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Abstract

A multi-parameter class of reciprocal transformations is coupled with the action of
a Bäcklund transformation to construct periodic solutions of breather-type in plane,
aligned, super-Alfvénic magnetogasdynamics. The constitutive law adopts a gener-
alised Kármán-Tsien form.

1 Introduction

Reciprocal transformations have a long history and a diversity of applications. Haar [11],
in 1928, in a paper concerned with adjoint variational problems, set down a reciprocal-type
invariance of a plane, potential gasdynamic system. Bateman [2] in subsequent work on
the lift and drag functions in gasdynamics introduced a cognate class of invariant trans-
formations that have come to be termed reciprocal relations. The latter were elaborated
upon by Tsien [32], Power and Smith [19].

Invariance of nonlinear gasdynamic and magnetogasdynamic systems under reciprocal-
type transformations has been extensively studied [20]–[24]. Reciprocal transformations
have also been applied to provide exact solutions to both stationary and moving boundary
value problems of practical interest, in particular, in soil mechanics and nonlinear heat
conduction. In recent work, reciprocal transformations have been applied in the analysis of
a nonlinear moving boundary problem that arises in the migration of methacrylate during
wood saturation processes [9].

The importance of reciprocal transformations in the context of hydrodynamic systems
has been established in a series of papers by Ferapontov [3]–[6]. In geometric terms,
the classification of weakly nonlinear Hamiltonian systems of hydrodynamic type up to
reciprocal transformations has been shown to be completely equivalent to the classification
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of Dupin hypersurfaces up to Lie sphere transformations [7, 8]. Connections between the
classical theory of congruences and systems of conservation laws of the Temple class [31]
invariant under reciprocal transformations have also been uncovered [1].

Reciprocal transformations have been shown to play an interesting role in soliton the-
ory and, in particular, provide a connection between the Ablowitz-Kaup-Newell-Segur
(AKNS) and Wadati-Konno-Ichikawa (WKI) inverse scattering schemes [29] and their
constituent integrable equations. Thus, they connect potential KdV and loop soliton hi-
erarchies and the Heisenberg spin equation with a base member of the WKI system [27].
Likewise the Camassa-Holm equation of water wave theory is connected via a reciprocal
transformation to the first negative flow of the KdV hierarchy [12]. Invariance under re-
ciprocal transformations has been investigated in [14, 15]. In particular, invariance under
reciprocal transformations of the Dym hierarchy induce unadorned auto-Bäcklund trans-
formations in associated integrable hierarchies [27]. The combined action of reciprocal and
gauge transformations on 2+1-dimensional integrable hierarchies has been investigated by
Oevel and Rogers [17]. In geometric terms, reciprocal transformations provide a natural
change of coordinate system on soliton surfaces [27].

Here, we return to reciprocal transformations in their original gasdynamic context and
show how they may be used to generate breather-type solutions in aligned magnetogas-
dynamics. This procedure involves a novel composition of reciprocal and Bäcklund trans-
formations analogous to that recently exploited in subsonic gasdynamics in the context of
the Tzitzéica equation [28].

2 The Magnetogasdynamic System

The governing equations of steady, non-dissipative magnetogasdynamics are

div (ρq) = 0,

ρ(q · ∇)q − µ(H · ∇)H + ∇Π = 0,

divH = 0, (2.1)

curl (q × H) = 0,

q · ∇η = 0.

together with an appropriate constitutive law

Φ(p, ρ, η) = 0,
∂p

∂ρ

∣

∣

∣

η
> 0. (2.2)

Here, Π = p + 1

2
µH2 is the total pressure, µ is the magnetic permeability (assumed

constant), while q and H denote, respectively, the velocity and magnetic fields. In the
usual notation, p, ρ and η designate, in turn, the gas pressure, density and entropy.

