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Abstract

We re-express the quantum Calogero-Sutherland model for the Lie algebra E6 and the
particular value of the coupling constant κ = 1 by using the fundamental irreducible
characters of the algebra as dynamical variables. For that, we need to develop a
systematic procedure to obtain all the Clebsch-Gordan series required to perform the
change of variables. We describe how the resulting quantum Hamiltonian operator can
be used to compute more characters and Clebsch-Gordan series for this exceptional
algebra.

1 Introduction

During the three last decades of the past century, a plethora of highly nontrivial mechanical
integrable systems were discovered, see [1, 2] for comprehensive reviews. Among these,
the Calogero-Sutherland models form a distinguished class. The first analysis of a system
of this kind was performed by Calogero [3] who studied, from the quantum standpoint,
the dynamics on the infinite line of a set of particles interacting pairwise by rational plus
quadratic potentials, and found that the problem was exactly solvable. Soon afterwards,
Sutherland [4] arrived to similar results for the quantum problem on the circle, this time
with trigonometric interaction, and Moser [5] showed that the classical version of both
models enjoyed integrability in the Liouville sense. The identification of the general scope
of these discoveries came with the work of Olshanetsky and Perelomov [6]-[8], who realized
that it was possible to associate models of this kind to all the root systems of the simple
Lie algebras, and that all these models were integrable, both in the classical and in the
quantum framework [9, 10]. Nowadays, there is a widespread interest in this type of
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integrable systems, and many mathematical and physical applications for them have been
found, see for instance [11].

The study of the form and properties of the Schrödinger eigenfunctions for the quan-
tum version of these models constitutes an interesting line of research. In fact, these
eigenfunctions have very rich mathematical properties. In particular, for the case with
trigonometric potential, if we tune the coupling constants to same especial values, the
wave functions correspond to the characters of the simple Lie algebras, while if we select
a different tuning, we can make them to coincide with zonal spherical functions. Thus,
the Calogero-Sutherland theories provide us with a new tool for computing these quan-
tities. In this spirit, we will describe in the present paper how to use the trigonometric
Calogero-Sutherland model to obtain both particular characters and Clebsch-Gordan se-
ries for the exceptional Lie algebra E6. The main point of our approach is to express the
Calogero-Sutherland Hamiltonian in a suitable set of independent variables, indeed the
fundamental characters of E6. The use of such kind of variables has been quite useful to
solve the Schrödinger equation for the models associated to some classical algebras, [10],
[12]-[18].

The organization of the paper is as follows. Section 2. is a reminder of the properties
of E6 relevant for the contents of the paper. Section 3. describes the Calogero-Sutherland
model associated to E6 and explains how to perform the change of variables mentioned
above. Section 4. gives a detailed account of the computation of the Clebsch-Gordan
series of E6 needed to pass to the new variables. In Section 5. we present the Hamiltonian
in these variables and describe its use for computing new characters and to reduce tensor
products of representations. Some conclusions are given in Section 6., and finally, the
appendices show some explicit results for characters and Clebsch-Gordan series of E6.

2 Summary of results on the Lie algebra E6

In this Section, we review some standard facts about the root and weight systems of the
Lie algebra E6, with the aim of fixing the notation and help the reader to follow the rest
of the paper. More extensive and sound treatments of these topics can be found in many
excellent textbooks, see for instance [19], [20].

The complex Lie algebra E6, the lowest-dimensional one in the E-family of exceptional
Lie algebras in the Cartan-Killing classification, has dimension 78 and rank 6, as the
name suggests. From the geometrical point of view, it admits (with some subtleties,
see [21]) an interpretation which extends the standard-one for the classical algebras: in
the same way that these correspond to the isometries of projective spaces over the first
three normed division algebras —SO(n + 1) ≃ Isom(RPn), SU(n + 1) ≃ Isom(CPn),
Sp(n + 1) ≃ Isom(HPn)—, F4, E6, E7 and E8 are the Lie algebras of the projective
planes over extensions of the octonions, giving rise to the so-called “magic square”: F4 ≃
Isom(OP 2), E6 ≃ Isom[(C ⊗ O)P 2], E7 ≃ Isom[(H ⊗ O)P 2], E8 ≃ Isom[(O ⊗ O)P 2]. In
Physics, the most remarkable role played by E6 is in the heterotic ten-dimensional E8×E8

superstring theory when the extra six dimensions are compactified to a manifold of SU(3)
holonomy: in such a case, one of the E8 breaks to an E6 which gives the Grand Unification
group of four-dimensional physics [22]. The Dynkin diagram of E6, see Figure 1, encodes
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Figure 1. The Dynkin diagram for the Lie algebra E6.

the euclidean relations among the simple roots, which are

(αi, αi) = 2, i = 1, 2, 3, 4, 5, 6

(α4, αi) = −1, i = 2, 3, 5

(α1, α3) = (α5, α6) = −1,

(αi, αj) = 0, in all other cases.

Therefore, the Cartan matrix reads

A =

















2 0 −1 0 0 0
0 2 0 −1 0 0
−1 0 2 −1 0 0
0 −1 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 2

















.

It is convenient to use a realization of the simple roots in terms of the generating system
{ε1, ε2, ε3, ε4, ε5, ε6, ε} of R

7 (endowed with the standard Euclidean metric) satisfying the
conditions ε1 + ε2 + ε3 + ε4 + ε5 + ε6 = 0, (εi, εj) = −1

6 + δij , (ε, ε) = 1
2 and (ε, εj) = 0

[19]. With reference to this system, we have

α1 = ε1 − ε2, α2 = ε4 + ε5 + ε6 + ε

α3 = ε2 − ε3, α4 = ε3 − ε4 (2.1)

α5 = ε4 − ε5, α6 = ε5 − ε6.

The positive roots, which are given by all linear combinations of the forms

εi − εj , εi + εj + εk + ε, 2ε, i 6= j 6= k, (2.2)

can be classified by heights as indicated in the Table 1. The fundamental weights λk follow
from the equation αi =

∑4
j=1 Ajiλj. They are

λ1 = ε1 + ε

λ2 = 2ε

λ3 = ε1 + ε2 + 2ε

λ4 = ε1 + ε2 + ε3 + 3ε

λ5 = ε1 + ε2 + ε3 + ε4 + 2ε

λ6 = ε1 + ε2 + ε3 + ε4 + ε5 + ε.
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Height Positive roots

1 α1, α2, α3, α4, α5, α6

2 α1 + α3, α3 + α4, α4 + α5, α5 + α6, α2 + α4

3 α1 + α3 + α4, α3 + α4 + α5, α4 + α5 + α6, α2 + α3 + α4,

α2 + α4 + α5

4 α1 + α3 + α4 + α5, α3 + α4 + α5 + α6, α1 + α2 + α3 + α4,

α2 + α3 + α4 + α5, α2 + α4 + α5 + α6

5 α1 + α3 + α4 + α5 + α6, α1 + α2 + α3 + α4 + α5, α2 + α3 + 2α4 + α5,

α2 + α3 + α4 + α5 + α6

6 α1 + α2 + α3 + 2α4 + α5, α1 + α2 + α3 + α4 + α5 + α6,

α2 + α3 + 2α4 + α5 + α6

7 α1 + α2 + 2α3 + 2α4 + α5, α2 + α3 + 2α4 + 2α5 + α6,

α1 + α2 + α3 + 2α4 + α5 + α6

8 α1 + α2 + 2α3 + 2α4 + α5 + α6, α1 + α2 + α3 + 2α4 + 2α5 + α6

9 α1 + α2 + 2α3 + 2α4 + 2α5 + α6

10 α1 + α2 + 2α3 + 3α4 + 2α5 + α6

11 α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6

Table 1. Heights of positive roots.

The geometry of the weight system is summarized by the relations

(λi, λj) = A−1
ij ,

with (A−1
ij ) the inverse Cartan matrix. The Weyl vector is

ρ =
1

2

∑

α∈R+

α =
6
∑

i=1

λi = 8α1 + 11α2 + 15α3 + 21α4 + 15α5 + 8α6

with R+ the set of positive roots of the algebra. The Weyl formula for dimensions applied
to the irreducible representation associated to the integral dominant weight λ = m1λ1 +
m2λ2 + m3λ3 + m4λ4 + m5λ5 + m6λ6 gives

dim Rλ =
∏

α∈R+

(α, λ + ρ)

(α, ρ)
=

P

25 · 35 · 45 · 54 · 63 · 73 · 82 · 9 · 10 · 11

where P is a product extended to the set of positive roots in which the root α =
∑6

i=1 ci αi

contributes with a factor ht(α)+
∑6

i=1 ci mi, where ht(α) is the height of α. In particular,
for the fundamental representations, one finds:

dimRλ1
= 27 dim Rλ2

= 78

dim Rλ3
= 351 dim Rλ4

= 2925

dim Rλ5
= 351 dim Rλ6

= 27.

