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Abstract

We study “tunnelling” in a one-dimensional, nonlocal evolution equation by assigning
a penalty functional to orbits which deviate from solutions of the evolution equation.
We discuss the variational problem of computing the minimal penalty for orbits which
connect two stable, stationary solutions.

1 Introduction

Tunnelling is a phenomenon which describes transitions between two stable states of a
system. It appears in nature in the most various contexts and for the most different causes.
It is frequently observed in quantum mechanics, where its prototype is a Schrodinger
particle subject to a symmetric double-well potential. Unlike its classical analogue, due
to intrinsic quantum indeterminacy, there is a delocalization of the ground state with the
wave function spreading over both wells. This causes a splitting of the energy levels which
is well observed experimentally and with important practical applications.

The phenomenon is not restricted to atomic physics. It appears also in macroscopic
systems. Its most known aspect is maybe metastability, where an apparently stable state
after a long time suddenly and unexpectedly changes into a new, more stable one. Anal-
ogous to metastability is the tunnelling between two pure phases of a same system. In
both cases the origin of the phenomenon is ascribed to stochastic fluctuations which are
due to “intrinsic randomness” in the system, to “random external forces” or to both. In
all cases one is interested in the waiting time for the tunnelling to take place, the nature
of the forces which drive the tunnelling and the specific pattern of the tunnelling event.
As we will see, such questions involve interesting problems of mathematical engineering.
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As a schematic model of the phenomenon we consider here a nonlocal evolution equation
which has been introduced in connection with the analysis of Ising systems with Kac
potentials. Our setting is one-dimensional for which the analysis is much simpler. The
state of the system is then described by a function v = w(z,t), || < L, L > 1, t > 0,
which has the physical meaning of a magnetization density at point x and time t. We
suppose that u evolves according to the evolution equation

u = fr(u), u(-,0) given, (1.1)

with u; the t-derivative of u and the “force field” fr(u) given by
1 L
fo(u) = 3 arctanh u+ J""xu, > 1; JM e (x) = / JUM () u(y) dy

S @, y) = J(@,y) + I (2, Be(y) + J (2, R-L(y)), (1.2)

with Re(y) = £ — (y — &) the reflection of y around £. We finally suppose that J(z,y),
(z,y) € R x R, is a smooth, symmetric, translationally invariant probability kernel sup-
ported in |y — z| < 1. We also assume that J(0,z) is a nonincreasing function whenever
restricted to x > 0.

A solution u(z,t), |z| < L, t > 0, of (1.1) is mapped under reflections around all nL,
n = +1, £3,..., into a function v(z,t), z € R, t > 0,

v(x,t) = u(x,t) for |z| < L;  v(Rur(x),t) =v(z,t), n==+1,43, ... for all z, (1.3)

1
which solves vy = f(v) = —= arctanh v + J x v. The same occurs to the local version of

(1.1), i.e. the Allen-Cahn equation u; = uy,; + ¢(u) with the Laplacian defined with Neu-
mann boundary conditions. Thus, if u(x,t) solves the Allen-Cahn equation in [— L, L] with
Neumann boundary conditions, v(z,t) defined by (1.3) solves the Allen-Cahn equation on
the whole line. This is why we have denoted by J"*"™ the kernel in (1.2).

The choice of Neumann boundary conditions simplifies the analysis. For instance the
stationary, spatially homogeneous solutions of (1.1) turn out to be independent of L. In
particular we are interested in the two solutions m™)(x), |z| < L, m™®)(z) = £mg with
mg > 0 solving the mean field equation mg = tanh{3#mg}, § > 1, which are stationary
solutions of (1.1), for any value of L (we are not making here explicit the dependence on
L). Tt can also be seen that m(®) are locally stable, namely that there are neighborhoods
(in the L? or in the L™ norms) of m™*) which are attracted by m®)
generated by (1.1).

