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Abstract

Given a family of genus g algebraic curves, with the equation f(x, y,Λ) = 0, we con-
sider two fiber-bundles U and X over the space of parameters Λ. A fiber of U is the
Jacobi variety of the curve. U is equipped with the natural groupoid structure that
induces the canonical addition on a fiber. A fiber of X is the g-th symmetric power of
the curve. We describe the algebraic groupoid structure on X using the Weierstrass
gap theorem to define the ‘addition law’ on its fiber. The addition theorems that are
the subject of the present study are represented by the formulas, mostly explicit, de-
termining the isomorphism of groupoids U → X. At g=1 this gives the classic addition
formulas for the elliptic Weierstrass ℘ and ℘′ functions. To illustrate the efficiency
of our approach the hyperelliptic curves of the form y2 = x2g+1 +

∑2g−1

i=0
λ4g+2−2ix

i

are considered. We construct the explicit form of the addition law for hyperelliptic
Abelian vector functions ℘ and ℘

′ (the functions ℘ and ℘
′ form a basis in the field

of hyperelliptic Abelian functions, i.e., any function from the field can be expressed
as a rational function of ℘ and ℘

′). Addition formulas for the higher genera zeta-
functions are discussed. The genus 2 result is written in a Hirota-like trilinear form
for the sigma-function. We propose a conjecture to describe the general formula in
these terms.

1 Introduction

During the last 30 years the addition laws of elliptic functions stay in the focus of the
studies in the nonlinear equations of Mathematical Physics. A large part of the interest
was drawn to the subject by the works of F. Calogero [10, 11, 12], where several important
problems were reduced to the elliptic addition laws. The term “Calogero-Moser model”
being widely used in literature, the papers caused a large series of publications, where
on one hand more advanced problems were posed and on the other hand some advances
were made in the theory of functional equations. The “addition theorems” for Weierstrass
elliptic functions:

σ(u+ v)σ(u− v)

σ(u)2σ(v)2
= ℘(v) − ℘(u), (1)
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(ζ(u) + ζ(v) + ζ(w))2 = ℘(u) + ℘(v) + ℘(w), u+ v + w = 0, (2)

played the key rôle in the works of the that period. At the same time, the development
of the algebro-geometric methods of solution of integrable systems [13, 14] employed in
an essential way the addition formulas for theta functions of several variables. The same
addition formulas were needed in applications of Hirota method. In [6, 7] the addition
theorems for vector Baker-Akhiezer functions of several variables are obtained and a pro-
gram is put forward to apply the addition theorems to problems of the theory of integrable
systems, in particular, to multidimensional analogs of Calogero-Moser type systems.

The fundamental fact of the elliptic functions theory is that any elliptic function can be
represented as a rational function of Weierstrass functions ℘ and ℘′. The corresponding
result (see [3, 4]) in the theory of hyperelliptic Abelian functions is formulated as follows:
any hyperelliptic function can be represented as a rational function of vector functions
℘ = (℘g1, . . . , ℘gg) and ℘

′ = (℘gg1, . . . , ℘ggg), where g is the genus of the hyperelliptic
curve on the Jacobi variety of which the field of Abelian functions is built.

In the present paper we find the explicit formulas for the addition law of the vector func-
tions ℘ and ℘

′. As an application the higher genus analogs of the Frobenius-Stickelberger
formula (2) are obtained. In particular, for the genus 2 sigma-function we obtain the
following trilinear differential addition theorem

[

2(∂u1
+ ∂v1

+ ∂w1
) + (∂u2

+ ∂v2
+ ∂w2

)3
]

σ(u)σ(v)σ(w)
∣

∣

u+v+w=0
= 0.

Our approach is based on the explicit construction of the groupoid structure that is
adequate to describe the algebraic structure of the space of g-th symmetric powers of
hyperelliptic curves.

2 Algebraic groupoids

2.1 Topological groupoids

Definition 1. Take a topological space Y.
A space X together with a mapping pX : X → Y is called a space over Y. The mapping

pX is called “an anchor” in Differential Geometry.
Let two spaces X1 and X2 over Y be given. The mapping f : X1 → X2 is called a

mapping over Y, if pX2
◦ f(x) = pX1

(x) for any point x ∈ X1. By the direct product over
Y of the spaces X1 and X2 over Y we call the space X1 ×Y X2 = {(x1, x2) ∈ X1 × X2 |
pX1

(x1) = pX2
(x2)} together with the mapping pX1×YX2

(x1, x2) = pX1
(x1).

The space Y together with the identity mapping pY is considered as the space over
itself.

Definition 2. A space X together with a mapping pX : X → Y is called a groupoid over
Y, if there are defined structure mappings over Y

µ : X ×Y X → X and inv : X → X

that satisfy the axioms

1. µ(µ(x1, x2), x3) = µ(x1, µ(x2, x3)), provided pX(x1) = pX(x2) = pX(x3).
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2. µ(µ(x1, x2), inv(x2)) = x1, provided pX(x1) = pX(x2).

The mapping µ may not be defined for all pairs x1 and x2 from X.

Definition 3. A groupoid structure on X over the space Y is called commutative, if
µ(x1, x2) = µ(x2, x1), provided pX(x1) = pX(x2).

A groupoid structure on the algebraic variety X over the algebraic variety Y is called
algebraic, if the mapping pX as well as the structure mappings µ and inv are algebraic.

2.2 Algebraic groupoids related to plane curves

We take as Y the space CN with coordinates Λ = (λi), i = 1, . . . ,N . Let f(x, y,Λ), where
(x, y) ∈ C2, be a polynomial in x and y. Define the family of plane curves

V = {(x, y,Λ) ∈ C2 × CN | f(x, y,Λ) = 0}.