Note that, these dimensions reflect the fact, coming from the Z2 symmetry of the Dynkin
diagram, that the representations Rλ1

and Rλ6
are complex conjugates, and the same is

true for Rλ3
and Rλ5

, while Rλ2
(the adjoint representation) and Rλ4

are real.
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3 The Calogero-Sutherland model associated to the Lie al-

gebra E6

The Hamiltonian operator for the trigonometric Calogero-Sutherland model related to the
root system of a simple Lie algebra has the generic form

H =
1

2
(p, p) +

∑

α∈R+

κα(κα − 1) sin−2(α, q),

where q and p are vectors with dimensions given by the rank r of the algebra, ( , ) is
the usual euclidean inner product in R

r, and κα = κβ if ||α|| = ||β||. In particular,
because E6 is simply-laced, the Calogero-Sutherland model associated to E6 depends only
on one coupling constant κ. To write H in a more explicit way, it is convenient to use
the orthonormal basis {ei, i = 1, . . . , 6} in R

6. The expression of q and p in this basis is
simply q =

∑6
i=1 qi ei , p =

∑6
i=1 pi ei, while the simple roots are given by:

α1 = e1 − e2

α2 =
1

2

(

−1 +

√
3

3

)

3
∑

j=1

ej +
1

2

(

1 +

√
3

3

)

6
∑

j=4

ej

αk = ek−1 − ek, k = 3, 4, 5, 6.

The q coordinates are assumed to take values in the [0, π] interval, and therefore the
Hamiltonian can be interpreted as describing the dynamics of a system of six particles
moving on the circle, but notice that there is not translational invariance. We recapitulate
some important facts about this model which follow from the general structure of the
quantum Calogero-Sutherland models related to Lie algebras [10]. The ground state energy
and (non-normalized) wave function are

E0(κ) = 2(ρ, ρ)κ2 = 156κ2

Ψκ
0(q) =

∏

α∈R+

sinκ(α, q),

while the excited states depend on the quantum numbers m = (m1,m2,m3,m4,m5,m6),
and satisfy

HΨκ
m

= Em(κ)Ψκ
m

Em(κ) = 2(λ + κρ, λ + κρ), (3.1)

where λ is the highest weight of the irreducible representation of E6 labelled by m, i. e.
λ =

∑6
i=1 miλi. By substitution in (3.1) of

Ψκ
m

(q) = Ψκ
0(q)Φκ

m
(q), (3.2)

we are led to the eigenvalue problem

−∆κΦκ
m

= εm(κ)Φκ
m

(3.3)

with

∆κ =
1

2
∆ + κ

∑

α∈R+

ctg(α, q)(α,∇q), (3.4)
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and

εm(κ) = Em(κ) − E0(κ) = 2(λ, λ + 2κρ). (3.5)

Taking into account that A−1
jk = (λj , λk), it is possible to give a more explicit expression

for εm(κ):

εm(κ) = 2

6
∑

j,k=1

A−1
jk mjmk + 4κ

6
∑

j,k=1

A−1
jk mj . (3.6)

The main problem is to solve (3.3). As it has been shown for other algebras [10]-
[14], [18], the best way to do that is to use a set of independent variables which are
invariant under the Weyl symmetry of the Hamiltonian, namely the characters of the
six fundamental representations of the algebra E6. Unfortunately, the expression of these
characters zk in terms of the q-variables (which play the role of coordinates on the maximal
torus of E6) is complicated and makes the direct change of variables from qi to zk very
cumbersome. We are forced to follow a much more convenient, indirect route, which has
proven be useful for other root systems, [18]. First of all, we can infer from (3.4) the
structure of ∆κ when written in the z-variables:

∆κ =

6
∑

j,k=1

ajk(z)∂zj
∂zk

+

6
∑

j=1

[

b
(0)
j (z) + κb

(1)
j (z)

]

∂zj
. (3.7)

Now, to obtain the full expressions for the coefficients appearing in (3.7), we rely on
the very fact that makes the Calogero-Sutherland model useful for the purposes of the

present paper: for κ = 1, the eigenfunction Φ
(1)
m is proportional to the character χ

m
of

the irreducible representation of E6 with maximal weight
∑6

i=1 miλi. This implies that

we can compute the combination bj(z) = b
(0)
j (z)+ b

(1)
j (z) by simply using that, from (3.7),

∆(1)zj = bj(z), and thus

∆(1)zj = bj(z) = εm(1)zj (3.8)

for (mk) = (δjk). Suppose now that we know the expressions in the z-variables of all
second-order characters, that is, the characters of the form χλi+λj

, and we know also
the form of the Clebsch-Gordan series for the quadratic products of the fundamental
characters, i.e. we know the multiplicities n(m;ij) in

zizj =
∑

(m;ij)

n(m;ij)χ(m;ij) (3.9)

for every pair i, j. Then, by applying the operator ∆(1) to the two members of these
products we can fix the remaining coefficients ajk(zi) through the equations

aij(z) + aji(z) + bi(z)zj + bj(z)zi =
∑

(m;ij)

c(m;ij)ε(m;ij)(1)χ(m;ij).

These characters and series are, therefore, all that we need to accomplish the task of fixing
the form of the Hamiltonian in the limit κ = 1. Although there are some results already
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available in the literature [19, 23], a number of the required Clebsch-Gordan series remain,
to our knowledge, to be calculated. We have thus developed a systematic strategy, entirely
based in a few elementary facts, to obtain them. We devote the next Section to give a
description of this strategy.

4 Computation of the quadratic Clebsch-Gordan series

To compute a particular Clebsch-Gordan series Rλi
⊗Rλj

, we proceed through the following
steps:

1. We elaborate a list of all the irreducible representations which could possibly enter
in the series. To this end, starting from the highest weight λi + λj, which is directly
given by the characters we are multiplying zi, zj , we subtract all the integral linear
combinations of the simple roots such that the result is an integral dominant weight.
To do that we have to express the simple roots in the basis of the fundamental
weights, that is to say, the components of the k-th fundamental weight are the
entries in the k-th arrow of the Cartan matrix. It turns out that for the series at
stake, the list of the possible representations is never very long, the longest one being
the corresponding to the case z2

4 which has 24 terms.

2. We identify some of the representations with nonzero multiplicity by the use of two
techniques originally devised by Dynkin [24]: the so-called Dynkin theorem and
Dynkin method of parts. We here explain them briefly, and refer the reader to the
book by R. N. Cahn [25] for a more careful exposition with proofs and examples.

• Dynkin theorem deals with some series of elements of the root space called
chains. A chain is an ordered collection {γ1, γ2, . . . , γn} such that each element
γk is an integer linear combination of the simple roots which is at right angles
with all members of the chain other than γk−1 and γk+1, but it is not orthogonal
to any of these two elements. The theorem establishes that if Λ1 and Λ2 are
integral dominant weights and {Λ1, αk1

, αk2
, . . . , αkn

,Λ2} is a chain in which all
the αki

are simple roots, then Λ1 + Λ2 −
∑n

i=1 αki
is the highest weight of an

irreducible representation entering in the direct product of the representations
with highest weights Λ1 and Λ2. In most cases, the information coming from
Dynkin theorem refers only to the second highest weight representation in the
product, but sometimes the theorem can be used to get some clues about the
multiplicity of other representations beyond that.

• The method of parts uses the reduction of E6 to several subalgebras, namely
those appearing when one of the extreme nodes of the diagram of E6 is re-
moved: A5 for the node corresponding to α2 and two different D5 for the nodes
of α1 and α6. Each irreducible representation of E6 contains as a subrepresen-
tation the irreducible representation of these subalgebras which arise by remov-
ing the index associated to the node deleted: for example, the representation
of E6 with highest weight

∑6
i=1 miλi contains the irreducible representation

m1λ̃1 +m3λ̃2 +m4λ̃3 +m5λ̃4 +m6λ̃5 of A5, with λ̃j the fundamental weights of
that algebra. Also, the product of two irreducible representations of E6 contains
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the product of the irreducible subrepresentations of A5 or D5 which make part
of the representations being multiplied, and one can take advantage of the fact
that the irreducible components of these products of subrepresentations are eas-
ily worked out through Young diagrams or by using results available in the lit-
erature, see for instance the Reference Chapter in [19]. Once these components
are identified, they can be converted back into irreducible representations of E6

by reinstating indices in the obvious way: m1λ̃1 +m3λ̃2 +m4λ̃3 +m5λ̃4 +m6λ̃5

of A5 gives
∑6

i=1 miλi of E6, but now with an unknown m2. We try to fix
this index by simply inspecting the list of possible irreducible representations
making part of the product. In many cases there is only one possibility, and
thus we conclude that the corresponding representation enters in the product
with non-zero multiplicity.