m(F) play here the role of pure phases and the tunnelling events which occur within a
time 7 > 0 are then represented by the set of orbits

under the evolution

Uy [m),mP)] = {u € C*((=L, L) x (0,7); (~1,1)) :

lim u(-,t) =m?), lim u(-,t) = m(+)}. (1.4)

t—0t t—T—

Due to the stationarity of m(*) no element in U, can satisfy (1.1) and therefore other
forces must enter into the game. Their choice can be related to a Lagrangian action in
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the following way. Call b = b(z,t), |z| < L, 0 <t < 7, an “external force”, and consider
the corresponding evolution equation

ur = fr.(u) +b. (1.5)

We are of course only interested in forces b able to produce orbits in U; [m(_), m(+)]. To
select among them we introduce an action functional

I (u) = %/OT/_LLdexth %/OT/_LL (ur — fr.(w))? du dt, (1.6)

which is interpreted as “the cost” of the force field b which produces the orbit . In other
words I (u) is the penalty assigned to the orbit w if one thinks of b as an electric field,
(1.6) is the dissipation due to a constant resistivity, the value of which in (1.6) is set equal
to 4.

In the above setting it looks natural to ascribe the actual tunnelling event to the force
field which has the minimal cost. This leads to the variational problem

Brn(o) mh) 7= E;% ueuT[rrlL?—i:>,m<+>} ) )

Observe that the inf in the formulation (1.7) automatically lifts the “unnatural constraint”
in (1.4) where functions are restricted to the C* class. Actually the relevant space is the
one for which I, is finite and this selects the space of L? functions the time derivative of
which is also in L?.

The variational problem with 7 > 0 fixed is exactly the Euler-Lagrange variational
problem with Lagrangian £(u,u;) = (u; — fr(u))?/4. The corresponding Euler-Lagrange
equation is

be = by (), (18)

which we may regard as an equation for b with u determined by b through equation (1.5).
Equation (1.8) is then the equation for the optimal force needed for tunnelling and places
the whole problem in the light of an “engineering design of forces”.

We next introduce some physical considerations in order to relate the waiting time for
tunnelling to the penalty P[m(‘%m(*)}' In statistical mechanics the forces b are random and
their probability is a datum of the problem. Thus one knows, in principle, the probability
of any possible force field b in (1.5) and in particular of those which give rise to a tunnelling.
These probabilities are expected to be very small, exponentially small with an exponent
proportional to —e ¢ (d the space dimension; here d = 1), € > 0 a small parameter which
represents the ratio between microscopic and macroscopic lengths. The proportionality
coefficient is called the “rate function of large deviation” and we interpret our I-(u) as such
a rate function (which in the applications could have quite a different expression than our
simple formula (1.6)). Thus we are supposing that the probability of observing u goes like
exp{—e %I, (u)} and, since the time to wait before observing an event is proportional to the
inverse of its probability, the expected time T for tunnelling goes as exp{e_dP[m(f)m(H]}.

Thus 7T is very long, as it scales like e~ %, and the main interest in statistical mechanics is
to estimate the proportionality coefficient P[m(—)7m(+)}, which, as we will see, can be done
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quite explicitly within our scheme. The next problem is to understand how the tunnelling
proceeds once it starts and this is described by the minimizing sequences which realize
P[m(‘)vm(“}' Even though the problem is much more complex than the mere computation
of P[m(7)7m(+)}, nevertheless, in our context, it has a quite complete and detailed answer.
We in fact see that all the minimizing sequences are very similar to each other, following
(1.1) in some parts of the tunnelling orbit and its time reversal, in other parts.

The relation between variational problems and large deviations is well established,
see the classical reference by Friedlin and Ventsel, [13]. The application of the theory
to tunnelling in the spirit outlined above has been first and beautifully carried out by
Faris and Jona-Lasinio, [12], in the context of the stochastic Allen-Cahn equation u; =
Ugq + @(u) + /€b for a particular choice of force ¢, with b a standard white noise in space-
time and with Dirichlet boundary conditions at +L. The rate function in such cases has
a structure similar to (1.6) and we in fact use many of the ideas contained in [12]. Their
adaptation to (1.1) is from one side simpler because we only look at the variational problem
and avoid all questions concerning probabilities, but, on the other side, it brings in new
difficulties as we miss a characterization of the stationary solutions of the deterministic
problem (i.e. without b) which are instead easy in the case uz; + ¢(u) = 0, as is discussed
in the beginning of Section 5 below.

