x, t) =

(
g(−k, x, t)
g′(−k, x, t)

)
(4.2)

were we drop the + index because we shall never use the minus one, negative x being out
of our domain. We do so in order to follow more closely the analysis previously written for
KdV. However, notice that G here was previously called F , and h, h̃, to be defined below,
were called g, g̃. We set
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h(k, x, t) = exp
[
i
(
kx + k3t

)]
g(k, x, t) (4.3)

h̃(k, x, t) = exp
[
−i

(
kx + k3t

)]
g(k, x, t) (4.4)

Notice that g(k, x, t) is equal to eik3t f+(k, x, t), where f+(k, x, t) is still given at x > 0
by (3.5), so that h and h̃ are holomorphic in Imk > 0.

Thanks to (2.3), g(k, x, t) is a solution of an x−second order equation, the Schrödinger
one, with potential V (x, t), and its time derivative is also a linear combination of g and g′,
with parameters V0, V1, V2. As in our previous paper we get from these equations first the
following ones :

h′′ = 2ikh′ + V h ; h̃′′ = −2ik h̃′ + V h̃ (4.5)

∂h

∂t
=

(
k2 + V0

)
h′ + (V1 − ikV0) h (4.6)

∂h′

∂t
=

(
2ik3 + ikV0 − V1

)
h′ +

(
2k2V0 + 2ikV1 + V2

)
h (4.7)

and for h̃ those obtained from (4.5), (4.6), (4.7) if we replace i by −i. In addition, a little
bit of algebra yields :

h(−k)h′(k′) − h(k′)h′(−k) = −
∂

∂x

{
k′ + k

k′ − k
h(−k)h(k′)

+
i

k′ − k

[
h(−k)h′(k′) − h(k′)h′(−k)

]}
(4.8)

h̃(−k)h′(k′) − h(k′)h̃′(−k) = −
∂

∂x

{
k′ − k

k′ + k
h̃(−k)h(k′)

+
i

k′ + k

[
h̃(−k)h′(k′) − h(k′)h̃′(−k)

]}
(4.9)

Deriving h′′′ from (4.5) and adding the result to (4.6), we obtain

∂h

∂t
+

1

4
h′′′ =

3

4
V h′ (4.10)
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whose derivative and (2.12) show that h′ is a solution of (1.4), so that, provided there
is no convergence problem, it is sound to seek a solution of (1.4) of the form

a(x, t) = −2

∫
dµ(k′)h′(k′, x, t) (4.11)

As in our previous paper we decide that

Suppt [dµ] = R + Σ + Λ (4.12)

where Σ is a finite set of points, for example k = iσ1, iσ2, · · · iσN , (σn > 0, and Λ is an
open contour made of the ray k = |k| eiπ/3 oriented from ∞ to 0 and the ray k = |k| e2iπ/3

oriented from 0 to ∞. We set dω(k) equal to ξ(k)dk along R, made of Dirac measures,
for example Σnρnδ (k − iσn) on Σ, and τ(k)dk along Λ. Λ, which we called the ternary
support, was introduced (originally by Fokas), for the following property : let Λ be the
domain embraced by Λ, (i.e. phase of k between π

3 and 2π
3 ). It is clear that if τ(k) is

holomorphic in Λ where
∣∣k−1τ(k)

∣∣ remains bounded at ∞,

aT (x, 0) = −2

∫

Λ
h′(k′, x, 0)τ(k′)dk′ = 0 (4.13)

for any x > 0. Hence, using it as a working assumption on τ reduces the t = 0 boundary
condition of a(x, t) to a boundary condition of aS(x, t) :

−
1

2
aS(x, 0) =

∫

R

ξ(k′)h′(k′, x, 0)dk′ +

N∑

n=1

ρnh′ (iσn, x, 0) (4.14)

Let us now successively enforce the conditions on a(x, t)
Consistency conditions

The conditions (4.1) are explicitly

İ1 =:
∂

∂t

∫
∞

0
dy g(−k, y, t)e(−k, y, t)a(y, t)

= g′(−k, 0, t)e(−k, 0, t) [a1(0, t) − ika0(0, t)]

−g(−k, 0, t)e(−k, 0, t)
[
a2(0, t) + ika1(0, t) + k2a0(0, t)

]
(4.15)

İ2 =:
∂

∂t

∫
∞

0
dy g(−k, y, t)e(k, y, t)a(y, t)
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= g′(−k, 0, t)e(k, 0, t) [a1(0, t) + ika0(0, t)]

−g(−k, 0, t)e(k, 0, t)
[
a2(0, t) − ika1(0, t) + k2a0(0, t)

]
(4.16)

If we insert (4.11) in the right hand side of (4.15) and (4.16), and use the formulas (4.8)
and (4.9), we obtain after elementary but lengthy calculations

İ1 = −e−ik3t
{
g′(−k, 0, t) [α + ikC] − g(−k, 0, t)

[
β − γ + ikα − k2C

]}
(4.17)

İ2 = −eik3t
{
g′(−k, 0, t) [α − ikC] − g(−k, 0, t)

[
β − γ − (ikα − k2C)