2.1 Aligned Magnetogasdynamics

In the following, attention is restricted to aligned magnetogasdynamics [10, 13]. Thus,

q = qt, H = Ht, (2.3)
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where t is the shared unit tangent and q,H are the gas speed and magnetic intensity
respectively. Insertion into the magnetogasdynamic system (2.1) produces the intrinsic
decomposition

δ

δs
(ρq) + ρq div t = 0,

ρq
δq

δs
− µH

δH

δs
+
δΠ

δs
= 0,

ρq2κ− µH2κ+
δΠ

δn
= 0, (2.4)

δΠ

δb
= 0,

δH

δs
+H div t = 0,

δη

δs
= 0,

where δ/δs = t · ∇, δ/δn = n · ∇, δ/δb = b · ∇ and n, b are the principal normal and
binormal to a generic streamline with curvature κ.

Combination of the continuity equation (2.4)1, and the magnetic induction equation
(2.4)3 shows that

H = kρq, (2.5)

where δκ/δs = 0. Insertion of (2.5) into (2.4)2,3 yields

ρq

[

δq

δs
− µk2

δ

δs
(ρq)

]

+
δΠ

δs
= 0,

ρq2(1 − µk2ρ)κ+
δΠ

δn
= 0,

whence if the quantities q∗, ρ∗, κ∗ and p∗ are introduced according to

ρq

[

δq

δs
− µk2

δ

δs
(ρq)

]

= ρ∗q∗
δq∗

δs
, (2.6)

ρq2(1 − µk2ρ)κ = ρ∗q∗2κ∗, (2.7)

Π = p∗,

κ = κ∗,

then, on integration, it is seen that

q∗ = mq(1 − µk2ρ), ρ∗ =
ρ

m2(1 − µk2ρ)
, (2.8)

where δm/δs = 0. Moreover, ρ∗q∗ = ρq/m, whence the continuity equation (2.4)1 becomes

δ

δs
(ρ∗q∗) + ρ∗q∗ div t = 0. (2.9)
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Thus, in summary, under the transformation

q∗ = mq(1 − µk2ρ), ρ∗ =
ρ

m2(1 − µk2ρ)
,

p∗ = Π, η∗ = η (2.10)

where q ·∇m = 0, the governing equations of aligned magnetogasdynamics reduce to those
of conventional gasdynamics, namely

div (ρ∗q∗) = 0

ρ∗(q∗ · ∇)q∗ + ∇p∗ = 0 (2.11)

q∗ · ∇η∗ = 0.

The intrusion of the parameter m corresponds to the routine application of a substitution
principle [18]. The basic reduction with m = 1 was originally obtained independently by
Grad [10] and Iur’ev [13].

It is noted that, if it is required that the gasdynamic reduction be real then the necessary
condition ρ∗ > 0 shows that

1 − µk2ρ > 0. (2.12)

The Alfvén number A of the magnetogasdynamic flow is given by

A2 = q2/b2 = 1/µk2ρ, (2.13)

where b = B/(µρ)1/2 is the Alfvén speed and B = µH. Accordingly, it is seen that the
condition (2.12) requires that the conducting flow be super-Alfvénic, that is A2 > 1.

2.2 A Bernoulli Integral

The intrinsic equation of motion (2.4)2 admits, in view of the isentropic condition (2.4)6,
the Bernoulli integral

q2

2
+

∫ p

0

dσ

ρ(σ, η)
=

∫ p0

0

dσ

ρ(σ, η)
, (2.14)

where p0 is the stagnation pressure which is constant along streamlines. It proves conve-
nient to introduce a function H according to

H =

∫ p

p0

dσ

ρ(σ, η)
= h− h0 (2.15)

where

h =

∫ p

0

dσ

ρ(σ, η)
, h0 =

∫ p0

0

dσ

ρ(σ, η)
(2.16)

are, respectively, the specific enthalpy and total energy. The Bernoulli integral then admits
the compact representation

q2 + 2H(p, η) = 0. (2.17)
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3 Planar Magnetogasdynamics