We finally mention that our analysis heavily exploits that there is no restriction on the
times 7 in the inf in (1.7). We see that a good approximation to the inf can be obtained
by taking times 7 of the order of ¢?**¥, o > 0 (for L large). The question, which will be
hopefully studied in a forthcoming paper, is to determine how the result changes if we
restrict the inf to times 7 much smaller than e?** or much larger. In the second case it is
easy to see that P[m(f),m(+)] is not really affected, but in the former the penalty becomes
larger and an interesting question is to design the right forces b which produce such a
faster tunnelling.

In the next section we state a few properties of the model which are simple but funda-
mental for the whole analysis. Then in Section 3 we state the main results. In Section 4
and Section 5 we discuss upper and, respectively, lower bounds on P[m(—)7m(+)}. Section 6
contains some bibliographical remarks and the acknowledgments. Some of the proofs are
only sketched for reasons of space. The reader may find the missing details in a companion

paper, [1].
2 Work, energy, reversibility

We denote by U, [m,m’] the space of orbits which go from m to m’ in a time 7 and define
the work done by the force f, along the orbit u € U;[m,m'] as

T prL
We(u) :== / / fr(u)u dx dt.
0 —L
We also call I3V (u)
1 T pL
rwi=g [ e s dea,
4Jo J-or

“rev” stands for reversed. Notice in fact that, if u solves (1.1), then the reversed orbit
v(x,t) := u(z,7 —t) solves vy = —fr(v). Thus I'*¥(u) is the penalty for departures from
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reversed orbits. The following theorem and corollary are quite general and do not use the
specific form of the force field fy.

Theorem 1. For any 7 and u € U [m,m’]
I (u) = ¥ (u) — Wr(u). (2.1)

Proof. By expanding the square on the r.h.s. of (1.6),

1 = fuw)” = 3 (e + J1w)” = uifuw)
(2.1) follows after space-time integration.
|
Corollary 1. For any 7 and u € U;[m, m/]
I (u) > sup —Wi(u). (2.2)

0<t<rt
If there is v € U;[m', m] which solves (1.1), then v**¥(x,t) = v(z, 7 — t) € U-[m,m'] and
L(v") = Wy (v) = =W, (v™Y). (2.3)

Proof. Since I}*V(u) > 0, 0 < ¢t < 7, (2.2) follows from (2.1); (2.3) also follows because
I;'_GV(,UI'GV) — 0‘

|

Note that, if v satisfies the reversed equation, i.e. v; = — f1,(v), then v solves (1.5) with

b= —2fr(v). By direct inspection such a pair b and v solves the Euler-Lagrange equation
(1.8) (with v in place of u), which seems to indicate that in the same context of (2.3)

inf  L(u) =—-W,(v") = W(v). (2.4)

uEU- [m,m’]

Equation (2.4) and more generally a control of the work functional W (u) are easy in
“gradient systems” and fortunately (1.1) is “gradient”.

Definition 1. We say that the force fr is gradient if there exists a functional F, defined
on L>®([—L, L];[-1,1]) such that for any 7 > 0 the work W (u) done by fr, along the orbit
u € Uy [m,m'], satisfies

W (u) = Fr(u(+,0)) = Fr(u(-, 7). (2.5)

Theorem 2. Equation (2.5) holds with
L L (L

Fulm) = [ atmide < [ [ ey n@) —m@)dedy,26)

where
- - ~ m? 1
dp(m) = dp(m) — min ds(s),  dp(m) =——- = 58(m),  F>1,
S(m):—l_mlog I-m 1+m10 1—|—m‘

2 2 %
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_5.7:L(m)

5 , the functional derivative of Fr,, and (2.5)
m

Proof. By direct inspection f7,(m) =

follows. Theorem 2 is proved.
|

Note that the work done by f1, on orbits u which solve (1.1) is always nonnegative so
that the free energy Fr,(u(-,t)) is a nonincreasing function of ¢.
With the help of Theorems 1 and 2 Corollary 1 becomes:

Theorem 3. For any 7 and u € U.[m,m/],

Ir(u) = L% (u) + [Fr(m') = Fr(m)] = sup {Fp(u(-,1)) — Fr(u(-0)}.