]}
(4.18)

where α, β, γ and C are functions of t only, herafter defined :

C(t) = −

∫
dµ(k)h′(k, 0, t) (4.19)

α(t) = −

∫
dµ(k)

[
V0(0, t)h(k, 0, t) + ikh′(k, 0, t)

]
(4.20)

β(t) =

∫
dµ(k) [V1(0, t) + ikV0(0, t)] h(k, 0, t) (4.21)

γ(t) = −

∫
dµ(k)

[
1

2
V0(0, t) + k2

]
h′(k, 0, t) (4.22)

Reminding that e(k, 0, t) is eik3t, we can compare the right-hand sides of (4.15) and
(4.17), then those of (4.16) and (4.18), and identify the coefficients of g(k, · · · ), g′(k, · · · )
and the powers of k. The cancelling of coefficients ensures the consistency. More precisely,
setting

P (k) = α + a1 − ik (C − a0) (4.23)

where a1 and a0 stand for a1(0, t) and a0(0, t), we get

a0(0, t) = C(t) (4.24)

a1(0, t) = −α(t) (4.25)



Generalised Inverse Scattering 609

a2(0, t) = −β(t) + γ(t) (4.26)

Hence, because of the consistency relations, if dµ(k) can be identified from the values of
a(x, 0) and one of the functions a0(0, t), a1(0, t), a2(0, t), the two other ones are determined
by the relations (4.24), (4.25), (4.26).

Boundary conditions on x > 0, t = 0
Going back to (4.14), we work with the integrated boundary condition

A(x) =
1

2

∫
∞

x
a(y, 0)dy (4.27)

which fits (4.14) if h is replaced by its value, derived from (3.5) :

h(k, x, t) = e2ik3t

[
e2ikx +

∫
∞

x
κ(x, y, t)eik(x+y)dy

]
(4.28)

and A(x) = Ã(x) +

∫
∞

x
κ(x, y, 0)Ã

(
x + y

2

)
dy (4.29)

where Ã(x) =

∫

R

ξ(k′)e2ik′xdk′ +

N∑

n=1

ρne−2σnx (4.30)

The equation (4.29) is a regular linear Volterra equation, with integrable kernel and its
unique solution yields Ã(x) from A(x). Except for a remark later we study only the case
where the support Σ is entirely in Imk > 0. Then it can be suppressed in (4.12), (4.14)
and (4.30) provided ξ(k) is replaced by ξ(k), obtained by adding to ξ(k) a convenient
function (which is (πi)−1 Σnρn (k − iσn)−1) in the given example. The problem of fitting
the boundary condition at zero t reduces to that of deriving ξ(k) from a knowledge of Ã
on x > 0 only, and

Ã(x) =

∫

R

ξ(k)e2ikxdk (4.31)

Its general solution is

ξ(k) = π−1

∫
∞

0
Ã(x)e−2ikxdx +

∫ 0

−∞

η̃(x)e−2ikxdx (4.32)

where η̃(x) is arbitrary in L1 (R−) and therefore the second term η(k) in (4.32) is holo-
morphic and bounded in Imk > 0, whereas the first one, ξ0(k), is so in Imk < 0. We can
suppress η(k) in (4.32) because, according to (4.28), its contribution to (4.11) :
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I(η) =

∫

R

η(k)h′(k, x, t)dk (4.33)

is the integral of a function that is holomorphic and bounded in the domains 0 6 Argk 6
π
3 and 2π

3 6 Argk 6 π, where e2ik3t collapse at ∞, so that

I(η) = −

∫

Λ
η(k)h′(k, .x, .t)dk (4.34)

Hence suppressing η in (4.32) is equivalent to adding it to τ(k), which is still to be
determined, and in the following we seek a(x, t) as

−
1

2
a(x, t) =

∫

R

ξ0(k)h′(k, x, t)dk +

∫

Λ
τ(k)h′(k, x, t)dk (4.35)

where ξ0 has now been determined, and τ(k) is to be determined from the t−axis
boundary condition and should satisfy the “working assumption on τ ”.

Boundary condition on t > 0, x = 0
Because the equation (1.4) is linear, the consistency relations hold as well for

aT (x, t) = a(x, t) − aS(x, t) = −2

∫

Λ
τ(k)h′(k, x, t)dk (4.36)

and aT (0, t) is readily obtained from a(0, t) and the calculated aS(0, t). Hence we must
solve

−
1

2
aT (0, t) =

∫

Λ
τ(k)h′(k, 0, t)dk (4.37)

where

h′(k, 0, t) = e2ik3t

{
2ik +

∫
∞

0

[(
∂

∂x
−

∂

∂y

)
κ(x, y, t)

]

x=0

eikydy − 2κ(0, 0, t)

}
(4.38)

We seek τ(k) in the form

τ(k) = k

∫
∞

0
τ̃(u)e−2ik3udu (4.39)

which enforces the working assumption on τ if τ̃ belongs to L1 (R+). Introducing (4.39)
in (4.37) yields the integral equation for τ̃ :