3. We use the orthonormality of the system of irreducible characters, i.e.

〈χ
m
|χ

n
〉 =

∫

E6

dµ χ
∗
m

χ
n

= δm,n,

to fix the multiplicity of some irreducible components, tipically the associated to
the fundamental weights. For instance, suppose we want to fix the multiplicity nλk

of the representation Rλk
in the product zizj , which is given by nλk

= 〈zk | zizj〉.
Imagine that we have worked out the series zkz

∗
i before of the series zizj . Then, as

〈zk | zizj〉 = 〈zkz
∗
i | zj〉 and 〈zkz

∗
i | zj〉 is nothing else that the multiplicity of Rλj

in
zkz

∗
i , which we know, the problem is solved. Note then that to use orthogonality the

order in which we obtain the series is important, and, of course, we should begin by
the simplest ones. Note also that in these manipulation we use that, as pointed in
Section 2, z∗1 = z6, z∗3 = z5, z∗2 = z2 and z∗4 = z4.

4. Once the multiplicities of a number of the irreducible components entering in the
product have been fixed by means of the former techniques, we write a Diophantine
equation by comparing the dimension of the product with the dimensions of the
possible irreducible representations whose multiplicities are yet to be fixed. In most
cases, if we have been sufficiently exhaustive in our previous analysis, this Diophan-
tine equation will have only one solution, and then we are done. For a few series,
however, we can have to deal with a Diophantine equation with several solutions
and, in these cases, to choose the correct one among them, we have to go through
one supplementary step.

5. We take advantage of the structure A5 ⊕ U(1) in E6, which is apparent from the
expression (2.1) of the roots of E6 in the generating system {εi, ε}: the roots
α1, α3, α4, α5 and α6 are given by linear combinations of the εi which are suitable
to identify those roots as corresponding to A5, while the root α2 incorporates the
new generator ε, which is orthogonal to the others and can be associated with a
subalgebra U(1). If we now look to the weights of the fundamental representation
of E6, Rλ1

, which are [19]

εi ± ε, −εi − εj , (4.1)
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we extract the branching structure

z1 = χ̃1,0,0,0,0 t + χ̃0,0,0,1,0 + χ̃1,0,0,0,0 t−1, (4.2)

where t is the character of U(1) and χ̃m1,m2,m3,m4,m5
are characters of A5. In the

same way, given that the roots (2.2) of E6 are the weights of the adjoint representa-
tion Rλ2

, we have

z2 = t2 + χ̃0,0,1,0,0 t +
(

1 + χ̃1,0,0,0,1

)

+ χ̃0,0,1,0,0 t−1 + t−2. (4.3)

The branching expressions for the remaining fundamental representations follow by
taking antisymmetric powers of Rλ1

: Rλ3
= Alt(Rλ1

⊗Rλ1
), Rλ4

= Alt(Rλ1
⊗Rλ1

⊗
Rλ1

), and so on. The results are

z3 = χ̃0,1,0,0,0 t2 +
(

χ̃1,0,0,1,0 + χ̃0,0,0,0,1

)

t +
(

χ̃0,1,0,0,0 + χ̃2,0,0,0,0 + χ̃0,0,1,0,1

)

+
(

χ̃1,0,0,1,0 + χ̃0,0,0,0,1

)

t−1 + χ̃0,1,0,0,0 t−2

z4 = χ̃0,0,1,0,0 t3 +
(

χ̃0,1,0,1,0 + χ̃1,0,0,0,1 + 1
)

t2

+
(

χ̃1,0,1,0,1 + χ̃0,0,0,1,1 + 2χ̃0,0,1,0,0 + χ̃1,1,0,0,0

)

t

+
(

χ̃2,0,0,1,0 + χ̃0,1,0,1,0 + 2χ̃1,0,0,0,1 + χ̃0,1,0,0,2 + χ̃0,0,2,0,0 + 1
)

+
(

χ̃1,0,1,0,1 + χ̃0,0,0,1,1 + 2χ̃0,0,1,0,0 + χ̃1,1,0,0,0

)

t−1

+
(

χ̃0,1,0,1,0 + χ̃1,0,0,0,1 + 1
)

t−2 + χ̃0,0,1,0,0t
−3

z5 = χ̃0,0,0,1,0 t2 +
(

χ̃1,0,0,0,0 + χ̃0,1,0,0,1

)

t +
(

χ̃0,0,0,1,0 + χ̃0,0,0,0,2 + χ̃1,0,1,0,0

)

+
(

χ̃1,0,0,0,0 + χ̃0,1,0,0,1

)

t−1 + χ̃0,0,0,1,0 t−2

z6 = χ̃0,0,0,0,1 t + χ̃0,1,0,0,0 + χ̃0,0,0,0,1 t−1. (4.4)

Thus, the quadratic products of characters of E6 give some linear combinations of
powers of t, whose coefficients are sums of irreducible characters of A5 which can
be computed from the previous formulas through the usual Young diagrammatic
combinatorics. Also, the character of each irreducible component appearing in the
product has the same structure, and it can be computed if the expression of the
character in terms of the z’s is known. In favourable circumstances, by comparing
powers of t in both members of the Clebsch-Gordan series one can set some bounds
on multiplicities entering in the Diophantine equation, and it can happen that this
bound are enough to determine that only one of the solutions is acceptable.

As we have seen, when we are computing a series, both in the use of orthogonality relations
and in the explotation of the branching rules, we often rely on the form of other series that
we should have computed before. Therefore, the order in which the series are obtained is
very important. The ordering z2

1 , z1z2, z1z6, z1z3, z
2
2 , z1z4, z3z5, z2z3, z2z4, z

2
3 , z1z5, z3z4, z

2
4

proves to be good enough for a fruitful use of the mentioned techniques 1

Let us now show in a concrete case how all this works. Suppose we want to reduce the
product z3z4, which corresponds to a representation of dimension 351 × 2925 = 1026675.

1Note, however, that specially when we need to obtain the expression of one of the second-order charac-

ters, it can happen that we have to obtain some cubic series. We can do that with the procedure described,

starting always by the character of lowest height among those that we need to calculate.
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We begin by writing a list with all possible dominant weights entering in the series, starting
with λ3 + λ4 and going down in the ordering by height. These weights, along with the
dimensions of the corresponding representations, are given in the Table 2. Now, one can

Representation Dimension

Rλ3+λ4
386100

Rλ1+λ2+λ5
314496

Rλ1+λ3+λ6
112320

R2λ5
34398

R2λ2+λ6
46332

Rλ4+λ6
51975

R2λ1+λ2
19305

Rλ2+λ3
17500

Rλ1+2λ6
7722

Rλ1+λ5
7371

Rλ2+λ6
1728

R2λ1
351

Rλ3
351

Rλ6
27

Table 2. Representations in Rλ3
⊗ Rλ4

.

see from the metric relations given in Section 2 that {λ3, α3, α4, λ4} is a chain, and given
that λ3 +λ4−α3−α4 = λ1 +λ2 +λ5, Dynkin theorem guarentees that Rλ1+λ2+λ5

appears
in the series with non-zero multiplicity. Let us next turn to consider the reduction to the
subalgebra A5 by deleting the dot corresponding to the root α2 in the Dynkin diagram.
This means that the product under consideration can be written χ0,·,1,0,0,0 ·χ0,·,0,1,0,0 and
thus can be related to the product χ̃0,1,0,0,0 · χ̃0,0,1,0,0 in A5. Then, using Young diagrams
we find

χ0,·,1,0,0,0 · χ0,·,0,1,0,0 = χ0,·,1,1,0,0 + χ1,·,0,0,1,0 + χ0,·,0,0,0,1.

Finally, we have to re-introduce the index corresponding to λ2, and looking at the table of
dominant weights, we see that the first weight in the right-hand member corresponds to
χ0,0,1,1,0,0, while the second can be adjudicated to χ1,0,0,0,1,0 or χ1,1,0,0,1,0, and the third
to χ0,0,0,0,0,1 or χ0,1,0,0,0,1. So, in this case, the reduction to A5 gives quite ambiguous
information. Then, we do the reduction to the subalgebra D5 in two possible ways, first
by removing the dot corresponding to α1 and then doing the same with the node of α6,
and in each case we perform an analysis along the same lines than for A5. This gives us
very useful information: the representations:

Rλ1+λ3+λ6
, Rλ3

, R2λ1+λ2
, Rλ1+2λ6

, Rλ4+λ6
, Rλ2+λ6

have all non-zero multiplicities. Now, the multiplicity of Rλ3+λ4
is one because it cor-

responds to the highest weight in the series. Furthermore, given that Rλ1+λ3+λ6
has

non-zero multiplicity, and taking into account the balance of dimensions, we see that the
multiplicity of Rλ1+λ2+λ5

is necessarily one.
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So far we have used the Dynkin theorem and the method of parts. Let us now try to
exploit orthogonality to find out the multiplicity of Rλ2+λ3

by computing 〈χλ2+λ3
| z3z4〉.