In spatial magnetogasdynamics, the Faraday equation (2.1)4 shows that

q × H = ∇Φ, (3.1)

whence there exist what are termed Maxwellian surfaces Φ = const containing the stream-
lines and magnetic lines. If the Maxwellian surfaces coincide with the total pressure
surfaces Π = const then it has been established in [30] that the governing magnetohy-
drodynamic equations reduce to the integrable Pohlmeyer-Lund-Regge system, subject
to a volume preserving constraint. This generalises a result originally obtained in [26]
linking the governing equations of non-conducting spatial gasdynamics to the integrable
Heisenberg spin equation, subject to a geometric constraint.

In plane magnetogasdynamics, the condition (3.1) reduces to

q × H = ak (3.2)

where a is constant. This relation shows that if q and H are aligned at one point then
they are everywhere aligned. This privileged situation has led to extensive study of plane,
aligned magnetogasdynamics, most notably through the hodograph system that may be
derived in the case of conducting flow with uniform stagnation enthalpy [13, 25].

In the two-dimensional case, the continuity equation is conveniently embodied in the
relation

dψ = −ρvdx+ ρudy, (3.3)

where ψ is a streamfunction and the isentropic condition then requires that η = η(ψ),
whence H = H(p, ψ). The Bernoulli integral (2.13) now shows, in particular, that

uux + vvx + Hppx + Hψψx = 0 (3.4)

which together with the equation of motion

ρ(uux + vuy) + µ(H2x −H1y) + px = 0 (3.5)

produces, on elimination of px and use of the relation Hp = ρ−1,

Ω = vx − uy = ρHψ − µk[(kψx)x + (kψy)y] (3.6)

where Ω is the vorticity magnitude. The latter relation together with the Bernoulli integral
now provide a compact encapsulation of planar, aligned magnetogasdynamics via the pair
of relations

(

ψx
ρ

)

x

+

(

ψy
ρ

)

y

− µk([kψx)x + (kψy)y] = −ρHψ , (3.7)

(

ψx
ρ

)2

+

(

ψy
ρ

)2

= −2H ,

augmented by the equation of state (2.2) which determines H(p, ψ).
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In the magnetohydrodynamic reduction with ρ = 1, if k is constant then the pair of
relations (3.7) reduce to

∇2ψ = ψxx + ψyy =
A2Hψ

1 −A2
, (3.8)

together with the Bernoulli integral

ψ2

x + ψ2

y = 2(B(ψ) − p), (3.9)

where B(ψ) is the stagnation pressure, so that

H(p, ψ) = p− B(ψ). (3.10)

Thus, (3.8) adopts the form

ψxx + ψyy =
Bψ

1 − µk2
(3.11)

and the vorticity magnitude is given by

Ω =
Bψ

1 − µk2
. (3.12)

The well-known vorticity equation of planar gasdynamics is retrieved via (3.8) in the limit
as the Alfvén number A → ∞ or, equivalently, k → 0.

4 The Reciprocal Relations

It may be established that the governing equations of plane steady gasdynamics are in-
variant, up to the equation of state under the 4-parameter class of reciprocal transforma-
tions [19]

u∗′ =
β1u

∗

p∗ + β2

, v∗′ =
β1v

∗

p∗ + β2

,

p∗′ = β4 −
β2

1
β3

p∗ + β2

, ρ∗′ =
β3ρ

∗(p∗ + β2)

p∗ + β2 + ρ∗q∗2
, (4.1)

together with the change of independent variables (x, y) → (x′, y′), where

dx′ = β−1

1
[(p∗ + β2 + ρ∗v∗2)dx− ρ∗u∗v∗dy],

dy′ = β−1

1
[−ρ∗u∗v∗dx+ (p∗ + β2 + ρ∗u∗2)dy], (4.2)

subject to the requirement that 0 < |J(x′, y′;x, y)| <∞ so that

0 < |(p∗ + β2)(p
∗ + β2 + ρ∗q∗2)| <∞. (4.3)