−
1

2
aT (0, t) =

2iπ

3
τ̃(t) +

∫ t

0
S(t, u)τ̃ (u)du (4.40)
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where

S(t, u) =

∫

Λ
e2ik3(t−u)kdk

{
−2κ(0, 0, t)

+

∫
∞

0
dy eiky

[(
∂

∂x
−

∂

∂y

)
κ(x, y, t)

]

x=0

}
(4.41)

The integral on k in (4.41) vanishes for u > t because then ke2ik3(t−u) collapses at ∞
in Λ and it is multiplied by a function which is holomorphic and bounded in Λ. For t > u,
the first term of (4.41) can be calculated exactly, giving say,

S0(t, u) = 4i sin
(π

3

)
κ(0, 0, t)(t − u)−2/3 (4.42)

The second term, say, S1(t, u), involves integrals as

I =

∫
∞

0
qdqeif(q) (4.43)

where

f(q) = i
[
2q3(t − u) + q y cos

π

3

]
− q y sin

π

3
(4.44)

or its conjugate. It is clear that for t − q and/or y > 0, f ′(q) is bounded away from zero.
Integrating by part we easily get

|I| 6

∫
∞

0
e−q y sinπ/3

[
36q4(t − u)2 + y2 sin2 π

3

]
dq (4.45)

from which bounds by y−1 or y−1/2(t − u)−1/2 are easily derived. After performing the

integration on y we show readily that |t − u|1/2 |S1(t, u)| is bounded at finite t > 0, and
gathering this result with (4.42), we see that the kernel of (4.40) is only weakly singular
and that the Volterra equation (4.40) has a unique solution, finite as long as t is finite. The
behavior of τ̃(t)at ∞ depends on that of aT (0, t), and also of that of the functions κ related
to V . If V decreases rapidly enough, and aT (0, t) belongs to L1 (R+) , τ̃(t) does it also,
but apart this remark which gives already a wide class of possible boundary conditions,
we shall not study it more.

5 On motion invariants

We have assumed that V (x, t), which is a parameter in Eq. (1.4), is a solution of KdV, with
conditions (in section 3), that allow classical inverse scattering. Hence its Jost solution
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f+(k, x, t), (see Eq. 3.5), is related to f−(k, ) and f−(−k, ) by a transmission coefficient
T (k) and a reflection coefficient R−(k) e−2ik3t, where T and R− are KdV motion invariants
:

f+(k, x, t) ∼

{
eikx x → ∞

eikx

T (k) + R−(k) e−2ik
3

t−ikx

T (k) x → −∞
(5.1)

It is possible to relate the motion invariants of Equation (1.4), namely s−(k, t) and e2ik3t s+(k, t),
to T and R−. In the particular case where the data, a(x, 0) itself has been chosen equal to
V (x, 0), the solution of Eq. (1.4) is V (x, t). Indeed, using Eqs. (4.3), (4.4), (4.5), where g
is equal to eik3t f+(k, x, t) and (5.1), we readily obtain :

s+(k, t)e2ik3t = 2ik
R−(k)

T (k)
; s−(k, t) = 1 −

1

T (k)
(5.2)

A much more general example is obtained by introducing a more general data :

a(x, 0) = π

∫

R

α(ℓ)h′(ℓ, x, 0)dℓ (5.3)

where α(ℓ) and derivative belong to L1(R) and is such that a(x, 0) and s±(k, 0) belong to
L1(R) but otherwise can be chosen arbitrarily (in particular it may be any function of the
space S which is commonly used for defining tempered distributions). Thanks to (4.10),
we can write down :

a(x, t) = π

∫

R

α(ℓ)h′(ℓ, x, t)dℓ (5.4)

Now let us calculate

s+(k, t)e2ik3t = lim
X→∞

∫ X

−X
a(x, t)h(k, x, t)dx (5.5)

It is most convenient to achieve this derivation in the sense of tempered distributions by
first calculating for any ϕ∈δ :

〈
s+e, ϕ

〉
=

∫ +∞

−∞

ϕ(k)s+(k, t)e2ik3tdk (5.6)

Inserting (5.4) into (5.5), (5.5) into (5.6), and using (5.1), the oscillating terms can be
managed and we get :

s+(k, t)e2ik3t = 2iπk α(−k) −
R−(k)

T (k)
VP

∫ +∞

−∞

α(ℓ)
R−(ℓ)

T (ℓ)

ℓ

k + ℓ
dℓ

(VP is the Cauchy Principal Value). Similar results hold for s−(k, t).
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6 Conclusion

The initial value problem and the quarter-plane problem can generally be solved for the
equation (1.4). This has already suggested to the author a first attempt to solve the
quarter-plane problem for KdV but with little success. On the other hand, the solution of
the equation (1.4), which mixes harmonic analysis and integral equations is beautiful. It
uses specifically the spectrum of a Schrödinger operator (that of V ) but not “that” of a,
and the equation (1.4) is linear. Thus it leads us to ask Francesco Calogero the following
question “would you say this equation is C−integrable or S−integrable” ? Notice finally
that it is possible to apply the method to other linear p.d.e. “neighbouring” nonlinear
integrable ones
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