Given that we have been following the order mentioned above, we can by now extract the
expression of χ0,1,1,0,0,0 from the series we had already computed, see (4.7) below, and we
find

χ0,1,1,0,0,0 = z2z3 − z1z5 − z2
1 + z3 + z6,

and thus

〈χλ2+λ3
| z3z4〉 = 〈z2z3 − z1z5 − z2

1 + z3 + z6 | z3z4〉 = 〈z3z5 | z2z4〉 − 〈z2
5 | z4z6〉

− 〈z1z5 | z4z6〉 + 〈z3z5 | z4〉 + 〈z5z6 | z4〉 = 9 − 6 − 3 + 1 + 1 = 2.

We have used that all quadratic products entering in the computation have been com-
puted previously, and given that, all inner products follow from the orthonormality of
the irreducible components appearing in each one of them. So, the multiplicity nλ2+λ3

of
Rλ2+λ3

is two, and as byproduct of this and of the list of weights obtained by applying the
method of parts to D5, we conclude that the multiplicity of Rλ1+λ3+λ6

is nλ1+λ3+λ6
= 1,

otherwise the dimensionality of the right-hand member of the series would exceed that
of the left-hand member. Similar use of orthogonality considerations allow us to fix the
multiplicities nλ1+λ5

= 2, nλ2+λ6
= 2, n2λ1

= 1, nλ3
= 1 and nλ6

= 2. At this point, only
five multiplicities remain to be calculated, and we can try to obtain them by solving a
Diophantine equation. From the table of dimensions, we write

34398n2λ5
+ 46332n2λ2+λ6

+ 51975nλ4+λ6
+ 19305n2λ1+λ2

+ 7722nλ1+2λ6
= 159732.

From the reduction to D5, we know that nλ4+λ6
and nλ1+2λ6

are grater or equal to one,
but the other multiplicities could be zero. The equation can be readily see to have three
solutions

n2λ5
= 1, n2λ2+λ6

= 0, nλ4+λ6
= 1, n2λ1+λ2

= 1, nλ1+2λ6
= 7,

n2λ5
= 1, n2λ2+λ6

= 0, nλ4+λ6
= 1, n2λ1+λ2

= 3, nλ1+2λ6
= 2,

n2λ5
= 1, n2λ2+λ6

= 1, nλ4+λ6
= 1, n2λ1+λ2

= 1, nλ1+2λ6
= 1.

To fix the correct one, we resort to the branching relations described above. By multiplying
the expressions (4.4) and using the Littlewood-Richardson rule, we find that

z3z4 =
5
∑

k=−5

ak tk

with

a4 = 2 χ̃2,0,0,0,0 + other irreducible characters

a3 = 6 χ̃1,0,0,0,2 + other irreducible characters

while

χ2,1,0,0,0,0 =
4
∑

k=−4

bk tk, χ1,0,0,0,0,2 =
3
∑

k=−3

ck tk
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with b4 = χ̃2,0,0,0,0 and c3 = χ̃1,0,0,0,2. Therefore, the multiplicities of Rλ1+2λ6
and R2λ1+λ2

can respectively be non higher than 6 and 2. The only acceptable solution is then

n2λ5
= 1, n2λ2+λ6

= 1, nλ4+λ6
= 1, n2λ1+λ2

= 1, nλ1+2λ6
= 1

and the series is fixed.

Applying the method that we have just described, the final results we have found for
the quadratic Clebsch-Gordan series (expressed here in terms of representations Rλ), are

Rλ1
⊗ Rλ1

= R2λ1
⊕ Rλ3

⊕ Rλ6
, (4.5)

Rλ1
⊗ Rλ2

= Rλ1+λ2
⊕ Rλ5

⊕ Rλ1
,

Rλ1
⊗ Rλ3

= Rλ1+λ3
⊕ Rλ4

⊕ Rλ1+λ6
⊕ Rλ2

,

Rλ1
⊗ Rλ4

= Rλ1+λ4
⊕ Rλ2+λ5

⊕ Rλ3+λ6
⊕ Rλ1+λ2

⊕ Rλ5
,

Rλ1
⊗ Rλ5

= Rλ1+λ5
⊕ Rλ2+λ6

⊕ Rλ3
⊕ Rλ6

,

Rλ1
⊗ Rλ6

= Rλ1+λ6
⊕ Rλ2

⊕ R0,

Rλ2
⊗ Rλ2

= R2λ2
⊕ Rλ4

⊕ Rλ1+λ6
⊕ Rλ2

⊕ R0,

Rλ2
⊗ Rλ3

= Rλ2+λ3
⊕ Rλ1+λ5

⊕ Rλ2+λ6
⊕ R2λ1

⊕ Rλ3
⊕ Rλ6

,

Rλ2
⊗ Rλ4

= Rλ2+λ4
⊕ Rλ3+λ5

⊕ Rλ1+λ2+λ6
⊕ Rλ5+λ6

⊕ Rλ1+λ3
⊕ R2λ2

⊕ Rλ4

⊕Rλ1+λ6
⊕ Rλ2

,

Rλ2
⊗ Rλ5

= Rλ2+λ5
⊕ Rλ3+λ6

⊕ Rλ1+λ2
⊕ R2λ6

⊕ Rλ5
⊕ Rλ1

,

Rλ2
⊗ Rλ6

= Rλ2+λ6
⊕ Rλ3

⊕ Rλ6
,

Rλ3
⊗ Rλ3

= R2λ3
⊕ Rλ1+λ4

⊕ Rλ2+λ5
⊕ R2λ1+λ6

⊕ Rλ3+λ6
⊕ 2Rλ1+λ2

⊕ R2λ6

⊕Rλ5
⊕ Rλ1

,

Rλ3
⊗ Rλ4

= Rλ3+λ4
⊕ Rλ1+λ2+λ5

⊕ Rλ1+λ3+λ6
⊕ R2λ5

⊕ R2λ2+λ6
⊕ Rλ4+λ6

⊕ R2λ1+λ2

⊕2Rλ2+λ3
⊕ Rλ1+2λ6

⊕ 2Rλ1+λ5
⊕ 2Rλ2+λ6

⊕ R2λ1
⊕ Rλ3

⊕ R0,

Rλ3
⊗ Rλ5

= Rλ3+λ5
⊕ Rλ1+λ2+λ6

⊕ Rλ5+λ6
⊕ Rλ1+λ3

⊕ R2λ2
⊕ Rλ4

⊕ 2Rλ1+λ6

⊕Rλ2
⊕ R0,

Rλ3
⊗ Rλ6

= Rλ3+λ6
⊕ Rλ1+λ2

⊕ Rλ5
⊕ Rλ1

,

Rλ4
⊗ Rλ4

= R2λ4
⊕ Rλ2+λ3+λ5

⊕ Rλ1+2λ5
⊕ R2λ3+λ6

⊕ Rλ1+2λ2+λ6
⊕ Rλ1+λ4+λ6

⊕2Rλ2+λ5+λ6
⊕ 2Rλ1+λ2+λ3

⊕ R3λ2
⊕ 2Rλ2+λ4

⊕ R2λ1+2λ6
⊕ Rλ3+2λ6

⊕R2λ1+λ5
⊕ 3Rλ3+λ5

⊕ 4Rλ1+λ2+λ6
⊕ R3λ6

⊕ R3λ1
⊕ 2Rλ1+λ3

⊕ 2Rλ5+λ6

⊕2R2λ2
⊕ 2Rλ4

⊕ 3Rλ1+λ6
⊕ Rλ2

⊕ R0,

Rλ4
⊗ Rλ5

= Rλ4+λ5
⊕ Rλ2+λ3+λ6

⊕ Rλ1+λ5+λ6
⊕ R2λ3

⊕ Rλ1+2λ2
⊕ Rλ1+λ4

⊕ Rλ2+2λ6

⊕2Rλ2+λ5
⊕ R2λ1+λ6

⊕ 2Rλ3+λ6
⊕ 2Rλ1+λ2

⊕ R2λ6
⊕ Rλ5

⊕ Rλ1
,

Rλ4
⊗ Rλ6

= Rλ4+λ6
⊕ Rλ2+λ3

⊕ Rλ1+λ5
⊕ Rλ2+λ6

⊕ Rλ3
,

Rλ5
⊗ Rλ5

= R2λ5
⊕ Rλ4+λ6

⊕ Rλ2+λ3
⊕ Rλ1+2λ6

⊕ Rλ1+λ5
⊕ 2Rλ2+λ6

⊕ R2λ1

⊕Rλ3
⊕ Rλ6

,

Rλ5
⊗ Rλ6

= Rλ5+λ6
⊕ Rλ4

⊕ Rλ1+λ6
⊕ Rλ2

,

Rλ6
⊗ Rλ6

= R2λ6
⊕ Rλ5

⊕ Rλ1
.
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From these series, the second order characters are

χ1,0,0,0,0,0 = z1, (4.6)