We assume that at a generic value of Λ, genus of the curve from V has fixed value g.

Let us take as X the universal fiber-bundle of g-th symmetric powers of the algebraic
curves from V . A point in X is represented by the collection of an unordered set of g
pairs (xi, yi) ∈ C2 and an N -dimensional vector Λ that are related by f(xi, yi,Λ) = 0,
i = 1, . . . , g.

The mapping pX takes the collection to the point Λ ∈ CN .

Let φ(x, y) be an entire rational function on the curve V with the parameters Λ. A
zero of the function φ(x, y) on the curve V is the point (ξ, η) ∈ C2, such that {f(ξ, η,Λ) =
0, φ(ξ, η) = 0}. The total number of zeros of the function φ(x, y) is called the order of
φ(x, y).

The further construction is based on the following fact.

Lemma 2.1. Let φ(x, y) be an order 2g + k, k > 0, entire rational function on the curve
V . Then the function φ(x, y) is completely defined (up to a constant with respect to (x, y)
factor) by any collection of g + k its zeros.

This fact is a consequence of Weierstrass gap theorem (Lükensatz). In particular, an
ordinary univariate polynomial is an entire rational function on the curve of genus g = 0
and is completely defined by the collection of all its zeros.

Let us construct the mapping inv.

Let a point U1 = {[(x
(1)
i , y

(1)
i )],Λ} ∈ X be given. Let R

(1)
2g (x, y) be the entire rational

function of order 2g on the curve V defined by the vector Λ, such that R
(1)
2g (x, y) is zero

in U1, that is R
(1)
2g (x

(1)
i , y

(1)
i ) = 0, i = 1, . . . , g. Denote by [(x

(2)
i , y

(2)
i )] the complement of

[(x
(1)
i , y

(1)
i )] in the set of zeros of R

(1)
2g (x, y). Denote by U2 the point in X thus obtained

and set inv(U1) = U2.

So, the set of zeros of the function R
(1)
2g (x, y), which defines the mapping inv, is the

pair of points {U1, inv(U1)} from X and pX(U1) = pX(invU1).

Lemma 2.2. The mapping inv is an involution, that is inv ◦ inv(U1) = U1.

Let us construct the mapping µ.
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Let two points U1 = {[(x
(1)
i , y

(1)
i )],Λ} and U2 = {[(x

(2)
i , y

(2)
i )],Λ} from X be given.

Let R
(1,2)
3g (x, y) be the entire rational function of order 3g on the curve V defined by the

vector Λ, such that R
(1,2)
3g (x, y) is zero in inv(U1) and inv(U2). Denote by [(x

(3)
i , y

(3)
i )] the

complementary g zeros of R
(1,2)
3g (x, y) on the curve V . Denote by U3 the point in X thus

obtained and set µ(U1, U2) = U3.

So, the set of zeros of the function R
(1,2)
3g (x, y), which defines the mapping µ, is the triple

of points {inv(U1), inv(U2), µ(U1, U2)} from X and pX(U1) = pX(U2) = pX(µ(U1, U2)).

Theorem 2.3. The above mappings µ and inv define the structure of the commutative
algebraic groupoid over Y = CN on the universal fiber-bundle X of g-th symmetric powers
of the plane algebraic curves from the family V .

Proof. The mapping µ is symmetric with respect to U1 and U2, and thus defines the
commutative operation. By the construction the mappings pX, µ and inv are algebraic.

Lemma 2.4. The mapping µ is associative.

Proof. Let three points U1, U2 and U3 be given. Let us assign

U4 = µ(U1, U2), U5 = µ(U4, U3), U6 = µ(U2, U3), U7 = µ(U1, U6).

We have to show that U5 = U7.

Let R
(i,j)
3g (x, y) be the function defining the point µ(Ui, Uj), and R

(i)
2g (x, y) be the func-

tion defining the point inv(Ui).

Consider the product R
(1,2)
3g (x, y)R

(4,3)
3g (x, y). It is the entire function of order 6g with

zeros at {inv(U1), inv(U2), U4, inv(U4), inv(U3), U5}. Therefore, the function

Q1(x, y) =
R

(1,2)
3g (x, y)R

(4,3)
3g (x, y)

R
(4)
2g (x, y)

is the entire function of order 4g with the zeros {inv(U1), inv(U2), inv(U3), U5}.

Similarly, the product R
(2,3)
3g (x, y)R

(1,6)
3g (x, y) is the entire function of order 6g with

zeros at {inv(U2), inv(U3), U6, inv(U6), inv(U1), U7}. Hence we find that

Q2(x, y) =
R

(2,3)
3g (x, y)R

(1,6)
3g (x, y)

R
(6)
2g (x, y)

is the entire function of order 4g with the zeros {inv(U1), inv(U2), inv(U3), U7}.

The functions Q1(x, y) and Q2(x, y) have order 4g and both vanish at the points
{inv(U1), inv(U2), inv(U3)}. Thus by Weierstrass gap theorem Q1(x, y) = Q2(x, y) and,
therefore, U5 = U7. �

Lemma 2.5. The mappings µ and inv satisfy the axiom 2.

Proof. Let two points U1 and U2 be given. Assign

U3 = µ(U1, U2), U4 = inv(U2), U5 = µ(U3, U4).
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We have to show that U5 = U1.
Consider the product R

(1,2)
3g (x, y)R

(3,4)
3g (x, y), which is the function of order 6g with the

zeros {inv(U1), inv(U2), U3, inv(U3), inv(U4), U5}. As inv(U4) = inv ◦ inv(U2) = U2, the
function

Q(x, y) =
R

(1,2)
3g (x, y)R

(3,4)
3g (x, y)

R
(3)
2g (x, y)R

(2)
2g (x, y)

is the entire function of order 2g with zeros at {inv(U1), U5}, that is Q(x, y) = R
(5)
2g (x, y).