0<t<r
If there is v € Uy[m',m] which solves (1.1), then

inf I (u) = Fr(m') — Fr(m).
u€U- [m,m’]
The infimum on the l.h.s. is a minimum, the minimizer is unique and is given by the time
reversal of v.

3 Main results

The optimal strategy for connecting m =) to m(t) shows the emergence of spatial patterns.
In fact for L large enough it costs too much to connect m(~) and m ) using orbits u(x,t)
which are spatially constant (u(z,t) independent of z). Indeed by continuity there is a
time top when u(-,tg) = 0 and by Theorem 3 I-(u) > Fr(u(-,to)) = 2L¢g(0). There are
instead spatially dependent orbits the free energies of which are bounded independently
of L. They are constructed using profiles which have values close to —mg and mg except
for an interpolating interval of fixed length. In such a class for L large enough there is
a special profile my, which is stationary, [8], [6], [2], and we see by following the strategy
proposed in [12] for the Allen-Cahn case that the best way to connect m() with m() is
by passing close to M. These ideas are used to prove the following theorem:

Theorem 4. For any L large enough
By(o) ) = Frmr). (3.1)

my, is called a finite volume “instanton”. Instantons are defined as stationary solutions
of the whole line version of (1.1) which have definite and opposite signs at +oo. Existence
of instantons has been established in [9], [10], [7], where it is proved that there is a solution
of the equation

m(z) =tanh {fJ «m(x)}, =z €R, (3.2)

which is increasing, antisymmetric and converges exponentially fast to £mg as x — +oo.
Any other solution of (3.2), which is strictly positive definite [respectively negative] as
x — oo [respectively x — —o0], is a translate of m(x).

n(x) := m(z)1 <z, is not a stationary solution of (1.1) because f1,(n) # 0 for some
|z| > L—1. However, in a “small” neighborhood of n there is one (and only one) stationary
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solution. More precisely in [2] it is shown that given any e > 0 for all L large enough there
is an antisymmetric function 7z (z) which solves

mp(z) = tanh {BJ"" «mp(z)}, |z| <L, (3.3)
and is such that
[, — Mmoo <€, (3.4)

where || - ||oo is the L® norm in [—L,L]. Moreover iy, is the unique solution in the
neighborhood (3.4). A stronger property is stated below. By an abuse of notation 7y, is
also called an instanton.

We conclude by remarking that the mere existence of an antisymmetric function my, #
m© (m® = 0) is very easy to prove. Consider in fact the orbit of (1.1) which starts from
mo(z) = m(x)1, <. Antisymmetry is preserved by the dynamics. Thus any limit point
of the orbit is antisymmetric; the limit points solve (3.3) because Fy, is strictly decreasing
at points which are not solutions of (3.3). If L is large enough, Fr(m©) > Fp(mg).
Hence m© is not a limit point.

The proof of Theorem 4 shows that any minimizing sequence in (1.7) passes arbitrarily
close to my. A stronger characterization actually holds as we are going to see. In fact a
much more refined analysis of (1.1) than the previous simple argument for the existence
of an instanton shows that there are two invariant, one-dimensional manifolds, v(i)(-, s),
s € R, (dependence on L is not made explicit), which connect my, to m(=) and, respectively,
to m(t). Existence and properties of invariant manifolds have been proved in [2] for a
dynamics closely related to the one we are considering, see (4.5) below. In a future paper
we will extend the results to our dynamics (1.1) and prove that the manifolds v(*)(-, s)
satisfy the following two properties:

tim_ [0 () e =0, i o) (,5) —m®) |y =0,

S§——0
where || - || is the L? norm,
Ty (v (-, 8) = v (s +¢), forallseR and all t >0

and we recall that T;(m) is the semigroup generated by (1.1). Again dependence on L is
not made explicit. Moreover Fr (v (-,5)) < Fr(1nr) for any s € R.