χ0,1,0,0,0,0 = z2,

χ0,0,1,0,0,0 = z3,

χ0,0,0,1,0,0 = z4,

χ0,0,0,0,1,0 = z5,

χ0,0,0,0,0,1 = z6,

χ2,0,0,0,0,0 = z2
1 − z3 − z6,

χ1,1,0,0,0,0 = z1z2 − z1 − z5,

χ1,0,1,0,0,0 = z1z3 − z1z6 − z4 + 1,

χ1,0,0,1,0,0 = z1z4 − z2z5 + z2
6 − z5,

χ1,0,0,0,1,0 = z1z5 − z2z6,

χ1,0,0,0,0,1 = z1z6 − z2 − 1,

χ0,2,0,0,0,0 = z2
2 − z4 − z1z6,

χ0,1,1,0,0,0 = z2z3 − z1z5 − z2
1 + z3 + z6,

χ0,1,0,1,0,0 = z2z4 − z3z5 + z1z6 − z2,

χ0,1,0,0,1,0 = z2z5 − z3z6 − z2
6 + z5 + z1,

χ0,1,0,0,0,1 = z2z6 − z6 − z3,

χ0,0,2,0,0,0 = z2
3 − z1z4 − z2

1z6 + z3z6 + z1 + z5,

χ0,0,1,1,0,0 = z3z4 − z1z2z5 + z1z
2
6 + z4z6 − z6,

χ0,0,1,0,1,0 = z3z5 − z1z2z6 + z1z6 + z4 + z2 − 1,

χ0,0,1,0,0,1 = z3z6 − z1z2,

χ0,0,0,2,0,0 = z2
4 − z2z3z5 + z1z6z4 + z2

1z5 + z3z
2
6 − 2z3z5 − z1z6 − 2z4 + 1,

χ0,0,0,1,1,0 = z4z5 − z2z3z6 + z2
1z6 + z1z4 − z1,

χ0,0,0,1,0,1 = z4z6 − z2z3 + z2
1 − z3,

χ0,0,0,0,2,0 = z2
5 − z4z6 − z1z

2
6 + z1z5 + z3 + z6,

χ0,0,0,0,1,1 = z5z6 − z1z6 − z4 + 1,

χ0,0,0,0,0,2 = z2
6 − z5 − z1.

5 The Calogero-Sutherland Hamiltonian for κ = 1 and some

applications

After having computed the necessary series and characters, we can now follow the lines
indicated towards the end of Section 3 to obtain the Hamiltonian operator for κ = 1. The
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result for the coeffcients in (3.7) is

a11(z) =
8

3
z2
1 − 4z3 − 20z6,

a12(z) = 2z1z2 − 26z1 − 10z5,

a13(z) =
10

3
z1z3 + 18 − 12z2 − 6z4 − 18z1z6,

a14(z) = 4z1z4 + 18z1 − 10z1z2 − 18z5 − 8z2z5 − 8z3z6 + 8z2
6 ,

a15(z) =
8

3
z1z5 − 10z3 − 26z6 − 10z2z6,

a16(z) =
4

3
z1z6 − 36 − 12z2,

a22(z) = 2z2
2 − 18 − 6z2 − 2z4 − 8z1z6,

a23(z) = 4z2z3 − 24z2
1 + 14z3 − 8z1z5 − 2z6 − 10z2z6,

a24(z) = 6z2z4 − 18z2 − 12z2
2 − 10z1z3 + 24z4 − 6z3z5 + 26z1z6 − 8z1z2z6 − 10z5z6,

a25(z) = 4z2z5 − 2z1 − 10z1z2 + 14z5 − 8z3z6 − 24z2
6 ,

a26(z) = 2z2z6 − 10z3 − 26z6,

a33(z) =
10

3
z2
3 + 14z1 − 12z1z2 − 2z1z4 + 16z5 − 4z2z5 − 8z2

1z6 + 4z3z6 − 6z2
6 ,

a34(z) = 8z3z4 + 10z2
1 − 10z2

1z2 + 18z3 − 2z2z3 − 6z1z2z5 − 10z2
5 − 18z6 + 8z2z6

−10z2
2z6 − 8z1z3z6 + 20z4z6 + 8z1z

2
6 ,

a35(z) =
16

3
z3z5 − 36 + 24z2 − 12z2

2 − 10z1z3 + 24z4 − 16z1z6 − 8z1z2z6 − 10z5z6,

a36(z) =
8

3
z3z6 − 26z1 − 10z1z2 − 10z5,

a44(z) = 6z2
4 − 4z3

1 − 6z3
2 + 18z1z3 − 6z1z2z3 − 18z4 + 18z2z4 + 8z2

1z5 − 18z3z5

−2z2z3z5 − 4z1z
2
5 − 18z1z6 + 14z1z2z6 − 4z1z

2
2z6 − 4z2

3z6 + 8z1z4z6

+18z5z6 − 6z2z5z6 + 8z3z
2
6 − 4z3

6 ,

a45(z) = 8z4z5 − 18z1 + 8z1z2 − 10z1z
2
2 − 10z2

3 + 20z1z4 + 18z5 − 2z2z5 + 8z2
1z6

−6z2z3z6 − 8z1z5z6 + 10z2
6 − 10z2z

2
6 ,

a46(z) = 4z4z6 + 8z2
1 − 18z3 − 8z2z3 − 8z1z5 + 18z6 − 10z2z6,

a55(z) =
10

3
z2
5 − 6z2

1 + 16z3 − 4z2z3 + 4z1z5 + 14z6 − 12z2z6 − 2z4z6 − 8z1z
2
6 ,

a56(z) =
10

3
z5z6 + 18 − 12z2 − 6z4 − 18z1z6,

a66(z) =
4

3
z2
6 − 10z1 − 2z5,

b1(z) =
104

3
z1, b2(z) = 48z2, b3(z) =

200

3
z3,

b4(z) = 96z4, b5(z) =
200

3
z5, b6(z) =

104

3
z6.

With the explicit expression at our disposal, we can now try to use the Schrödinger
equation as an efficient mean to compute particular characters of E6. Given that all these
characters are polynomials in the z variables, the Schrödinger equation can be solved
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by applying a systematic procedure, which is suitable to be implemented in a computer
program able to carry out symbolic calculations. We propose two alternative methods to
find the Schrödinger eigenfunctions:

1. Given a weight n1λ1 + n2λ2 + n3λ3 + n4λ4 + n5λ5 + n6λ6, let us denote zn =
zn1

1 zn2

2 zn3

3 zn4

4 zn5

5 zn6

6 . The operator ∆(1) acting on zn gives

∆(1)zn =
∑

β∈Λ

kβ,n zn−β (5.1)

where Λ only includes integral linear combinations of the simple roots with non-
negative coefficients and, of course, in the exponent of (5.1) we express β in the
basis of fundamental weights. In particular, k0,n = εn(1). The eigenfunctions χ

m

can be written as

χ
m

=
∑

µ∈Q+(m)

cµzm−µ, c0 = 1,

where again the µ in Q+(m) are integral linear combinations of the simple roots
with non-negative coefficients such that they do not give rise to negative powers of
the z’s. By substituting in the Schrödinger equation we find the iterative formula

cµ =
1

εm(1) − ε
m−(µ−β)(1)

∑

β∈Λ,β 6=0

kβ−m−(µ−β) cµ−β .

To use this formula in practice, one should take into account the heights of the µ′s

involved, because each coefficient cµ can depend only on some of the cν such that
ht(ν) < ht(µ).

2. The Clebsch-Gordan series for the product zm1

1 zm2

2 zm3

3 zm4

4 zm5

5 zm6

6 reads

zm1

1 zm2

2 zm3

3 zm4

4 zm5

5 zm6

6 = χ
m

+
∑

β∈Rm

nβχ
m−β.

Here it is not difficult, in each particular case, to elaborate a list with all the elements
in Rm (i.e., the integral dominant weights appearing in the series). Furthermore,
the operator ∆(1) − εn(1) annihilates the character χ

n
. Having this into account,

we can make use of the simple-looking formula

χ
m

=
{

∏

β∈Rm

(

∆(1) − ε
m−β(1)

)}

zm

to obtain the eigenfunctions.

Through any of these methods, it is possible to compute the characters rather quickly. As
an illustration, we offer a list of the third order characters in the Appendix A.

Once we have a method for the computation of the characters, we can extend it to
produce an algorithm for calculating the Clebsch-Gordan series. Suppose that we want to
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obtain the series for χ
m
·χ

n
. We list the possible dominant weights entering in the series

arranged by heights

χ
m

· χ
n

= χ
m+n

+ nµ1
χµ1

+ nµ2
χµ2

+ . . .