Hence it follows that U5 = inv ◦ inv(U1) = U1. �

The Theorem is proved. �

The Lemma below is useful for constructing the addition laws on our groupoids.

Lemma 2.6. Given U1, U2 ∈ X, let us assign U3 = µ(U1, U2) and Ui+3 = inv(Ui), i = 1, 2.
Then

R
(3)
2g (x, y) =

R
(1,2)
3g (x, y)R

(4,5)
3g (x, y)

R
(1)
2g (x, y)R

(2)
2g (x, y)

.

The formula of Lemma 2.6 is important because its left hand side depends formally on
U3 only, while the right hand side is completely defined by the pair U1, U2.

The above general construction becomes effective once we fix a model of the family of
curves, that is once the polynomial f(x, y,Λ) is given. We are especially interested in the
models of the form, cf. for instance [5, 8, 9],

f(x, y,Λ) = yn − xs −
∑

λns−in−jsx
iyj,

where gcd(n, s) = 1 and the summation is carried out over the range 0 < i < s − 1,
0 < j < n − 1 under the condition ns− in − js > 0. It is important that a model of the
kind (possibly with singular points) exists for an arbitrary curve. At the generic values of
Λ a curve in such a family has genus g = (n − 1)(s − 1)/2. In this paper we consider in
detail the case (n, s) = (2, 2g+1), that is the families of hyperelliptic curves. However, the
method of the further sections is straightforward to generalize to a generic (n, s)-model.
We will describe the generalization in our future publications.

3 The structure of hyperelliptic groupoid on C3g

A hyperelliptic curve V of genus g is usually defined by a polynomial of the form

f(x, y, λ0, λ2, . . . ) = y2 − 4x2g+1 −

2g−1
∑

i=0

λix
i.

In this paper we apply the change of variables

(x, y, λ2g−1, λ2g−2, . . . , λ0) → (x, 2y, 4λ4, 4λ6, . . . , 4λ4g+2),
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in order to simplify the formulas in the sequel. Below we study the constructions related
to the hyperelliptic curves defined by the polynomials of the form

f(x, y, λ4g+2, λ4g, . . . ) = y2 − x2g+1 −

2g−1
∑

i=0

λ4g+2−2ix
i. (3)

Let us introduce the grading by assigning deg x = 2, deg y = 2g+ 1 and degλk = k. Then
the polynomial f(x, y,Λ) becomes a homogeneous polynomial of the weight 4g + 2.

An entire function on V has a unique representation as the polynomial R(x, y) =
r0(x) + r1(x)y, where r0(x), r1(x) ∈ C[x]. In such representation we have not more than
one monomial xiyj of each weight, by definition degxiyj = 2i + j(2g + 1). The order of
a function R(x, y) is equal to the maximum of weights of the monomials that occur in
R(x, y). In fact, on the set of zeros of the polynomial R(x, y) we have y = −r0(x)/r1(x).
Therefore, the zeros of R(x, y) that lie on the curve are defined by the roots x1, . . . , xm of
the equation r0(x)

2 − r1(x)
2(x2g+1 + λ4x

2g−1 + . . . ) = 0. The total number of the roots is
equal m = max(2 degx r0(x), 2g+1+2degx r1(x)), where degx rj(x) denotes the degree of
the polynomial rj(x) in x, which is exactly the highest weight of the monomials in R(x, y).

In this case Weierstrass gap theorem asserts that the sequence of nonnegative integers
{deg xiyj}, j = 0, 1, i = 0, 1, . . . , in ascending order has precisely g “gaps” in comparison
to the sequence of all nonnegative integers. All the gaps are less than 2g.

Lemma 3.1. For a given point U1 = {[(x
(1)
i , y

(1)
i )],Λ} ∈ X the entire function R

(1)
2g (x, y)

defining the mapping inv has the form

R
(1)
2g (x, y) = (x− x

(1)
1 ) . . . (x− x(1)

g ).

Proof. In fact, as deg y > 2g, any entire function of order 2g does not depend on y. �

The function R
(1)
2g (x, y) defines the unique point

inv(U1) = {[(x
(1)
i ,−y

(1)
i )],Λ},

which, obviously, also belongs to X.

Let us construct the functions R
(i,j)
3g (x, y) that have the properties required in Lemmas

2.4 and 2.5.

Lemma 3.2. Define the (2g + 1)-dimensional row-vector

m(x, y) = (1, x, . . . , x2g−1−ρ, y, yx, . . . , yxρ), ρ =
[g − 1

2

]

,

which is composed of all monomials xiyj of weight not higher than 3g (the restriction

j = 0, 1 applies). Then, up to a factor constant in (x, y), the function R
(1,2)
3g (x, y) is equal

to the determinant of the matrix composed of 2g + 1 rows m(x, y), m(x
(1)
i ,−y

(1)
i ) and

m(x
(2)
i ,−y

(2)
i ), i = 1, . . . , g.