It is also proved that manifolds with such properties are unique, except of course for
the trivial change s — s + a in the parametrization and space reversal, © — —z. By
symmetry it is easily seen that v(7)(z,s) = —oH)(—z, ).

Roughly speaking the next theorem says that the solution to (1.7) is given by an orbit
which is made by patching together the time reversed of v(~) with ().

Theorem 5. For all L large enough, if (T, un) is a minimizing sequence for (1.7), then
Tn — 00, and, given any € > 0 and T > 0, u, (or its image under x — —x) has the
following property as soon as n is large enough. The interval [0,7,] divides into five,
consecutive intervals, Iy, .., Is. Fort € Ip, ||Ju,(-,t) —m)|a < e fort € I3, |Jun(-t) —
s < € fort € Is, ||un(-,t) — mP|y < e. Finally

lun(t) =0T = (t=t)|2<e, tely=[t't+2T),
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while
tn (-, t) — 0 (=T 4+ (£ = t")]]2 < e, tely=[t"t"+27).

Theorem 5 will be proved in a future paper. We have stated it here only for the
sake of presentation just to give a more complete picture on the tunnelling phenomenon.
Indeed Theorem 4 answers the first question about tunnelling, namely the time to wait
for observation of the tunnelling (see the Introduction for a discussion on the relation
between the latter and the penalty P[m(7)7m(+)}). Theorem 5 instead specifies also the
way the tunnelling occurs. While it is well established that a minimizing sequence can be
obtained by following the reversed flow on the invariant manifolds, see [12], our statement
in Theorem 5 completes the picture by saying that “this is in fact the only possible way”
as any other pattern would lead to a larger penalty.

The time for the tunnelling, once it starts, is dictated by the flow along the invariant
manifolds except for the motion close to its endpoints, which can be reached only after
an infinite time if motion is all the way along the invariant manifolds. To keep the time 7
finite we then need to depart from the manifolds with “shortcuts” close to the endpoints.

The optimal force to add for tunnelling is then b(z,t) = —2f(v(7)(z,t)) when the
orbit follows in reversed time the manifold v(~) while b = 0 along v(*) as the motion
is then classical. Then theorem 5 provides an answer also to the question raised in the
Introduction about the optimal design of external forces to add to have a tunnelling.

4 Upper bound

We prove (3.1) by proving lower and upper bounds and start from the latter, namely we
prove that

B) ey < Frling) (4.1)
by exhibiting a sequence (7, ), Tn — 00, Up € Uy, [m ™), mH)] such that
lim I, (u,) < Fr(mr).

Lemma 1. Suppose that there are two sequences, m;-, such that |mF|. <c <1,

lim [ — o =0, lim |Ti(m) —m® |, =0 (42)

n—oo

and Fr.(mt) < Fr(my). Then (4.1) holds.
Proof. By (4.2) there is t,, such that

1
ITs, () = m o < —. (43)

Set 7, = 2t,, + 4 and divide [0, 7,,] into 6 intervals. In the first one, [0, 1], we set

Un (1) = a(t) Ty, (my) + [1 —a@®)]m ), teo,1],
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a(t) being a smooth increasing function with a(0) = 0 and a(1) = 1. Let
un (1) = Tyv1—e(my,), € [1,1+10],

while for 1 +¢, <t <t,+2
un (-, t) = a(t — (tn + 1)) g + [1 —a(t — (t, +1))]m,

with the reversed prescription and with m(~) replaced by m(t) in [tn + 2,2t + 4].
I, (u,) is then the sum of six terms, each one representing the contribution of the

n

corresponding time interval. The time integral over [0, 1] yields

N R B R A R (14

By (4.3) lim |7}, (m; ) —m 7|y = 0. Moreover u,, = m(")+a(t) [T}, (m;; )—m )] so that,
following the observation that ||u,||~ is bounded away from 1, lim ||fr(un(:,¢))|2 = 0.