Importantly, one may verify that ψ∗′ = ψ∗, where the stream function ψ∗ is defined by
the starred version of (3.3) and hence ψ∗ = ψ/m. The reduction relations (2.10) invert to
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show that the u, v, p, ρ and η of the original aligned magnetogasdynamic system are given
by

u =
u∗

m
(1 + µm2k2ρ∗), v =

v∗

m
(1 + µm2k2ρ∗),

p = p∗ −
1

2
µm2k2ρ∗2q∗2, ρ =

m2ρ∗

(1 + µm2k2ρ∗)
, η∗ = η. (4.4)

Thus, the aligned magnetogasdynamic system is invariant under the multi-parameter
transformations

u′ =
u∗′

m
(1 + µm2k2ρ∗′), v′ =

v∗′

m
(1 + µm2k2ρ∗′),

p′ = p∗′ −
1

2
µm2k2ρ∗′q∗′2, ρ′ =

m2ρ∗′

1 + µm2k2ρ∗′
, η′ = η, (4.5)

where

u∗′ =
β1mu(1 − µk2ρ)

p+ 1

2
µk2ρ2q2 + β2

, v∗′ =
β1mv(1 − µk2ρ)

p+ 1

2
µk2ρ2q2 + β2

,

p∗′ = β4 −
β2

1
β3

p+ 1

2
µk2ρ2q2 + β2

, ρ∗′ =
β3ρ(p+ 1

2
µk2ρ2q2 + β2)

p− 1

2
µk2ρ2q2 + ρq2 + β2

(4.6)

augmented by the change of independent variables (4.2).

5 A Generalised Kármán-Tsien Gas Law

The aligned magnetohydrodynamic reduction with ρ = 1 has corresponding hydrodynamic
reduction with

ρ∗ =
1

m2(1 − µk2)
. (5.1)

The reciprocal pressure and density in this hydrodynamic reduction are given by

p∗′ = β4 −
β2

1
β3

p∗ + β2

, ρ∗′ =
β3ρ

∗(p∗ + β2)

p∗ + ρ∗q∗2 + β2

, (5.2)

while the Bernoulli integral yields, by virtue of (5.1),

q∗2 = 2[B∗(ψ∗) −m2(1 − µk2)p∗], (5.3)

where

B
∗(ψ∗) = m2(1 − µk2)B(ψ). (5.4)

Accordingly,

ρ∗′ =
β3ρ

∗(p∗ + β2)

p∗ + 2ρ∗[B∗ −m2(1 − µk2)p∗] + β2

=
β3ρ

∗(p∗ + β2)

−p∗ + β2 + 2ρ∗B∗
(5.5)
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and elimination of p∗ between (5.2) and (5.5) produces the reciprocal Kármán-Tsien law

p∗′ = A∗ +
B∗

ρ∗′
, (5.6)

where

A∗ = β4 −
β2

1
β3

2(ρ∗B∗ + β2)
, B∗ = −

β2
1
β2

3
ρ∗

2(ρ∗B∗ + β2)
. (5.7)

The reciprocal constitutive law associated with the original magnetogasdynamic system
is given by the expressions (4.5)3,4 for the reciprocal pressure p′ and density ρ′ together
with (3.7) and the associated Bernoulli integral

q∗′2

2
= B

∗′ −
p∗′2

2B∗
+
A∗p∗′

B∗
, (5.8)

where it may be shown that

B
∗′ = −

β2
1

4ρ∗(β2 + ρ∗B∗)
. (5.9)

Thus, the reciprocal constitutive law is given by

p′ = A∗ +
B∗

ρ∗′
− µm2k2ρ∗

′
2

[

B
∗′ −

p∗′2

2B∗
+A∗

p∗′

B∗

]

= A∗ +
B∗

ρ∗′
− µm2k2ρ∗′2

[

B
∗′ +

1

2B∗

(

A∗2 −
B∗2

ρ∗′2

)]