Proof. By the construction the function R
(1,2)
3g (x, y) vanishes at the points inv(U1) and

inv(U2), and is uniquely defined by this property. As max(4g − 2− 2ρ, 2g + 1 + 2ρ) = 3g,

at fixed Λ the function R
(1,2)
3g (x, y) has 2g zeros at the given points of the curve and the

collection of zeros at [(x
(3)
i , y

(3)
i )], i = 1, . . . , g, which defines the unique point U3 in X. �
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Let Symn(M) denote the n-th symmetric power of the space M. A point of the space
Symn(M) is an unordered collection [m1, . . . ,mn], mi ∈ M. Lemmas 3.1 and 3.2 define
the groupoid over Y = C2g structure on the space X ⊂ Symg(C2) × C2g, which is related
to the family of hyperelliptic curves (3). We want to transfer the hyperelliptic groupoid
structure onto the linear space C3g. This is done in two steps.

Consider the space S = Symg(C2)×Cg. As the parameters Λ enter (3) linearly, one can
parameterize the space X by S, and the parametrization can be made a mapping over Y.
Namely, let us define the mapping pS : S → Y = C2g. Take a point T = {[(ξi, ηi)], Z} ∈ S.
Denote by V the Vandermonde matrix, composed of g rows (1, ξi, . . . , ξ

g−1
i ), denote by

X the diagonal matrix diag(ξg
1 , . . . , ξ

g
g) and by Y the vector (η2

1 − ξ2g+1
1 , . . . , η2

g − ξ2g+1
g )t.

Set

pS(T ) = (Z1, Z2), where Z1 = V
−1

Y − (V −1
X V )Z and Z2 = Z.

It is clear that the domain of definition of the mapping pS is the open and everywhere
dense subset S0 in S consisting of the points {[(ξi, ηi)], Z} such that the determinant V

does not vanish. We define the mappings γ : X → S and δ : S → X by the following
formulas: let U ∈ X and T ∈ S, then

γ(U) = γ({[(xi, yi)],Λ}) = {[(xi, yi)],Λ2}, where Λ2 = (λ2(g−i)+4), i = 1, . . . , g,

δ(T ) = δ({[(ξi, ηi)], Z}) = {[(ξi, ηi)], pS(T )}.

By the construction, the mappings are mappings over Y. The domain of definition of δ
coincides with the domain S0 ⊂ S of definition of the mapping pS. Let T ∈ S0, then
γ ◦ δ(T ) = T . Let γ(U) ∈ S0, then δ ◦ γ(U) = U . Thus we have

Lemma 3.3. The mappings γ and δ establish the birational equivalence of the spaces X

and S over Y = C2g.

The assertion of Lemma 3.3 helps to transfer onto the space S the groupoid over Y

structure, which is introduced by Theorem 2.3 on the space X. Let T1, T2 ∈ S. The
birational equivalence induces the mappings µ∗ and inv∗ that are defined by the formulas

µ∗(T1, T2) = γ ◦ µ(δ(T1), δ(T2)), inv∗(T1) = γ ◦ inv ◦ δ(T1).

Theorem 3.4. The mappings µ∗ and inv∗ define the structure of commutative algebraic
groupoid over the space Y = C2g on the space S.

Let us proceed to constructing the structure of algebraic groupoid over C2g on the space
C3g. The classical Viète mapping is the homeomorphism of spaces Symg(C) → Cg. Let
us use Viète mapping to construct a birational equivalence ϕ : Symg(C2) → C2g.

Let [(ξj , ηj)] ∈ Symg(C2) and (p2g+1, p2g, . . . , p2) ∈ C2g. Let us assign

Pod = (p2g+1, p2g−1, . . . , p3)
t and Pev = (p2g, p2g−2, . . . , p2)

t,

and let X = (1, x, . . . , xg−1)t. Define the mapping ϕ and its inverse ψ with the help of the
relations

xg −

g
∑

i=1

p2ix
g−i = xg −XtPev =

g
∏

j=1

(x− ξj),
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ηi = P t
odX|x=ξi

, i = 1, . . . , g.

Note, that ϕ is a rational mapping, while ψ is a nonsingular algebraic mapping.
Using the mapping ϕ we obtain the mapping

ϕ1 = ϕ× id : S = Symg(C2) × Cg → C2g × Cg ∼= C3g

and its inverse ψ1 = ψ × id.
The companion matrix of a polynomial xg −XtPev is the matrix

C =

g
∑

i=1

ei(ei−1 + p2(g−i+1)eg)
t,

where ei is the i-th basis vector in Cg. Its characteristic polynomial |x·1g−C| is xg−XtPev.

Example 1. The companion matrices C of the polynomials xg −XtPev for g = 1, 2, 3, 4,
have the form

p2,

(

0 p4

1 p2

)

,





0 0 p6

1 0 p4

0 1 p2



 ,









0 0 0 p8

1 0 0 p6

0 1 0 p4

0 0 1 p2









.

Note, that the companion matrix for g = k is included in the companion matrix for g > k
as the lower right k × k submatrix.

We make use of the following property of a companion matrix.

Lemma 3.5. Let the polynomial p(x) = xg −
∑g

i=1 p2ix
g−i and one of its roots ξ be given.

Set Υ = (1, ξ, . . . , ξg−1)t. Then the relations

ξkΥtA = ΥtCkA, k = 0, 1, 2, . . . ,

hold for an arbitrary vector A ∈ Cg.

Proof. Let A = (a1, . . . , ag), then

ξΥtA = ξ

g
∑

i=1

aiξ
i−1 = agξ

g +

g
∑

i=2

ai−1ξ
i−1 =

g
∑

i=1

((1 − δi,1)ai−1 + agp2(g−i+1))ξ
i−1.