Hence (4.4) vanishes as n — oo.
By Theorem 3 the integral over ¢ in [1,1 + ¢,] is equal to Fr(m,, ) — Fr(T3, (m,,));
Fr(mr) > Fr(m; ) by assumption and Fr, (13, (m,,)) > 0 so that

Fr(my ) — Fr(Ty, (my, ) < Fr(mr).

The integrals over t in [t, + 1, t, + 2], [tn+2,t, + 3] and [2t,, + 3, 2t,, + 4] vanish as n — oo.
The proof is analogous to that in the first time interval and it is omitted. Finally in the
fifth interval, [t,, +3, 2t +3], un(-,t) = Ty_(1, +3)(m;}) solves (1.1) and there is no penalty.
Lemma 1 is proved. |

By Lemma 1 (4.1) follows once we exhibit two sequences m;> which satisfy (4.2). We
start by quoting some results from [2] which refer to the flow S;(m) which is the solution
of the equation

up = gr(u) = —u + tanh{BJ""™ x u}, u(-,0) = m. (4.5)

Like for Ti(m), Fr(S¢(m)) is also a nonincreasing function of ¢ which strictly decreases
unless m is stationary, i.e. m = tanh{J""™ x m}. Observe that m is stationary for (4.5)
if and only if m is stationary for (1.1). In [2] it is proved that there exist two manifolds,
w®) (-, 5), s € R, analogous to the invariant manifolds v*)(-, s) introduced in Section 3,
namely Fr,(w™® (-, s)) < Fr(1nr)) for any s € R, and

Si(w) (- 5)) = wH (s +1), (4.6)
wH (.)€ (—mg, mg), and

lim w® (., s) =y, lim w®) (-, s) = m®) (4.7

§——00 §—00

(the limits in (4.7) can be taken both in L™ and in L?). Finally, by symmetry under
reflections and under change of sign of (4.5), for all x € [-L, L] and all s € R

wt (2, 5) = —w 7 (=, s). (4.8)
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Thus the choice m{®) (z) = w™*)(z, —n) would satisfy the assumptions of Lemma 1 if
(4.6) had T; instead of S;. So we need an extra argument. It is known, see for instance
[10], that limit points of Tj(w(*)(-, —n)) as t — +oo do exist and, if m* is a limit point,
then m* is a stationary solution of (1.1). By monotonicity and lower semicontinuity of
the free-energy functional, Fr(m*) < Fr(mpr) so that by Theorems 8 and 9 below m*
can either be equal to m(t) or to m(~). Since there is an open neighborhood of m(+)
(respectively of m(~)) which is attracted in L? by m(*) (respectively by m(7)), it then
follows that Tj(w(*) (-, —n)) converges to m* as t — +oo (and not only by subsequences).

By symmetry under change of sign T;(—m) = —T;(m) for any m. Then

lim T (w(+)(-, —n)) = m(), lim T;( — wh (., —n)) = m{=), (4.9)

t——o0 t——+00

where o € {£}. By (4.8),
i (.. —n)) = m9)
tilgloo Ty (w7 (-, =n)) = m=7). (4.10)

We now call o, the value of ¢ for which . liin Tt(w(”")(-, —n)) = m™*) and we set m¥ =
— T 00

w*n) (., —n). Then by (4.9) and (4.10) m; satisfy the assumptions of Lemma 1.