The multiplicity nµ1
is simply the difference between the coefficients of zµ1 in χ

m
·χ

n
and

in χ
m+n

. Then, nµ2
is the difference between the coefficient of zµ2 in χ

m
· χ

n
and the

sum of the corresponding coefficients in χ
m+n

and χµ1
, and so on. As an example, we

present in Appendix B a list with all the cubic Clebsch-Gordan series.
The approach we are describing is also useful to find the general structure of the series

for product of some specific types. Let us consider, for instance, series of the type z1χnλ1

with arbitrary n. If we express the weights of the representation Rλ1
(4.1) in the basis of

fundamental weights, we see that there are only three whose coefficients for λi, i 6= 1, are
all non-negative: λ1,−λ1 + λ3 and −λ1 + λ6, hence, the form of the series should be

z1χn,0,0,0,0,0 = χn+1,0,0,0,0,0 + aχn−1,0,1,0,0,0 + bχn−1,0,0,0,0,1, (5.2)

where we have to fix a and b. Now, by solving the Schrödinger equation by means of the
first of the two methods described above, one finds

χn,0,0,0,0,0 = zn
1 + (1 − n)zn−2

1 z3 − zn−2
1 z6 + . . .

χn−1,0,1,0,0,0 = zn−1
1 z3 − z1z6 + . . .

χn−1,0,0,0,0,1 = zn−1
1 z6 + . . . .

If we substitute in (5.2), we can solve for a and b, a = b = 1. We can now check that with
these coefficients, the balance of dimensions in (5.2) is correct.

We list below the series of the form z1χnλk
obtained through the same procedure. Note

that the series z6χnλj
immediately follow by duality.

z1χ0,n,0,0,0,0 = χ1,n,0,0,0,0 + χ0,n−1,0,0,1,0 + χ1,n−1,0,0,0,0

z1χ0,0,n,0,0,0 = χ1,0,n,0,0,0 + χ0,0,n−1,1,0,0 + χ0,1,n−1,0,0,0 + χ1,0,n−1,0,0,1

z1χ0,0,0,n,0,0 = χ1,0,0,n,0,0 + χ0,1,0,n−1,1,0 + χ0,0,1,n−1,0,1 + χ1,1,0,n−1,0,0 + χ0,0,0,n−1,1,0

z1χ0,0,0,0,n,0 = χ1,0,0,0,n,0 + χ0,1,0,0,n−1,1 + χ0,0,1,0,n−1,0 + χ0,0,0,0,n−1,1

z1χ0,0,0,0,0,n = χ1,0,0,0,0,n + χ0,1,0,0,0,n−1 + χ0,0,0,0,0,n−1.

6 Conclusions

In this paper we have shown how the Calogero-Sutherland Hamiltonian for the Lie algebra
E6 can be used to compute both Clebsch-Gordan series and characters of that algebra.
The treatment we have presented can be applied to the cases of other simple algebras. It
can be also extended to deal with the system of orthogonal polynomials based on E6 for
general values of the parameter κ. This way in which this should be done is the subject
of a research now in progress and will be published elsewhere.
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Appendix A: A list of the characters of E6 of third order.

χ000300 = −1 + z2 + z1z2z3 + z3
3 + 3z4 − 2z2z4 − z1z2z3z4 − 3z2

4 + z2z
2
4 + z3

4

+ z2
1z

2
2z5 + 2z3z5 − z2

2z3z5 + z1z
2
3z5 − 2z3z4z5 − 2z2z3z4z5 + z1z

2
5 + z1z

2
2z

2
5

+ z2
3z

2
5 − z1z4z

2
5 + z3

5 + 3z1z6 − 2z1z2z6 + z1z
2
2z6 − z2

1z2z3z6 + z2
3z6 + z2

2z
2
3z6

− 6z1z4z6 + 2z1z2z4z6 − z1z
2
2z4z6 − z2

3z4z6 + 3z1z
2
4z6 + z2z5z6 − 2z1z3z5z6

− z1z2z3z5z6 − z2z4z5z6 − z2
1z2

5z6 + z3z
2
5z6 − 3z2

1z2
6 + z2

1z2z
2
6 − z2

1z2
2z

2
6

+ z2
2z3z

2
6 − z1z

2
3z2

6 + 3z2
1z4z

2
6 − z1z2z5z

2
6 + z3

1z
3
6

χ001110 = z3
1 − z3

1z2 + z2
2 − z1z3 + z1z2z3 + z1z

2
2z3 − z4 − z2

2z4 + z2
4 + z2

1z5 − z2
1z2z5

− z3z5 + z3z4z5 − z1z2z
2
5 − z1z6 + z1z2z6 − z1z

2
2z6 − z2z

2
3z6 + z1z4z6 − z5z6

+ z2z5z6 + z2
2z5z6 + z1z3z5z6 − z2

1z2
6 + z2

1z2z
2
6 + z3z

2
6 − z2z3z

2
6 + z3

6 − z2z
3
6

χ001200 = −z2
1 + z2

1z2 + 2z3 + z1z
2
3 + z2

1z4 − z2
1z2z4 − 3z3z4 + z3z

2
4 + z1z2z5 + z1z

2
2z5

+ 2z2
1z3z5 − 2z2

3z5 − z2z
2
3z5 − z1z4z5 − z1z2z4z5 + z2z

2
5 + z2

2z2
5 + z1z3z

2
5

− z4z
2
5 + 2z6 + z3

1z6 − z2z6 − z3
1z2z6 + z2

2z6 − 2z1z3z6 + z1z
2
2z3z6 − 4z4z6

+ z2z4z6 − z2
2z4z6 + 2z2

4z6 − z2
1z5z6 − 2z3z5z6 − z2z3z5z6 − z1z

2
5z6 − 3z1z

2
6

+ z1z2z
2
6 − z1z

2
2z2

6 − z2
1z3z

2
6 + z2

3z2
6 + 3z1z4z

2
6 + z5z

2
6 − z2z5z

2
6 + z2

1z3
6 + z3z

3
6

χ002001 = z3
1 − z2 − 2z1z3 − z1z2z3 + z4 + z2z4 + z2

1z5 − z3z5 + z1z2z6 + z2
3z6

− z1z4z6 − z2
1z

2
6 + z3z

2
6

χ002010 = −z2
1z2 + z2

1z
2
2 + z2z3 − z2

2z3 − z2
1z4 + 2z3z4 + z1z5 − z1z2z5 + z2

3z5

− z1z4z5 + z2
5 − z2

2z6 − z1z2z3z6 + 2z4z6 + z2z4z6 + z1z2z
2
6 − z5z

2
6

χ002100 = z1z2 + z2
1z3 − z2

3 + z1z4 − z1z2z4 + z2
3z4 − z1z

2
4 + z3

1z5 + z2
2z5 − z1z3z5

− z1z2z3z5 + z4z5 + z2z4z5 + z2
1z2

5 − z3z
2
5 + z2

1z6 − 2z2
1z2z6 + z2

1z
2
2z6 − 2z3z6

+ z2z3z6 − z2
2z3z6 − 2z2

1z4z6 + 3z3z4z6 − z1z5z6 − z2
5z6 − z2

6 − z3
1z2

6 + z2z
2
6

− z2
2z

2
6 + 2z1z3z

2
6 + z4z

2
6 + z1z

3
6

χ003000 = z3
1z2 + z1z3 − 2z1z2z3 + z3

3 − z4 + z2z4 − 2z1z3z4 + z2
4 + z2

1z2z5 + z3z5

− z2z3z5 − z1z2z6 − 2z2
1z3z6 + 2z2

3z6 + z1z4z6 + z5z6 − z2z5z6 + z3z
2
6

χ010200 = 1 + z2 + z1z3 − 2z4 − 2z2z4 − z1z3z4 + z2
4 + z2z

2
4 + 2z2

1z2z5 − z3z5

− 3z2z3z5 − z2
2z3z5 − z3z4z5 + z1z2z

2
5 − 2z1z6 − z2

1z3z6 + z2z
2
3z6 + 2z1z4z6

+ z5z6 − z4z5z6 + z2
1z2

6 − z2
1z2z

2
6 + 2z2z3z

2
6 − z1z5z

2
6

χ011010 = −z3
1 + z1z3 + z1z2z3 − 2z2

1z5 + 2z3z5 + z2z3z5 − z1z
2
5 − z1z6 + z1z2z6

− z1z
2
2z6 − z2

3z6 + z1z4z6 + z5z6 + z2z5z6 + 2z2
1z2

6 − 2z3z
2
6 − z3

6

χ011100 = z2
1 − z2z3 − z2

1z4 + z2z3z4 + z1z2z5 − z1z
2
2z5 − z2

3z5 + z2z
2
5 − z3

1z6 + z1z3z6

+ z1z2z3z6 + z2
1z5z6 − z3z5z6 − z5z

2
6

χ012000 = −z2
1z3 + z2

3 + z2z
2
3 − z1z2z4 + z2z5 − z1z3z5 + z4z5 + z3z6 + z1z5z6 − z2z

2
6

χ020100 = −z2
2 − z1z3 + z4 + z2

2z4 − z2
4 + z2

1z5 − z3z5 − z2z3z5 + z1z
2
5 + z1z6 + z1z2z6

+ z2
3z6 − 2z1z4z6 − z5z6 − z2

1z2
6 + z3z

2
6

χ021000 = −z2
1z2 + z2z3 + z2

2z3 − z3z4 + z1z5 − z1z2z5 + z2
5 − z4z6

χ030000 = z3
2 + z1z3 − z4 − 2z2z4 + z3z5 − 2z1z2z6 + z5z6
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χ100101 = z3
1 − z1z3 − z1z2z3 + z3z5 − 2z1z6 + z1z2z6 + z1z4z6 − z5z6 − z2z5z6 + z3

