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Abstract

We study a potential introduced by Darboux to describe conjugate nets, which within
the modern theory of integrable systems can be interpreted as a τ -function. We
investigate the potential using the nonlocal ∂̄-dressing method of Manakov and Za-
kharov and we show that it can be interpreted as the Fredholm determinant of an
integral equation which naturally appears within that approach. Finally we give some
arguments extending that interpretation to multicomponent Kadomtsev–Petviashvili
hierarchy.

1 Introduction

Conjugate nets are certain parametrized submanifolds theory of which was the object
of investigations of XIX-th century differential geometry [5, 2, 9]. The basic system of
equations of the theory

∂i∂jhk(u) = (∂j log hi(u))∂ihk(u) + (∂i log hj(u))∂jhk(u), i, j, k distinct, (1.1)

constitutes one-half of the system of the Lamé equations [12] describing orthogonal coor-
dinate systems. Here the functions hi, i = 1, . . . ,N , N > 2, called the Lamé coefficients,
depend on parameters u = (u1, . . . , uN ) of conjugate nets, and ∂i, i = 1, . . . ,N , denote
partial derivatives. The Darboux system (1.1) written in terms of the rotation coefficients,
βij , defined by the compatible system

∂ihj(u) = hi(u)βij(u), i 6= j, (1.2)

takes the form

∂jβik(u) = βij(u)βjk(u), j 6= i, k. (1.3)

This system is known in present-day terminology as the N -wave equation [11], which is the
simplest equation of the N -component (N > 2) Kadomtsev–Petviashvili (KP) hierarchy.
The parameters, ui, of the nets can be identified with the first times of the hierarchy, while
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the other times of the KP hierarchy describe integrable isoconjugate deformations of the
nets [8].

Equations (1.3) imply that one can introduce the potentials βii, i = 1, . . . ,N , such that

∂jβii(u) = βij(u)βji(u), i 6= j. (1.4)

The symmetry i ↔ j of the system (1.4) allows, in turn, for the existence of yet another
potential field (this fact was known already to Darboux, see [5] p. 363)

∂i log τ(u) = −βii(u), (1.5)

which was identified [8] with the τ–function of the multicomponent KP hierarchy.
The τ -functions play the central role [16, 6, 17, 10, 14] in establishing the connections

between integrable systems and quantum field theory, statistical mechanics or the theory of
random matrices. They are often represented in a determinantal form or can be identified
with the Fredholm determinant of the integral Gel’fand–Levitan–Marchenko equation used
to solve the model under consideration. In particular the determinantal formula for the
τ -function of the KP hierarchy [6] follows from the free fermions (or gl∞) realization of
the hierarchy. Within the context of the Zakharov and Shabat dressing method [20] the
τ -function of the KP hierarchy was interpreted as the Fredholm determinant in [15].

Manakov and Zakharov introduced in [19] the ∂̄-dressing method, which was based on
the nonlocal ∂̄-problem (see also [1]), as a generalized version of the inverse scattering
method [21]. They rediscovered the Darboux system (1.1), in the generalized matrix
form, as the basic set of equations solvable by the ∂̄-dressing method. For example the
KP equation [6] was shown in [4] to be a limiting case of the Darboux system.

The multicomponent KP hierarchy and conjugate nets were studied within the ∂̄-
dressing method in a number of papers [3, 7, 13]. However, in that approach the de-
terminantal interpretation of the τ -function of conjugate nets was somehow missing. In
this paper we show that indeed the τ -function of conjugate nets can be identified with the
Fredholm determinant of the integral equation which inverts the nonlocal ∂̄-problem.

The paper is constructed as follows. In Section 2 we collect the basic elements of the
∂̄-dressing method and we present the way to solve the Darboux equations within this
method. Section 3 is devoted to the presentation of the Fredholm determinant interpre-
tation of the τ -function of conjugate nets. Finally in Section 4 we briefly discuss general-
ization of the above result to the full multicomponent KP hierarchy. In the Appendix we
recall some standard facts [18] concerning the Fredholm integral equations.

2 The ∂̄-dressing method and the Darboux equations

In this Section we recall ([19], [4]) the method of solution of the Darboux equations, (1.1)
or (1.3), within the ∂̄-dressing approach.