5 Lower bound

To complete the proof of Theorem 4 it suffices to show that
P meoy 2 Frmr), (5.1)

which together with (4.1) proves that Py, ) ) = Fr(rr) and thus Theorem 4. The
main point in the proof of the lower bound is that the free energy of the first excited state
is Fr(mr), namely:

Theorem 6. For all L large enough there is € > 0 so that, if m is stationary and Fr,(m) <
Fr(mg) + e, then m € {m(=) m) 1}

With the help of Theorem 6 the proof of the lower bound proceeds by observing that
the basins of attraction of m(~) and m(+) (denoted by B~ and B*) are open sets in the L?
topology. This follows from the continuity of 73(m) on m and from the already remarked
fact that m(~) and m(™H) are locally stable (namely there are open neighborhoods of m(=)
and m(*) which are attracted by m =) and m(+)). Then given an orbit u € U, [m(=), m(*)]
there must be a time ¢y € (0, 7) such that u(-,ty) ¢ B~ UB™T. The proof of the lower bound
is then be completed by showing that Fr(u(-,t9)) > Fr(mr). Indeed, Fr(u(-,to)) >
Fr(Ts(u(-,t0))), s > 0, and by the lower semicontinuity of Fy,, if Ty, (u(-,tp))) — m* as
Sp — 00, then Fr(u(-,to)) > Fr(m*). As was already observed, convergent subsequences
do exist and their limit points are stationary. On the other hand m™* cannot be equal
to m(=) or to m*) because by construction u(-,tg) ¢ B~ U BT so that by Theorem 6
Fr(u(-,to)) > Fr(myr) and the lower bound is proved.

It thus remains to prove Theorem 6. For Allen-Cahn (i.e. u = uzy+¢(u) with Neumann
conditions) the proof is easy. In fact the stationary solutions satisfy u,, = —¢(u). If we
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interpret u as a position and x as a time, they are the orbits of a one-dimensional particle
of mass 1 subject to the force field —¢(u), which have zero velocity at the times —L and
L. There is a full characterization of such orbits and Theorem 6 then follows.

We miss an analogous characterization of the stationary solutions of (1.1), but we
have a fairly good knowledge of the energy landscape in a “small” open set U which
is the union of suitable neighborhoods of m™®) and of translated instantons. The main
feature (related to the one-dimensional nature of the model) is that the sublevel {m €
L*([-L,L]) : Fr.(m) < Fr(mr) + €}, € > 0 small enough, is contained in U so that the
proof of Theorem 6 requires only an analysis of U. Roughly speaking the open set U is
made of profiles m which are either everywhere close to mg (or to —mg) or else they are
close to a “shifted instanton”. To define “closeness” we use averages. Given ¢ > 0 we
denote by D the partition of R into the intervals [nf, (n + 1)£), n € Z, and define

m(f)(m) = ]1[(@ m(y) dy, ]j{m(y) dy = ﬁ/j\m(y)dy, (5.2)

where Ig(f) is the interval in D, which contains the point z. Given an “accuracy param-
eter” ¢ > 0 we then introduce

+1 if |m® <
00 (m; ) = H bm ) Fmgl <. (5.3)
0 otherwise.

Calling ¢_ and ¢4 two values of the parameter ¢, with ¢, an integer multiple of /_ we
define a “phase indicator”
41 if ) (my ) = +1 in [~ L, L] N <I“+) oIl u ) ) ,

{L’*Z.Q_ {L'+Z+

@(C?Z*lﬁ’)(m; x) — {

0 otherwise,

and call contours of m the connected components of the set {z : ©Cf=t+) (m;z) = 0}.
I' = [z_,z,) is a plus contour if 7¢*~) (m;z4) = 1 and a minus contour if p(¢-¢-) (m; 1) =
—1. Otherwise it is called mixed.

The parameters (¢,¢—, /4, L) are called compatible with ({p,c1,x) € R3 if ¢ € (0,¢p),
0 < K(, €y >1/0_; L is a multiple integer of ¢, and ¢4 a multiple integer of /_. In [1]
we prove the following theorem, which adapts results already known in the literature.

Theorem 7. There are positive constants (y, c1, k, c2 and w such that, if ((,0—, 04+, L) is
compatible with ({y,c1, k), then

From)> > wee o, (T)  ¥me L®(-L,L;[-1,1]), (5.4)

T' contour of m

where

0_
we_ e, (I) = 01C2£—|I‘| if T is a plus or a minus contour;
+

we,_ o, (') = max {cﬁ%—;]ﬂ ; F(m) —026*“’“} if T is a mized contour and F(m),
m € L>®(R;[—1,1)), is defined as in (2.6) with L = oo and with J in place of J""™.
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“Good choice of parameters”. In the sequel we take ¢ < (j suitably small, L > (8 and
(4 determined by L and ¢ as follows. £, is the smallest number > ¢ =% such that L = n/,,
n € N; /_ is the largest number < (2 such that ¢, =pl_, pe N, p > 1.