Thus the Lemma holds for k = 1. One can complete the proof by induction. �

The mapping pC3g : C3g → C2g, with respect to which ϕ1 is a mapping over C2g, is given
by the formula

pC3g (P,Z) = (Z1, Z2), Z1 =
(

g
∑

i=1

p2i+1C
g−i

)

Pod − Cg(CPev + Z), Z2 = Z. (4)

Using Lemma 3.5 one can directly verify the “over” property, that is, that pC3g ◦ϕ1(T ) =
pS(T ) for any T ∈ S0.

Let A1, A2 ∈ C3g. The birational equivalence ϕ1 induces the mappings µ∗∗ and inv∗∗

defined by formulas

µ∗∗(A1, A2) = ϕ1 ◦ µ∗(ψ1(A1), ψ1(A2)), inv∗∗(A1) = ϕ1 ◦ inv∗ ◦ψ1(A1).

Theorem 3.6. The mappings µ∗∗ and inv∗∗ define the structure of commutative algebraic
groupoid over the space Y = C2g on the space C3g.
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4 The addition law of the hyperelliptic groupoid on C3g

In what follows we use the shorthand notation

A = inv∗∗(A) and A1 ⋆ A2 = µ∗∗(A1, A2).

Lemma 4.1. Let A = (Pev, Pod, Z) ∈ C3g. Then

A = (Pev,−Pod, Z).

Introduce the (g ×∞)-matrix

K(A) =
(

Y,CY,C2Y, . . .
)

,

that is composed of the (g × 2)-matrix Y = (Pev, Pod) with the help of the companion
matrix C of the polynomial xg −XtPev. Denote by L(A) the matrix composed of the first
g columns of K(A), and denote by ℓ(A) the (g + 1)-st column of K(A).

Theorem 4.2. Let A1, A2 ∈ C3g and let A3 = A1 ⋆ A2, then

rank





1g L(A1) ℓ(A1)

1g L(A2) ℓ(A2)
1g L(A3) ℓ(A3)



 < 2g + 1.

Proof. Suppose the points Ui = δ ◦ψ1(Ai), i = 1, 2, are defined. We rewrite the function

R
(1,2)
3g (x, y) as a linear combination of monomials

R
(1,2)
3g (x, y) =

∑

i,j,w(i,j)>0

hw(i,j)x
iyj = r1(x)y + xgr2(x) + r3(x),

where w(i, j) = 3g − (2g + 1)j − 2i,

r1(x) =

ρ
∑

i=0

hg−2i−1x
i, r2(x) =

g−ρ−1
∑

i=0

hg−2ix
i, r3(x) =

g−1
∑

i=0

h3g−2ix
i, ρ =

[g − 1

2

]

.

Let us set h0 = 1. We assign weights to the parameters hk by the formula deg hk = k.

Then degR
(1,2)
3g (x, y) = 3g.

Let A = (Pev, Pod, Z) ∈ C3g be the point defining any of the collections of g zeros of the

function R
(1,2)
3g (x, y). Consider the function Q(x) = R

(1,2)
3g (x,XtPod). By the construction

Q(ξ) = 0, if (xg −XtPev)|x=ξ = 0. Let us apply Lemma 3.5. We obtain

Q(ξ) = Υt
(

r1(C)Pod + r2(C)Pev +H1

)

, (5)

where H1 = (h3g, h3g−2, . . . , hg+2). Using the above notation, we come to the relation

Q(ξ) = Υt
(

H1 + L(A)H2 + ℓ(A)
)

,
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where H2 = (hg, hg−1, . . . , h1). Suppose the polynomial xg −XtPev has no multiple roots,
then from the equalities Q(ξj) = 0, j = 1, . . . , g one can conclude that

H1 + L(A)H2 + ℓ(A) = 0. (6)

By substituting the points A1, A2 and A3 to (6), we obtain the system of 3g linear equa-

tions, which is satisfied by the coefficients H1,H2 of the entire function R
(1,2)
3g (x, y). The

assertion of the Theorem is the compatibility condition of the system of linear equations
obtained. �

Corollary 4.3. The vectors H1,H2 of coefficients of the entire function R
(1,2)
3g (x, y) are

expressed by the formulas

H2(A1, A2) = −
[

L(A1) − L(A2)
]−1

(ℓ(A1) − ℓ(A2)),

H1(A1, A2) = −
1

2

[

(ℓ(A1) + ℓ(A2)) − (L(A1) + L(A2))H2(A1, A2)
]

.

as vector functions of the points A1 and A2 from C3g.

Now, we know the coefficients H1,H2 of R
(1,2)
3g (x, y) and we can give the expression of P

(3)
od

as a function of A1, A2 and P
(3)
ev . It follows from (5) that the following assertion holds.

Lemma 4.4.

P
(3)
od = −

[

r1(C
(3))

]−1
(H1 + r2(C

(3))P (3)
ev ), (7)

where C(3) is the companion matrix of the polynomial xg −XtP
(3)
ev .

Let us find the explicit formula for the function R
(1,2)
3g (x, y) as a function of the points

A1 and A2. We introduce the ((2g + 1) ×∞)-matrix

F (x, y;A1, A2) =





Xt K (x, y)
1g K(A1)
1g K(A2)



 , K (x, y) = (xg, y, . . . , xg+k, yxk, . . . ).

Denote by G(x, y;A1, A2) the matrix composed of the first 2g + 1 columns of the matrix
F (x, y;A1, A2).