The basis of the ∂̄-dressing method is the following integrodifferential equation in the
complex plane C

∂̄(χ(λ) − η(λ)) + (Ŝχ)(λ) = 0. (2.1)

Here Ŝ is an integral operator

(Ŝφ)(λ) =

∫

C

S(λ, λ′)φ(λ′) dλ′ ∧ dλ̄′
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and the given rational function η(λ) is called the normalization; it is assumed that

χ(λ) − η(λ) → 0 for |λ| → ∞.

Due to the generalized Cauchy formula the solution of the nonlocal ∂̄-problem (2.1)
can be expressed in terms of the solution of the equation

χ(λ) +
1

2πi

∫

C

(Ŝχ)(λ′)

λ′ − λ
dλ′ ∧ dλ̄′ = η(λ), (2.2)

which can be put in the form of the Fredholm integral equation of the second kind

χ(λ) = η(λ) −

∫

C

K(λ, λ′′)χ(λ′′)dλ′′ ∧ dλ̄′′, (2.3)

with the kernel

K(λ, λ′′) =
1

2πi

∫

C

S(λ′, λ′′)

λ′ − λ
dλ′ ∧ dλ̄′. (2.4)

Remark. In this paper we always assume that the kernel S in the nonlocal ∂̄-problem
is such that the Fredholm equation (2.2) is uniquely solvable. Then by the Fredholm
alternative the homogenous equation with η = 0 has only the trivial solution.

We assume that the kernel S in the nonlocal ∂̄-problem depends on additional param-
eters. To get the ∂̄-dressing method of construction of solutions fo the Darboux equa-
tions we introduce the following simple dependence of the kernel S on the variables ui,
i = 1, . . . , N , via

S(λ′, λ′′, u) = g(λ′, u)−1S0(λ
′, λ′′)g(λ′′, u), (2.5)

where

g(λ′, u) = exp
N

∑

i=1

uiAi(λ
′), Ai(λ

′) =
ci

λ′ − λi

(2.6)

the ci are nonzero constants and λi ∈ C are points of the complex plane. Moreover we
assume that λi 6= λj for different i and j.

Directly one can verify the following result.

Lemma 1. The evolution (2.5) of the kernel S implies that the kernel K of the integral

equation (2.3) is subject to the equation

∂iK(λ, λ′′, u) = Ai(λ)K(λi, λ
′′, u) +Ai(λ

′′)K(λ, λ′′, u) −Ai(λ)K(λ, λ′′, u). (2.7)

In consequence of the above formula (2.7) we obtain the following useful and crucial
for the ∂̄-dressing method result.

Lemma 2. When χ(λ, u) is the unique, by assumption, solution of the ∂̄-problem (2.1)
with the kernel S evolving according to (2.5) and with normalization given by η(λ, u), then

the function

∂iχ(λ, u) +Ai(λ)χ(λ, u)

is the solution of the same ∂̄-problem but with the new normalization

∂iη(λ, u) +Ai(λ)η(λ, u) +Ai(λ)(χ(λi, u) − η(λi, u)).
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The above Lemma leads to the following Theorem, which gives the system of linear
problems for the Darboux equation.

Theorem 1. Given solution χ(λ, u) of the the ∂̄-problem (2.1) and (2.5) with the nor-

malization η(λ, u) = 1, then the function

ψ(λ, u) = χ(λ, u)g(λ, u)

satisfies with respect to variables ui the following system of Laplace equations

∂i∂jψ(λ, u) = aij(u)∂iψ(λ, u) + aji(u)∂jψ(λ, u), i 6= j (2.8)

with the coefficients

aij(u) =
∂jχ(λi, u)

χ(λi, u)
+Aj(λi). (2.9)

Proof. The idea of the proof is standard within the ∂̄-dressing method approach. One
collects solutions of the ∂̄-problem (2.1) (or, equivalently, the integral equation (2.3)) to
obtain a new solution with the vanishing normalization. Then by the Fredholm alternative
such a solution must be identically zero. �

Define the Lamé coefficients, hi(u), by

hi(u) = χ(λi, u)gi(λi, u),

where

gi(λ, u) = exp

N
∑

j=1,j 6=i

ujAj(λ);

equivalently they are the nonsingular parts of the function ψ(λ, u) in the points λi,

hi(u) = lim
λ→λi

[ψ(λ, u) exp(−uiAi(λ))] . (2.10)

Then the coefficients aij(u) of the Laplace equations (2.8) are

aij(u) = ∂j log hi(u) i 6= j,

and the compatibility condition of (2.8) is the Darboux system (1.1). Alternatively the
Darboux system can be obtained evaluating equation (2.8) in the points λk, k 6= i, j

(multiplying it first by exp(−ukAk(λ)) to remove the singularity, like in equation (2.10)).