, (5.10)

where

ρ∗′ =

[

m2

(

1

ρ′
− µk2

)]

−1

. (5.11)

Elimination of ρ∗′ produces an explicit magneto-gas law of the form

p′ = α+ β

(

1

ρ′
− µk2

)

+
γµk2

(

1

ρ′
− µk2

)2
, (5.12)

where α, β, γ are, in general, dependent upon the entropy. It is observed that this con-
stitutive law may be written alternatively in terms of the reciprocal Alfvén number A′

as

p′ = α+ βµk2(A′2 − 1) +
γ

µk2(A′2 − 1)2
. (5.13)

Interestingly, the model equation of state (5.12) is precisely that originally obtained in [25]
via systematic reduction by Loewner transformations of the hodograph system of aligned
magnetogasdyamics to the Cauchy-Riemann system associated with elliptic régimes. This
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hodograph system was derived by Iur’ev [13] under the requirement of uniform stagnation
enthalpy whence the associated gasdynamic system is necessarily irrotational, that is

u∗y − v∗x = 0. (5.14)

The present analysis dispenses with this strong constraint.
Thus, in summary, it has been established that, subject to the generalised Kármán-

Tsien gas law (5.12), the governing equations of planar, aligned magnetogasdyamics are
reduced via the multi-parameter class of reciprocal transformations given by (4.5), (4.6)
together with (4.2) to the seed magnetohydrodynamic system with ρ = 1. In particular, if
k is likewise set to be unity then reduction is obtained to the canonical equation

ψxx + ψyy = Φ(ψ), (5.15)

where

Φ(ψ) =
Bψ

1 − µk2
. (5.16)

6 Properties of the Reciprocal Magnetogasdyamic System

The reduced reciprocal Mach number M∗
′

is given by

M∗′2 =
q∗′2

c∗′2
, (6.1)

where

q∗′2 =
β2

1
q∗2

(p∗ + β2)2
(6.2)

and

c∗′2 = −
B
∗

ρ∗′2
, (6.3)

on use of the reduced Kármán-Tsien gas law (5.6). Thus,

c∗′2 =
β2

1
β2

3
ρ∗

2(β2 + ρ∗B∗)ρ∗′2
=

β2

1
(−p∗ + β2 + 2ρ∗B∗)2

2ρ∗(β2 + ρ∗B∗)(p∗ + β2)2
, (6.4)

whence, if it is required that ρ∗ > 01 then

ρ∗B∗ + β2 > 0. (6.5)

The requirement ρ∗ > 0 has been seen to require the magnetogasdynamic flow to be
super-Alfvénic. Use of the reciprocal relations (6.2) and (6.4) shows that

M∗′2 =
q∗′2

c∗′2
= 4

(

B
∗ −

p∗

ρ∗

)

(β2 + ρ∗B∗)ρ∗

(−p∗ + β2 + 2ρ∗B∗)2

= 1 −
(p∗ + β2)

2

(−p∗ + β2 + 2ρ∗B∗)2

= 1 −
ρ∗′2

β2

3
ρ∗2

< 1 (6.6)

1If this requirement is relaxed then sub-Alfvénic magnetogasdynamic flows may be generated corre-

sponding to non-physical reduced gasdynamics motions.
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so that the reduced gasdynamic flow is necessarily subsonic.
Now, the reciprocal reduced Bernoulli integral implies that

q∗′
∂q∗′

∂ρ∗′

∣

∣

∣

∣

ψ∗′

+
1

ρ∗
∂p∗′

∂ρ∗′

∣

∣

∣

∣

ψ∗′

= 0,

whence the condition (6) yields

q∗′2

−ρ∗′q∗′
∂q∗′

∂ρ∗′

∣

∣

∣

∣

ψ∗′

< 1. (6.7)