Definition 2. We write m¢(x) = m(z — §), £ € R and given k € N and (¢, /—,¢4,L) as
above and calling © = O(Gf4+) we define

Uy = {m:—me U,};
U_4+ = {m e L>([-L,L];[-1,1]) : m has a unique mixed contour I, |I'| < ki,

and there exists £ € T such that dist(&, [-L, L]\T') > £, /2, and |m(‘-) —mg*)] <2¢
on [—L,L]};

U+7_ = {m T—m & U_7+}.

We also define
U=U_uUU_UU;_UUyg,

namely U_ and U, are the sets of those m which are in the minus, respectively plus,
phase, except for the “small region” {z : ©(m,z) = 0}. U_ ; UU, _ instead describes the
intermediate times in a tunnelling orbit, when the minus and the plus phases coexist in a
same m. U_ ; UU, _ is made by profiles m which are either close to an instanton m¢ or
to —mg. The region {z : ©(m,x) =0}, m € U_  UU, _, which separates the two phases
both present in m, is then “the interface”.

As a corollary of Theorem 7 we have:

Theorem 8. If { > 0 is small enough, there is k € N such that for L large enough
{me L®([~L, L};[~1,1]) : Fr(m) < Fr(mg) + ¢ c U
(recall that U depends on k and on ().
Details of the proof of Theorem 8 are reported in [1]. Given r € (0,1) we call

viE={meU:[{o(m, ) =+1}| >2L—rL}, VI =U\(UV;),

T
and Theorem 6 follows directly from

Theorem 9. Let (, k and L be as in Theorem 8. Suppose that m is stationary for
equation (4.5) and Fr.(m) < Fr(mg)+¢. Ifm € Vit then m = m™); if m € V.=, then
m=m):ifme VO, then m = my,.

If m is stationary, m is differentiable and |my;| < f||Jz||c as follows by differention
w.r.t. @ of the equation m = tanh{B3J""™ x m}. Then, if m € V2, |m — mg|o <
2¢ + B||Jz]|oo?— for some [¢] < (1 —r)L. If ¢ is sufficiently small and L correspondingly
large, |[m — m¢l|oo < €, with € the same small parameter introduced in [2], where it is
shown that in such a case m = . The statements about m € V.= do not follow (at
least directly) from the literature and need a proof. We report it in [1], where in order
to exploit results already known in the literature we study the flow S;(m) which solves
(4.5) and prove that S;(m) — m™®) for any regular m € V*. This concludes the proof
of Theorem 9 because we have already noticed that, if m is stationary, it is regular and
because the stationary points of (4.5) and of (1.1) are the same.

The proof of Theorem 9 is reported in [1].



62 G Bellettini, A De Masi and E Presutti

6 Bibliographical remarks

Quantum tunnelling has been studied as a large deviation problem via the Feynman-Kac
formula, see [15].

Metastability in the Ising model has been extensively studied, see [18] and references
therein. Metastability in the stochastic Allen-Cahn equation with additive small random
noise has been studied in d = 1 dimensions in [12] and in [5]; there is also an analysis in
the d = 2 case in [16].

Tunnelling between pure phases (i.e. the problem discussed here) has been studied for
the Ising model in [17].

The existence and stability properties of the invariant manifolds v*) in the d = 1,
deterministic Allen-Cahn equation are studied in [3], [4], [14] and [11].

Existence of the finite volume instanton for the nonlocal equation considered here is
proved in [8] and in [6] while the analysis of the invariant manifolds for the equation (4.5)
is proved in [2]. The mountain pass lemma and variational techniques have been used in
[6] to study the finite volume instanton.
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