Remark. To obtain real solutions one needs special symmetry properties of the kernel S
with respect to the complex conjugation,

S(λ̄, λ, λ̄′, λ′) = S(λ, λ̄, λ′, λ̄′),

and reality of the points, λi ∈ R, and the parameters, ci ∈ R, i = 1, . . . ,N , which imply
that

ψ(λ̄, λ, u) = ψ(λ, λ̄, u) and hi(u) ∈ R.
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The following result allows one to give the ∂̄-method of construction of solutions of the
Darboux system (1.3) written in terms of the rotation coefficients. Its proof is analogous
to the proof of Theorem 1.

Theorem 2. Let χi(λ, u), i = 1, . . . , N , be solutions of the ∂̄-problem (2.1) and (2.5) with

the normalizations

ηi(λ, u) = Ai(λ)gi(λi, u)
−1, (2.11)

then the functions

ψi(λ, u) = χi(λ, u)g(λ, u)

satisfy equations

∂iψ(λ, u) = hi(u)ψi(λ, u). (2.12)

Moreover the functions ψi(λ, u) satisfy the linear system

∂jψi(λ, u) = βij(u)ψj(λ, u), j 6= i, (2.13)

with the rotation coefficients

βij(u) = χi(λj , u)gj(λj , u) = lim
λ→λj

[ψi(λ, u) exp(−ujAj(λ))] . (2.14)

Evaluating equations (2.12) in the points λj , j 6= i, (removing first the singularity) we
obtain equations (1.2). The compatibility of the linear system (2.13) gives the Darboux
equations (1.3) in terms of the rotation coefficients. Alternatively equations (1.3) can be
obtained evaluating equations (2.14) in the points λk, k 6= i, j.

3 The first potentials and the τ–function

To give the meaning of the τ -function within the ∂̄-dressing method we firstly present the
meaning of the potentials βii defined by equations (1.4).

Proposition 1. Within the ∂̄-dressing method the potential βii(u) can be identified with

the nonsingular part of the function ψi at the point λi

βii(u) = lim
λ→λi

(ψi(λ, u) exp(−uiAi(λ)) −Ai(λ)) . (3.1)

Proof. Multiplication of both sides of equation (2.13) by gi(λ, u)
−1 and evaluation of the

result in the limit λ→ λi give

lim
λ→λi

∂j (ψi(λ, u) exp(−uiAi(λ))) = βij(u)βji(u).

The expression in brackets in the LHS of the above equation is singular at λi. Up to a
constant term, which vanishes during differentiation, it agrees with

ψi(λ, u) exp(−uiAi(λ)) −Ai(λ),

which is finite at λi due to the normalization condition (2.11). After this replacement we
can exchange differentiation with taking the limit. �
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Finally we give the meaning to the next potential, the τ -function, which is related with
potentials βii(u) by equations (1.5).

Theorem 3. Within the ∂̄-dressing method the τ -function of conjugate nets can be identi-

fied with the Fredholm determinant of the integral equation (2.3) which inverts the nonlocal

∂̄-problem (2.1) with kernel evolving according to equation (2.5).

Before proving this theorem we first show the following Lemma; we use here the notation
of the Appendix.

Lemma 3.

∂iK

(

z1 . . . zm
z1 . . . zm

∣

∣

∣

∣

u

)

=
m

∑

ℓ=1

Ai(zℓ)K

(

λi z1 . . . žℓ . . . zm
zℓ z1 . . . žℓ . . . zm

∣

∣

∣

∣

u

)

,

where the symbol žℓ means that zℓ should be removed from the sequence.

Proof. Denote by πm the set of all permutations of {1, . . . ,m}. Differentiation of the
expression

K

(

z1 . . . zm
z1 . . . zm

∣

∣

∣

∣

u

)

=
∑

σ∈πm

sgnσ K(z1, zσ(1), u) · . . . ·K(zm, zσ(m), u)

with respect to ui gives on application of equation (2.7)

∂iK

(

z1 . . . zm
z1 . . . zm

∣

∣

∣

∣

u

)

=

m
∑

ℓ=1

∑

σ∈πm

sgnσ K(z1, zσ(1), u) · . . .