Thus, since

q∗′ = mq′(1 − µk2ρ′), ρ∗′ =
ρ′

m2(1 − µk2ρ′)
,

it is seen, on insertion into (6.7) that

(1 −A′2)(1 −M′2) < 0, (6.8)

where M′ and A′ are the reciprocal Mach number and Alfvén number respectively. Hence,
the reciprocal magnetogasdynamic flow régimes are either subsonic and super-Alfvénic or
supersonic and sub-Alfvénic. It is remarked that, in [25], reduction of the planar, aligned
magnetogasdyamic hodograph system to the Cauchy-Riemann system was obtained sub-
ject to the condition

(1 −M2)(1 − µk2ρ)

1 − µk2ρ(1 −M2)
> 0. (6.9)

In the present more general context, it is seen that the condition (6.8) implies that both

(1 −M′2)(1 − µk2ρ′) > 0 (6.10)

and

1 − µk2ρ′(1 −M′2) > 1 −M′2 − µk2ρ′(1 −M′2) > 0 (6.11)

so that the condition (6.9) indeed applies for the reciprocal magnetogasdynamic flows.
In the sequel, attention is restricted to the case 1 − µk2ρ′ > 0 so that the reciprocal

magnetogasdynamic motions, like the seed magnetohydrodynamic motions, are super-
Alfvénic.

7 Generation of Vortex Trains in Super-Alfvénic Magneto-

gasdynamics

Here, we take as seed solution of the reduced gasdynamic system corresponding to ρ = 1,
the Mallier-Maslowe vortex train [16]

ψ∗ = −2 tanh−1

(

ǫ cosx

cosh ǫy

)

= ln

(

cosh ǫy − ǫ cos x

cosh ǫy + ǫ cos x

)

(7.1)
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of

ψ∗

xx + ψ∗

yy = −
1 − ǫ2

2
sinh 2ψ∗ = ρ∗2B

∗

ψ∗ . (7.2)

Thus,

B
∗(ψ∗) =

1

ρ∗2

[

K −
1

4
(1 − ǫ2) cosh 2ψ∗

]

<
1

ρ∗2

[

K −
1

4
(1 − ǫ2)

]

, (7.3)

where ρ∗ = 1/(1 − µk2).
In what follows, we set m = 1. The reduced gasdynamic variables are then given by

u∗ =
2ǫ2 cos x sinh ǫy

ρ∗∆
, v∗ = −

2ǫ sinx cosh ǫy

ρ∗∆
, (7.4)

where

∆ = cosh2 ǫy − ǫ2 cos2 x (7.5)

and the Bernoulli integral provides the pressure distribution

p∗ = ρ∗
[

B
∗(ψ∗) −

q∗2

2

]

=
1

ρ∗

[

K −
1

4
(1 − ǫ2) −

2ǫ2

∆2
(ǫ2 cos2 x sinh2 ǫy + sin2 x cosh2 ǫy)

]

. (7.6)

The reciprocal magnetogasdynamic variables are now given by the relations (4.5) together
with

u∗′ =
2β1ǫ

2 cos x sinh ǫy

ρ∗(p∗ + β2)∆
, v∗′ = −

2β1ǫ sinx cosh ǫy

ρ∗(p∗ + β2)∆
,

p∗′ = β4 −
β2

1
β3

p∗ + β2

, ρ∗′ =
β3ρ

∗(p∗ + β2)

−p∗ + β2 + 2ρ∗B∗
(7.7)

and the reciprocal variables x′, y′ are given by

β1dx
′ =

(

p∗ + β2 +
4ǫ2β2

1
sin2 x cosh2 ǫy

ρ∗∆2

)

dx+
4ǫ3β2

1
sinx cos x sinh ǫy cosh ǫy

ρ∗∆2
dy,

(7.8)

β1dy
′ =

4ǫ3β2

1
sinx cos x sinh ǫy cosh ǫy

ρ∗∆2
dx+

(

p∗ + β2 +
4ǫ4β2

1
cos2 x sinh2 ǫy

ρ∗∆2

)

dy.