Theorem 4.5. The entire rational function R
(1,2)
3g (x, y) defining the operation A1 ⋆A2 has

the form

R
(1,2)
3g (x, y) =

|G(x, y;A1, A2)|

|L(A2) − L(A1)|
. (8)

By a use of the formula (8) and Lemma 2.6 we can find P
(3)
ev . Similar to the condition

of Lemma 2.6 denote A4 = A1 and A5 = A2. One can easily show that R
(4,5)
3g (x, y) =

R
(1,2)
3g (x,−y). Thus, the product R

(1,2)
3g (x, y)R

(4,5)
3g (x, y) is an even function in y. Set

Φ(x, y2) = R
(1,2)
3g (x, y)R

(4,5)
3g (x, y) = (−1)g

|G(x, y;A1, A2)|

|L(A2) − L(A1)|

|G(x,−y;A1, A2)|

|L(A2) − L(A1)|
.
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Therefore, Φ(x, y2), as a function on the curve V , is the polynomial in x and the parameters
Z1 and Z2. The values of Z1 and Z2 are defined by the mapping pC3g according to (4),
and pC3g(A1) = pC3g(A2) = (Z1, Z2). Namely, we have

R
(1,2)
3g (x, y)R

(4,5)
3g (x, y) = Φ(x, x2g+1 + xgXtZ2 +XtZ1).

Lemma 2.6 asserts that dividing the polynomial Φ(x, x2g+1 + xgXtZ2 + XtZ1) by the

polynomial (xg −XtP
(1)
ev )(xg −XtP

(2)
ev ) gives the zero remainder and the quotient equal

xg − XtP
(3)
ev . Thus, the calculation is reduced to the classical algorithm of polynomial

division.

Theorem 4.6. Consider the space C3g together with the mapping pC3g defined by (4) as

a groupoid over C2g. Let A1 = (P
(1)
ev , P

(1)
od , Z) and A2 = (P

(2)
ev , P

(2)
od , Z) be the points from

C3g such that pC3g (A1) = pC3g (A2) = (Z1, Z2) ∈ C2g.
Then the addition law has the form A1 ⋆ A2 = A3, where the coordinates of the point

A3 = (P
(3)
ev , P

(3)
od , Z) are given by the formulas

xg −XtP (3)
ev =

Φ(x, x2g+1 + xgXtZ2 +XtZ1)

(xg −XtP
(1)
ev )(xg −XtP

(2)
ev )

,

P
(3)
od = −

[

r1(C
(3))

]−1
(H1 + r2(C

(3))P (3)
ev ).

Example 2. Let g = 1. The family of curves V is defined by the polynomial

f(x, y,Λ) = y2 − x3 − λ4x− λ6.

In the coordinates (λ6, λ4) on C2 and (p2, p3, z4) on C3 the mapping pC3 is given by the
formula

(λ6, λ4) = (p2
3 − p2(p

2
2 + z4), z4)

Let us write down the addition formulas for the points on the groupoid C3 over C2. Set
A1 = (u2, u3, λ4), A2 = (v2, v3, λ4) and suppose pC3(A1) = pC3(A2) = (λ6, λ4).

Let A1 ⋆ A2 = A3 = (w2, w3, λ4).

We have: R
(1)
2 (x, y) = x− u2, L(A1) = u2, ℓ(A1) = u3, and so on.

F (x, y,A1, A2) =





1 x y x2 yx . . .
1 u2 u3 u2

2 . . . . . . .
1 v2 v3 . . . . . . . . . . .



 .

Thus, the function defining the operation A1 ⋆ A2 has the expression

R
(1,2)
3 (x, y) = y +

v3 − u3

v2 − u2
x−

u2v3 − u3v2
v2 − u2

.

Hence, we find: r1(x) = 1, r2(x) =
v3 − u3

v2 − u2
, H1 = −

u2v3 − u3v2
v2 − u2

, and, by (7),

w3 =
u2v3 − u3v2
v2 − u2

−
v3 − u3

v2 − u2
w2.
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Further, Φ(x, x3 +λ4x+λ6) = x3 +λ4x+λ6−
(

x
v3 − u3

v2 − u2
−
u2v3 − u3v2
v2 − u2

)2
. Upon dividing

the polynomial Φ(x, x3 + λ4x+ λ6) by the polynomial (x− u2)(x− v2) we find

Φ(x, x3 + λ4x+ λ6) =
(

x+ u2 + v2 −
(v3 − u3

v2 − u2

)2)

(x2 − (u2 + v2)x+ v2u2) + . . . .

And, finally, we obtain the addition law of the elliptic groupoid in the following form

w2 = −(u2 + v2) + h2,

w3 = −
1

2
(u3 + v3) +

3

2
(u2 + v2)h− h3, where h =

(v3 − u3

v2 − u2

)

.

One may check directly that pC3(A3) = (λ6, λ4).

Let g = 2. The family of curves V is defined by the polynomial

f(x, y,Λ) = y2 − x5 − λ4x
3 − λ6x

2 − λ8x− λ10

In the coordinates (Λ1,Λ2) = ((λ10, λ8)
t, (λ6, λ4)

t) on C4 and (Pev, Pod, Z) on C6, where
Pev = (p4, p2)

t, Pod = (p5, p3)
t, and Z = (z6, z4)

t, the mapping pC6 is given by the formula

(Λ1,Λ2) =

((

p2
5 + p2

3p4 − p2p4(p
2
2 + p4 + z4) − p4(p2p4 + z6)

2p3p5 + p2p
2
3 − (p2

2 + p4)(p
2
2 + p4 + z4) − p2(p2p4 + z6)

)

, Z

)

Let us write down the addition formulas for the points on the groupoid C6 over C4.
Set A1 = ((u4, u2)

t, (u5, u3)
t, (λ4), λ6)

t), A2 = ((v4, v2)
t, (v5, v3)

t, (λ4, λ6)
t) and suppose

pC6(A1) = pC6(A2) = ((λ10, λ8)
t, (λ6, λ4)

t).
Let A3 = A1 ⋆ A2, A3 = ((w4, w2)

t, (w5, w3)
t, (λ6, λ4)

t).
We omit the calculation, which is carried out by the same scheme as for g = 1, and

pass to the result. Set h = h1. We have

h = −

∣

∣

∣

∣

v4 − u4 v2v4 − u2u4

v2 − u2 v4 + v2
2 − (u4 + u2

2)

∣

∣

∣

∣

∣

∣

∣

∣

v4 − u4 v5 − u5

v2 − u2 v3 − u3

∣

∣

∣

∣

.