6

χ100110 = −z2
1z2 + z2z3 + z2

2z3 + z2
1z4 − z3z4 − z1z2z5 + z1z4z5 − z2

5 − z2z
2
5 + z6

+ z3
1z6 − z1z3z6 − z1z2z3z6 − z4z6 + z3z5z6 − 2z1z

2
6 + z1z2z

2
6 + z5z

2
6

χ100200 = z1z2 + z2
3 − z1z4 − z1z2z4 + z1z

2
4 + z3

1z5 + z2z5 − z1z3z5 − z1z2z3z5

− z2z4z5 + z3z
2
5 − z2

1z2z6 + z2
2z3z6 + z2

1z4z6 − z3z4z6 − z1z5z6

χ101001 = z2
1 − z2

1z2 − z3 + z1z5 + z2z6 + z1z3z6 − z4z6 − z1z
2
6

χ101010 = −z1 + z1z
2
2 − z2z5 + z1z3z5 − z4z5 + z2

1z6 − z2
1z2z6 − z3z6 − z2

6 + z2z
2
6

χ101100 = z2 + z1z3 + z4 − z2z4 + z1z3z4 − z2
4 + z2

1z5 − z2
1z2z5 + z1z

2
5 − 2z1z2z6

+ z1z
2
2z6 − z1z4z6 − z5z6

χ102000 = z2
1 + z2

1z2 − z2z3 + z1z
2
3 − z2

1z4 − z3z4 + z1z5 + z1z2z5 − z3
1z6 − z2z6

χ110001 = −z2
2 − z1z3 + z4 + z1z2z6 − z5z6

χ110010 = z2z3 − z1z5 + z1z2z5 − z2
5 − z6 + z2z6 − z2

2z6 − z1z3z6 + z4z6 + z1z
2
6

χ110100 = z1 − z1z2 − z1z4 + z1z2z4 − z2z5 − z2
2z5 − z1z3z5 + z2z3z6 + z1z5z6

− z2
6 + z2z

2
6

χ111000 = −z3
1 + z1z3 + z1z2z3 − z4 − z2z4 − z2

1z5 + z1z6 + z5z6

χ120000 = −z1z2 + z1z
2
2 − z1z4 − z2z5 − z2

1z6 + z3z6 + z2
6

χ200001 = −z1z2 + z5 + z2
1z6 − z3z6 − z2

6

χ200010 = z2
2 − z4 + z2

1z5 − z3z5 − z1z2z6

χ200100 = z3 + z2
1z4 − z3z4 − z1z2z5 + z2

5 − z2z6 + z2
2z6 − 2z4z6

χ201000 = z1 + z1z2 + z2
1z3 − z2

3 − z1z4 + z2z5 − z2
1z6 − z3z6

χ210000 = −z2
1 + z2

1z2 − z2z3 − z1z5 + z6

χ300000 = z3
1 + z2 − 2z1z3 + z4 − z1z6

Appendix B: A list of cubic Clebsch-Gordan series for E6.

z3
4 = χ000300 + 2χ011110 + χ002020 + χ120020 + χ022001 + 3χ002101

+ 3χ120101 + 3χ100120 + 2χ013000 + 2χ030011 + 3χ100201 + 8χ111011

+ 2χ010030 + 10χ010111 + 3χ220002 + 3χ102002 + 2χ131000 + 3χ200021

+ 9χ001021 + 7χ200102 + 10χ111100 + 9χ021002 + 4χ030100 + 8χ010200

+ 9χ220010 + 12χ001102 + 9χ102010 + 12χ200110 + 21χ021010 + 18χ110012

+ 16χ130001 + 6χ020003 + χ300003 + 18χ211001 + 5χ040000 + 27χ001110

+ 30χ110020 + 6χ202000 + 6χ000022 + 30χ012001 + 62χ110101 + 10χ101003

+ 13χ000103 + 10χ000030 + 42χ020011 + 10χ300011 + 4χ100004 + 62χ101011

+ 10χ003000 + 6χ320000 + 42χ121000 + 13χ300100 + 42χ210002 + 58χ000111

+ 73χ011002 + 58χ101100 + 73χ210010 + 42χ020100 + 4χ400001 + 39χ000200

+ 117χ011010 + 98χ120001 + 57χ100012 + 28χ010003 + 65χ100020 + 57χ201001

+ 65χ002001 + 28χ310000 + 156χ100101 + 119χ010011 + 25χ030000 + 51χ200002
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+ 119χ111000 + 87χ200010 + 106χ010100 + 87χ001002 + 128χ001010 + 150χ110001