Integration of the latter pair of reciprocal relations with β1 = 1 yields

x′ = c1x−
ǫ2 sin(2x)

ρ∗∆
, y′ = c2y −

ǫ sinh(2ǫy)

ρ∗∆
, (7.9)

where

c1 = c2 =
K

ρ∗
+ β2 −

1 − ǫ2

4ρ∗
.
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Figure 1. The streamlines ψ′ = const corresponding to (7.10)
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Figure 2. The density ρ′ corresponding to (7.10) and k = 1/2, k = 0 respectively

In Figures 1-3, various aspects of the reciprocal solutions are displayed with the parameter
values

β1 = β2 = β3 = µ = m = 1, ǫ =
1

2
. (7.10)

The reciprocal streamlines ψ′ = const corresponding to the seed Mallier-Maslowe solution
are exhibited in Figure 1. They represent vortex train patterns valid in super-Alfvénic flow
régimes of the generalised Kármán-Tsien gas (5.13). In Figure 2, the reciprocal density
is exhibited when k = 1/2 and in the gasdynamic limit k = 0. Figure 3 displays the
corresponding pressure distributions in these cases. In Figures 2, 3, β4 = 2, 3 respectively
in the magnetogasdynamic case k = 1/2 and the non-conducting limit k = 0. It is observed
that the presence of the magnetic field acts to reduce the sharpness of the pressure and
density peaks compared to the gasdynamic limit.
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Figure 3. The pressure distribution p′ corresponding to (7.10) and k = 1/2, k = 0 respectively

8 Application of a Bäcklund Transformation

The Mallier-Maslowe vortex train solution is but a particular member of a large class
of solutions of the sinh-Gordon equation (7.2) which may be generated by means of an
analogue of the classical Bäcklund transformation for the sine-Gordon equation. In the
following, it is demonstrated that for any such solution the associated reciprocal indepen-
dent variables may be found in a purely algebraic manner so that no explicit integration
of the reciprocal relations (4.2) is required. Thus, if we write the sinh-Gordon equation as

ωzz̄ = −
α2

2
sinh 2ω (8.1)

with

ω = ψ∗, z =
x+ iy

2
, α2 = 1 − ǫ2 (8.2)

then the reciprocal relations (4.2) assume the compact form

ds = −
α2

4
cosh 2ω dz +

1

2
ω2

z̄ dz̄, β1z
′ =

s

ρ∗
+

(

K

ρ∗
+ β2

)

z. (8.3)

It may be directly verified that d2s = 0 modulo (8.1). The analogue of the classical
Bäcklund transformation [27] for the sine-Gordon equation states that the relations

(ω1 − ω)z = αλ1 sinh(ω1 + ω), (ω1 + ω)z̄ = −αλ−1

1
sinh(ω1 − ω) (8.4)

are compatible if and only if ω constitutes a solution of the sinh-Gordon equation (8.1).
Moreover, the function ω1 constitutes a second solution of the sinh-Gordon equation for
any value of the constant Bäcklund parameter λ1. It turns out that the corresponding
potential s1 obeying

ds1 = −
α2

4
cosh 2ω1 dz +

1

2
ω2

1z̄ dz̄ (8.5)
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may be expressed explicitly in terms of ω, ω1 and the potential s. Indeed, it may be
directly verified that

s1 = s−
α

2λ1

cosh(ω1 − ω) (8.6)

modulo an irrelevant additive constant.