. . . · Ai(zℓ)K(λi, zσ(ℓ), u) · . . . ·K(zm, zσ(m), u) ,

where we have used also the following elementary formula valid for any permutation σ ∈ πm

m
∑

ℓ=1

Ai(zℓ) =

m
∑

ℓ=1

Ai(zσ(ℓ)).

After application of an even number of transpositions in any of the m determinants we
obtain the statement of the Lemma. �

Proof of Theorem 3. Using Lemma 3 we can derive the following formula for ith deriva-
tive of the Fredholm determinant DF (u)

∂iDF (u) =

∞
∑

m=1

1

(m− 1)!

∫

Cm

Ai(λ
′)K

(

λi z1 . . . zm−1

λ′ z1 . . . zm−1

∣

∣

∣

∣

u

)

dλ′∧dλ̄′ . . . dzm−1∧dz̄m−1 .

Comparing this with

DF (λi, λ
′, u) =

∞
∑

m=0

1

m!

∫

Cm

K

(

λi z1 . . . zm
λ′ z1 . . . zm

∣

∣

∣

∣

u

)

dz1 ∧ dz̄1 . . . dzm ∧ dz̄m
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we obtain that

∂iDF (u) =

∫

C

DF (λi, λ
′, u)Ai(λ

′)dλ′ ∧ dλ̄′.

Note that the solution of the Fredholm equation (2.3) with normalization Ai(λ) is given,
due to (2.11) and (5.4), by

χi(λ, u)gi(λi, u) = Ai(λ) −

∫

C

DF (λ, λ′, u)

DF (u)
Ai(λ

′)dλ′ ∧ dλ̄′ .

In the limit λ→ λi (compare with (3.1)) we obtain therefore

∂i logDF (u) = −βii(u) ,

which allows via equation (1.5) for identification of the τ -function with the Fredholm
determinant DF (u). �

4 Conclusion and remarks

We have shown that within the ∂̄-dresing method the τ -function of conjugate nets can be
identified with the Fredholm determinant inverting the nonlocal ∂̄-problem. In fact this
result can be extended to the full N -component KP hierarchy. To justify this opinion we
should:

1. incorporate higher times of the hierarchy into the scheme and

2. give the meaning to the full set of τ -functions labelled by the root lattice vectors of
the AN−1 root system.

The first task can be done by using the idea of [4], where the KP equation was obtained
from the Darboux system (the scalar basic set of equations) for N = 3. In the same way
the higher times can be included into evolution of the kernel. The second problem can be
solved by combination of the result of [8] on the relation of the Schlesinger transformations
on the AN−1 root lattice with the Laplace transformations of conjugate nets, with the
construction of such Laplace transformations within the ∂̄-dresing method as given in [7].
The details will be presented elsewhere.

5 Appendix: Elements of the Fredholm theory

We recall in this Appendix some standard facts (see, for example, [18]) from the theory
of Fredholm integral equations which we use in the paper.

Consider the Fredholm equation of the second kind

f(x) = g(x) −

∫

Ω
K(x, y)f(y)dy , (5.1)

where K(x, y) is the kernel of the integral operator and g(x) is a given function. The
Fredholm determinant DF is defined by the series

DF = 1 +
∞
∑

m=1

1

m!

∫

Ωm

K

(

x1 x2 . . . xm

x1 x2 . . . xm

)

dx1 . . . dxm , (5.2)
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where

K

(

x1 x2 . . . xm

y1 y2 . . . ym

)

= det







K(x1, y1) K(x1, y2) . . . K(x1, ym)
...

...
...

K(xm, y1) K(xm, y2) . . . K(xm, ym)






,

while the Fredholm minor is defined by the series

DF (x, y) =

∞
∑

m=0

1

m!

∫

Ωm

K

(

x x1 x2 . . . xm

y x1 x2 . . . xm

)

dx1 . . . dxm . (5.3)

For a nonvanishing Fredholm determinant DF the solution of the integral equation (5.1)
is unique and can be written in the form

f(x) = g(x) −

∫

Ω

DF (x, y)

DF

g(y)dy . (5.4)
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