+ 16χ000003 + 16χ300000 + 72χ101000 + 72χ000011 + 39χ020000 + 76χ000100

+ 50χ100001 + 21χ010000 + 2χ000000

z3z4z5 = χ001110 + χ110020 + χ012001 + χ003000 + 2χ110101 + 3χ101011 + χ000030

+ 2χ020011 + 2χ121000 + 4χ000111 + 2χ210002 + 3χ020100 + 5χ011002

+ 4χ101100 + 3χ000200 + 5χ210010 + 5χ100012 + 3χ010003 + 12χ011010

+ 5χ201001 + 8χ002001 + 8χ100020 + 11χ120001 + 4χ030000 + 20χ100101

+ 8χ200002 + 19χ010011 + 3χ310000 + 19χ111000 + 16χ001002 + 4χ000003

+ 16χ200010 + 20χ010100 + 26χ001010 + 35χ110001 + 11χ020000 + 4χ300000

+ 20χ101000 + 20χ000011 + 23χ000100 + 18χ100001 + 9χ010000 + χ000000

z3z
2
4 = χ001200 + χ012010 + χ003001 + 2χ110110 + 2χ101020 + χ020020

+ 3χ000120 + 2χ121001 + 3χ020101 + 4χ101101 + 3χ000201 + 4χ210011

+ 3χ201002 + χ230000 + 10χ011011 + 4χ112000 + 6χ210100 + 6χ100021

+ 4χ002002 + 6χ120002 + 7χ201010 + 3χ031000 + 12χ011100 + 12χ002010

+ 11χ100102 + 16χ120010 + 9χ010012 + 23χ100110 + 3χ200003 + 6χ310001

+ 7χ001003 + χ000004 + 36χ111001 + 16χ010020 + 8χ030001 + 16χ220000

+ 35χ010101 + 24χ200011 + 40χ001011 + 38χ110002 + 28χ021000 + 4χ301000

+ 14χ102000 + 28χ200100 + 39χ001100 + 13χ300001 + 66χ110010 + 19χ000012

+ 58χ101001 + 34χ210000 + 33χ020001 + 22χ000020 + 58χ000101 + 51χ011000

+ 30χ100002 + 51χ100010 + 13χ200000 + 36χ010001 + 23χ001000 + 8χ000001

z2
3z6 = χ002001 + χ100101 + χ010011 + χ200002 + 2χ111000 + 2χ010100

+ χ001002 + 2χ200010 + 4χ001010 + 6χ110001 + 3χ020000 + χ000003

+ 4χ000011 + χ300000 + 6χ101000 + 6χ000100 + 7χ100001 + 4χ010000 + χ000000

z2
3z5 = χ002010 + χ100110 + χ010020 + 2χ111001 + 2χ010101 + 2χ200011

+ 2χ102000 + χ220000 + 4χ001011 + 4χ110002 + 3χ200100 + 3χ021000

+ 3χ000012 + 5χ001100 + 10χ110010 + 4χ000020 + 2χ300001 + 6χ020001

+ 12χ101001 + 13χ000101 + 9χ210000 + 9χ100002 + 14χ011000 + 17χ100010

+ 6χ200000 + 14χ010001 + 12χ001000 + 5χ000001

z2
3z4 = χ002100 + χ100200 + 2χ111010 + 2χ010110 + χ200020 + 2χ102001

+ χ220001 + 3χ001020 + 3χ200101 + 3χ021001 + 4χ211000 + 5χ001101

+ 2χ130000 + 8χ110011 + 6χ012000 + χ300002 + 3χ000021 + 3χ020002

+ 12χ110100 + 6χ101002 + 9χ020010 + 3χ300010 + 16χ101010 + 7χ000102

+ 3χ100003 + 14χ000110 + 16χ210001 + 26χ011001 + 24χ100011 + χ400000

+ 11χ201000 + 14χ010002 + 16χ120000 + 11χ002000 + 29χ100100 + 17χ200001

+ 25χ010010 + 28χ001001 + 22χ110000 + 7χ000002 + 14χ000010 + 6χ100000

z3
3 = χ003000 + 2χ101100 + χ000200 + χ210010 + 3χ011010 + 2χ120001

+ 3χ201001 + 3χ002001 + 2χ100020 + 6χ100101 + 3χ200002 + 4χ010011

+ χ030000 + 2χ310000 + 10χ111000 + 6χ001002 + 8χ010100 + 9χ200010



Irreducible Characters and Clebsch-Gordan Series for E6 299

+ χ000003 + 12χ001010 + 18χ110001 + 4χ300000 + 10χ000011 + 14χ101000

+ 6χ020000 + 14χ000100 + 13χ100001 + 7χ010000 + χ000000

z2z
2
4 = χ010200 + χ021010 + 2χ001110 + 2χ012001 + 2χ110020 + χ003000

+ χ000030 + χ130001 + 4χ110101 + 4χ020011 + 4χ101011 + 6χ000111

+ 4χ121000 + χ040000 + 6χ101100 + 3χ210002 + 7χ011002 + 6χ020100

+ 5χ000200 + 6χ100012 + 7χ210010 + 17χ011010 + 6χ201001 + 16χ120001

+ 10χ100020 + 10χ002001 + 24χ100101 + 9χ200002 + 4χ310000 + 4χ010003

+ 22χ010011 + 22χ111000 + 6χ030000 + 17χ001002 + 4χ000003 + 24χ010100

+ 17χ200010 + 28χ001010 + 37χ110001 + 20χ000011 + 4χ300000 + 20χ101000

+ 12χ020000 + 21χ000100 + 17χ100001 + 9χ010000 + χ000000

z2z3z4 = χ011100 + χ002010 + χ120010 + χ030001 + 2χ100110 + 3χ111001 + 2χ010020

+ 4χ010101 + 2χ102000 + 2χ200011 + 2χ220000 + 5χ001011 + 5χ110002

+ 3χ000012 + 4χ200100 + 5χ021000 + 7χ001100 + 13χ110010 + 8χ020001

+ 2χ300001 + 5χ000020 + 12χ101001 + 9χ210000 + 14χ000101 + 8χ100002

+ 15χ011000 + 16χ100010 + 5χ200000 + 13χ010001 + 9χ001000 + 4χ000001

z2z
2
3 = χ012000 + χ110100 + 2χ101010 + χ020010 + 2χ000110 + 2χ210001 + 4χ011001

+ 3χ201000 + 4χ100011 + 4χ120000 + 3χ002000 + 8χ100100 + 6χ200001 + 3χ010002

+ 7χ010010 + 10χ001001 + 10χ110000 + 3χ000002 + 7χ000010 + 4χ100000

z2
2z4 = χ020100 + χ000200 + 2χ011010 + χ002001 + χ100020 + 2χ120001

+ 3χ100101 + 4χ010011 + 4χ111000 + χ200002 + 3χ001002 + 2χ030000

+ 6χ010100 + 3χ200010 + 7χ001010 + χ000003 + 10χ110001 + χ300000

+ 6χ000011 + 5χ020000 + 6χ101000 + 9χ000100 + 7χ100001 + 4χ010000 + χ000000

z2
2z3 = χ021000 + χ001100 + 2χ110010 + χ000020 + 2χ101001 + 2χ020001

+ 3χ000101 + 3χ210000 + 2χ100002 + 5χ011000 + 6χ100010 + 3χ200000

+ 6χ010001 + 6χ001000 + 3χ000001

z3
2 = χ030000 + 2χ010100 + χ001010 + 3χ110001 + 2χ000011 + 2χ101000

+ 3χ020000 + 4χ000100 + 4χ100001 + 5χ010000 + χ000000

z1z4z6 = χ100101 + χ010011 + χ111000 + 2χ010100 + χ001002 + χ200010 + 3χ001010

+ 4χ110001 + 2χ020000 + 3χ000011 + 3χ101000 + 5χ000100 + 3χ100001 + 2χ010000

z1z4z5 = χ100110 + χ010020 + χ111001 + 2χ010101 + χ220000 + χ102000 + χ200011

+ 3χ001011 + 3χ110002 + χ200100 + 2χ021000 + 2χ000012 + 4χ001100 + 7χ110010

+ 4χ000020 + χ300001 + 5χ020001 + 7χ101001 + 9χ000101 + 5χ210000 + 6χ100002

+ 10χ011000 + 10χ100010 + 4χ200000 + 9χ010001 + 6χ001000 + 3χ000001

z1z
2
4 = χ100200 + χ111010 + 2χ010110 + χ200020 + χ102001 + χ220001

+ 2χ001020 + χ200101 + 2χ021001 + 2χ211000 + 4χ001101 + 2χ130000

+ 6χ110011 + 4χ012000 + χ300002 + 3χ000021 + 3χ020002 + 8χ110100

+ 4χ101002 + 7χ020010 + χ300010 + 10χ101010 + 4χ000102 + 3χ100003

+ 11χ000110 + 10χ210001 + 18χ011001 + 16χ100011 + χ400000 + 6χ201000
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+ 10χ010002 + 12χ120000 + 8χ002000 + 17χ100100 + 12χ200001 + 17χ010010

+ 17χ001001 + 14χ110000 + 6χ000002 + 8χ000010 + 5χ100000

z1z3z6 = χ101001 + χ000101 + χ100002 + χ210000 + 2χ011000 + 3χ100010

+ 2χ200000 + 3χ010001 + 4χ001000 + 2χ000001

z1z3z5 = χ101010 + χ000110 + χ210001 + χ201000 + 2χ011001 + 2χ120000

+ 3χ100011 + 2χ002000 + 4χ100100 + 4χ200001 + 2χ010002 + 5χ010010

+ 7χ001001 + 3χ000002 + 7χ110000 + 5χ000010 + 4χ100000

z1z3z4 = χ101100 + χ000200 + χ210010 + 2χ011010 + χ201001 + 2χ120001

+ 2χ002001 + 2χ100020 + 4χ100101 + 2χ200002 + 4χ010011 + χ030000

+ χ310000 + 6χ111000 + 3χ001002 + 6χ010100 + 5χ200010 + χ000003

+ 9χ001010 + 12χ110001 + 2χ300000 + 7χ000011 + 8χ101000 + 5χ020000

+ 8χ000100 + 8χ100001 + 4χ010000 + χ000000

z1z
2
3 = χ102000 + χ200100 + 2χ001100 + 2χ110010 + χ000020 + χ020001

+ χ300001 + 4χ101001 + 4χ210000 + 3χ000101 + 6χ011000 + 3χ100002

+ 7χ100010 + 4χ200000 + 6χ010001 + 5χ001000 + 3χ000001

z1z2z6 = χ110001 + χ020000 + χ101000 + χ000011 + 2χ000100 + 3χ100001

+ 3χ010000 + χ000000

z1z2z5 = χ110010 + χ020001 + χ101001 + χ000020 + 2χ000101 + χ210000 + 2χ100002

+ 3χ011000 + 4χ100010 + 2χ200000 + 5χ010001 + 4χ001000 + 3χ000001

z1z2z4 = χ110100 + χ101010 + χ020010 + 2χ000110 + χ210001 + 3χ011001

+ χ201000 + 3χ120000 + 3χ100011 + 2χ002000 + 5χ100100 + 3χ200001

+ 2χ010002 + 6χ010010 + 6χ001001 + 6χ110000 + 2χ000002

+ 4χ000010 + 2χ100000

z1z2z3 = χ111000 + χ010100 + χ200010 + 2χ001010 + 3χ110001 + 2χ000011 + 2χ020000

+ χ300000 + 4χ101000 + 4χ000100 + 5χ100001 + 3χ010000 + χ000000

z1z
2
2 = χ120000 + χ100100 + 2χ010010 + χ200001 + 2χ001001 + χ000002

+ 4χ110000 + 3χ000010 + 3χ100000

z2
1z6 = χ200001 + χ001001 + 2χ110000 + χ000002 + 2χ000010 + 3χ100000

z2
1z5 = χ200010 + χ001010 + 2χ110001 + 2χ000011 + χ020000 + 2χ101000

+ 3χ000100 + 4χ100001 + 3χ010000 + χ000000

z2
1z4 = χ200100 + χ001100 + 2χ110010 + χ000020 + χ020001 + 2χ101001

+ 3χ000101 + 2χ210000 + 4χ011000 + χ100002 + 5χ100010 + χ200000

+ 4χ010001 + 3χ001000 + χ000001

z2
1z3 = χ201000 + χ002000 + 2χ100100 + 2χ200001 + χ010010 + 3χ001001

+ χ000002 + 4χ110000 + 3χ000010 + 2χ100000

z2
1z2 = χ210000 + χ011000 + 2χ100010 + 2χ200000 + 2χ010001 + 3χ001000 + 2χ000001

z3
1 = χ300000 + 2χ101000 + χ000100 + 3χ100001 + 2χ010000 + χ000000
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