To shorten the formulas it is convenient to employ the linear differential operator

L =
1

2
{(u3 − v3)(∂u2

− ∂v2
) + (u5 − v5)(∂u4

− ∂v4
)},

It is important to note that L adds unity to the weight, deg L = 1, and that it is tangent
to the singular set where the addition is not defined:

L {(u2 − v2)(u5 − v5) − (u3 − v3)(u4 − v4)} = 0.

Let h′ = L (h) and h′′ = L (h′). Note, that L (h′′) = 0. Using this notation the addition
formulas are written down as follows

w2 =
1

2
(u2 + v2) + 2h′ + h2,
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w3 =
1

2
(u3 + v3) +

5

4
(u2 + v2)h+ 2h′′ + 3h′h+ h3,

w4 = −
1

2
(u4 + v4) − u2v2 +

1

8
(u2 + v2)

2 + (u3 + v3)h−
1

2
(u2 + v2)(h

′ − h2) − 2hh′′,

w5 = −
1

2
(u5 + v5) −

1

2
(u2u3 + v2v3) −

{1

2
(u4 + v4) + u2v2 +

1

8
(u2 + v2)

2
}

h

+(u3 + v3)(h
′ + h2) −

1

2
(u2 + v2)(h

′′ − hh′ − 2h3) − 2(h′ + h2)h′′.

5 Addition theorems for hyperelliptic functions

For each curve V from the family (3) consider the Jacobi variety Jac(V ). The set of all the
Jacobi varieties is the universal space U of the Jacobi varieties of the genus g hyperelliptic
curves. The points of U are pairs (u,Λ), where the vector u = (u1, . . . , ug) belongs to the
Jacobi variety of the curve with parameters Λ. The mapping pU : U → C2g that acts as
pU(u,Λ) = Λ makes U the space over C2g. There is a natural groupoid over C2g structure
on U. Evidently, the mappings µ((u,Λ), (v,Λ)) = (u+v,Λ) and inv(u,Λ) = (−u,Λ) satisfy
the groupoid over C2g axioms.

5.1 Addition theorems for the hyperelliptic ℘-functions

Let us define the mapping π : U → C3g over C2g by putting into correspondence a point
(u,Λ) ∈ U and the point (℘(u),℘′(u)/2,Λ2) ∈ C3g, where

℘(u) = (℘g,j(u))
t, ℘

′(u) = (℘g,g,j(u))
t, Λ2 = (λ2(g−i+2)), i = 1, . . . , g.

Here

℘i,j(u) = −∂ui
∂uj

log σ(u) and ℘i,j,k(u) = −∂ui
∂uj

∂uk
log σ(u)

and σ(u) is hyperelliptic sigma-function [1, 2, 3, 4].

Theorem 5.1. The mapping π : U → C3g over C2g is a birational isomorphism of
groupoids:

π(u+ v,Λ) = π(u,Λ) ⋆ π(v,Λ), π(−u,Λ) = π(u,Λ).

Proof. First, by Abel theorem any triple of points (u, v,w) ∈ (Jac(V ))3 that satisfies the
condition u+ v + w = 0 corresponds to the set of zeros (xi, yi), i = 1, . . . , 3g, of an entire
rational function of order 3g on the curve V . Namely, Let X = (1, x, . . . , xg−1)t, then

u =

g
∑

i=1

∫ xi

∞

X
dx

2y
, v =

g
∑

i=1

∫ xi+g

∞

X
dx

2y
, w =

g
∑

i=1

∫ xi+2g

∞

X
dx

2y
. (9)

(For shortness, instead of indicating the end point of integration explicitly, we give only
the first coordinate.)
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Second, for the given value u ∈ Jac(V ) the system of g equations

u−

g
∑

i=1

∫ xi

∞

X
dx

2y
= 0

with respect to the unknowns (xi, yi) ∈ V is equivalent to the system of algebraic equations

xg −

g
∑

k=1

℘g,k(u)x
k−1 = 0, 2y −

g
∑

k=1

℘g,g,k(u)x
k−1 = 0,

the roots of which are the required points (xi, yi) ∈ V (see, for instance, [1, 3, 4]).
The combination of the two facts implies that the construction of the preceding sections

provides the isomorphism. �

Above all, note that 2g hyperelliptic functions ℘(u) = (℘g,1(u), . . . , ℘g,g(u))
t, ℘

′(u) =
(℘g,g,1(u), . . . , ℘g,g,g(u))

t form a basis of the field of hyperelliptic Abelian functions, i.e.,
any function of the field can be expressed as a rational function in ℘(u) and ℘

′(u). The
assertion of Theorem 5.1 written down in the coordinates of C3g takes the form of the
addition theorem for the basis functions ℘(u) and ℘

′(u).

Corollary 5.2. The basis hyperelliptic Abelian functions

℘(u) = (℘g,1(u), . . . , ℘g,g(u))
t and ℘

′(u) = (℘g,g,1(u), . . . , ℘g,g,g(u))
t

respect the addition law

(℘(u+ v),℘′(u+ v)/2,Λ2) = (℘(u),℘′(u)/2,Λ2) ⋆ (℘(v),℘′(v)/2,Λ2),

the formula of which is given in Theorem 4.6.