In general, the solution ω1 of the sinh-Gordon equation will not be real. However, the
analogue of the classical Permutability Theorem for the sine-Gordon equation [27] may be
exploited to generate a real solution by superposition of two complex Bäcklund transforms
ω1 and ω2 corresponding to two distinct Bäcklund parameters λ1 and λ2. Thus, let ω2 be
the Bäcklund transform of ω defined by

(ω2 − ω)z = αλ2 sinh(ω2 + ω), (ω2 + ω)z̄ = −αλ−1

2
sinh(ω2 − ω). (8.7)

Then, a fourth solution of the sinh-Gordon equation (8.1) is given by the nonlinear super-
position principle

ω12 = ω + 2 tanh−1

[

λ2 + λ1

λ2 − λ1

tanh

(

ω2 − ω1

2

)]

. (8.8)

Importantly, ω12 constitutes a Bäcklund transform of both ω1 with parameter λ2 and
ω2 with parameter λ1. This implies that there exist two equivalent expressions for the
potential s12 associated with the solution ω12, namely

s12 = s−
α

2λ1

cosh(ω1 − ω) −
α

2λ2

cosh(ω12 − ω1)

= s−
α

2λ2

cosh(ω2 − ω) −
α

2λ1

cosh(ω12 − ω2), (8.9)

which, in turn, shows that s12 is indeed symmetric in the indices 1 and 2. The above
identity is readily shown to be a consequence of the superposition principle (8.8). Now,
in order to obtain a real solution ω12, we make the admissible choice

ω2 = −ω̄1, λ2 = −λ̄−1

1
(8.10)

so that

ω12 = ω + 2 tanh−1

[

|λ1|
2 − 1

|λ1|2 + 1
tanhℜ(ω1)

]

. (8.11)

As an application of the above procedure, we consider the trivial seed solution ω = 0
and λ1 = iν. In order to make contact with the Mallier-Maslowe solution (7.1), we choose

α =
√

1 − ǫ2, ν =

√

1 + ǫ

1 − ǫ
. (8.12)

Integration of the Frobenius system (8.4) then yields

ω1 = 2 tanh−1[exp(ix− ǫy)] (8.13)
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and hence

ω12 = 2 tanh−1

(

ǫ cos x

cosh ǫy

)

(8.14)

which indeed coincides with the Mallier-Maslowe solution on use of the invariance of (7.2)
under ψ∗ → −ψ∗. Furthermore, evaluation of (8.9) produces

s12 = s−
ǫ2 sin 2x

2∆
− i

ǫ sinh 2ǫy

2∆
, ∆ = cosh2 ǫy − ǫ2 cos2 x (8.15)

so that

β1x12 = cx−
ǫ2 sin 2x

ρ∗∆
, β1y12 = cy −

ǫ sinh 2ǫy

ρ∗∆
, c =

K

ρ∗
+ β2 −

1 − ǫ2

4ρ∗
(8.16)

by virtue of (8.3)2. Thus, for β1 = 1, the reciprocal variables (7.9) are retrieved.

9 Extension to Parallel-Transverse Magnetogasdyamics

The determination of a plane aligned magnetogasdynamic motion with velocity and density
distribution {q, ρ} allows an associated class of parallel-transverse magnetogasdynamic
flows to be generated with [10]

v = q + ξk, H = kρq + ηk, (9.1)

where ξ, η are independent of z. Thus, insertion into the equation of motion shows that

ξ − µkη = α(ψ), (9.2)

while the continuity and induction equations hold automatically. The residual Faraday
equation shows that

η − ξkρ = β(ψ)ρ. (9.3)

Accordingly, transverse components may be superposed with

ξ =
α(ψ) + µkβ(ψ)ρ

1 − µk2ρ
, η =

α(ψ)k + β(ψ)ρ

1 − µk2ρ
. (9.4)

The total pressure is then incremented with Π → Π + 1

2
η2, where Π is its value in the

underlying planar motion.
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100 (1928), 481–502.

[12] Hone, A N W, The associated Camassa-Holm equation and the KdV equation, J. Phys. A:

Math. Gen. 32 (1999) L307-L314.

[13] Iur’ev, I M, On a solution to the equations of magnetogasdynamics, J. Appl. Math. Mech. 24

(1960) 233-237.

[14] Kingston, J G and Rogers, C, Reciprocal Bäcklund transformations of conservation laws,
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