Thus we have obtained a solution of the problem to construct an explicit and effectively
computable formula of the addition law in the fields of hyperelliptic Abelian functions.

5.2 Addition theorems for the hyperelliptic ζ-functions

One has g functions ζi(u) = ∂ui
log σ(u) and the functions are not Abelian. However,

by an application of Abel theorem for the second kind integrals (see [1]) one obtains the
addition theorems for ζ-functions as well. On one hand, any ζ-function can be represented
as the sum of g second kind integrals and an Abelian function. On the other hand, an
Abelian sum of the second kind integrals with the end points at the set of zeros of an entire
rational function R(x, y) is expressed rationally in terms of the coefficients of R(x, y). We
employ the function (8) computed in the variables indicated in Corollary 5.2.

Theorem 5.3. Let (u, v,w) ∈ (Jac(V ))3 and u+ v + w = 0. Then

ζg(u) + ζg(v) + ζg(w) = −h1,

where h1 is the rational function in ℘(u),℘′(u) and ℘(v),℘′(v) equal to the coefficient of
the monomial of the weight 3g − 1 in the function (8) computed in the variables indicated
in Corollary 5.2.
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Proof. We have the identity (see [1],[4, p. 41])

ζg(u)+

g
∑

i=1

∫ xi

∞

xg dx

2y
= 0, ζg(v)+

g
∑

i=1

∫ xi+g

∞

xg dx

2y
= 0, ζg(w)+

g
∑

i=1

∫ xi+2g

∞

xg dx

2y
= 0.

Suppose that the closed path γ encloses all zeros (x1, y1), . . . , (x3g, y3g) of the function
R3g(x, y). Then we have

3g
∑

k=1

∫ xk

∞

xg dx

2y
=

1

2πı

∮

γ

d
(

logR3g(x, y)
)

∫ x

∞

xg dx

2y
.

Because d logR3g(x, y)/dx is a rational function on the curve and, hence, a uniform func-
tion, the total residue of d

(

logR3g(x, y)
) ∫ x

∞
xgdx/(2y) on the Riemann surface of the

curve V is zero. To write down this fact explicitly consider the parametrization

(x(ξ), y(ξ)) = (ξ−2, ξ−2g−1ρ(ξ)), ρ(ξ) = 1 +
λ4

2
ξ4 +

λ6

2
ξ6 +O(ξ8),

of the curve V near the point at infinity and denote R3g(ξ) = R3g(x(ξ), y(ξ)). We obtain

−Resξ

[

R′
3g(ξ)

R3g(ξ)

∫ x(ξ)

∞

xg dx

2y

]

+

3g
∑

i=1

Resx=xi

[

d
(

logR3g(x, y)
)

∫ x

∞

xg dx

2y

]

= 0,

which is in fact a particular case of Abel theorem. Thus, the final expression is

ζg(u) + ζg(v) + ζg(w) = −Resξ

[

R′
3g(ξ)

R3g(ξ)

∫ x(ξ)

∞

xg dx

2y

]

.

It remains to use the expansions

∫ x(ξ)

∞

xg dx

2y
=

1

ξ
+
λ4

6
ξ3 +O(ξ5), R3g(ξ) = ξ−3g(1 + h1ξ + h2ξ

2 + h3ξ
3 +O(ξ4))

to compute the residue. �

A similar argument leads from the identity (see [1],[4, p. 41])

ζg−1(u) +

g
∑

i=1

∫ xi

∞

(3xg+1 + λ4x
g−1)

dx

2y
=

1

2
℘g,g,g(u),

to the following assertion.

Theorem 5.4. In the conditions of Theorem 5.3 we have

ζg−1(u)+ ζg−1(v)+ ζg−1(w)−
1

2
(℘g,g,g(u)+℘g,g,g(v)+℘g,g,g(w)) = −h3

1 +3h1h2 − 3h3,

where h2 and h3 are the coefficients of the monomials of weight 3g − 2 and 3g − 3 in the
function indicated in Theorem 5.3.
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Example 3. Let g = 1. The function R3(x, y) has the form y + h1x + h3, where 2h1 =
(℘′(u)−℘′(v))/(℘(u)−℘(v)), cf. Example 2. Thus, Theorem 5.3 gives the classic formula

ζ(u) + ζ(v) − ζ(u+ v) = −
1

2

(

℘′(u) − ℘′(v)

℘(u) − ℘(v)

)

.

As h2 = 0 and 2h3 = (℘′(v)℘(u) − ℘′(u)℘(v))/(℘(u) − ℘(v)), cf. Example 2, Theorem 5.4
yields the relation

−℘′(u) − ℘′(v) + ℘′(u+ v) = −
1

4

(

℘′(u) − ℘′(v)

℘(u) − ℘(v)

)3

− 3
℘′(v)℘(u) − ℘′(u)℘(v)

℘(u) − ℘(v)
,

which is the addition formula for Weierstrass ℘′-function.

The fact below follows directly from Lemma 2.6.

Lemma 5.5. ℘g,g(u) + ℘g,g(v) + ℘g,g(u+ v) = h2
1 − 2h2.

Combining Lemma 5.5 with Theorem 5.3 we find
(

ζg(u) + ζg(v) + ζg(w)
)2

= ℘g,g(u) + ℘g,g(v) + ℘g,g(u+ v) + 2h2 (10)

In the case g = 1 due to the fact that h2 = 0 formula (10) gives the famous relation

(ζ(u) + ζ(v) − ζ(u+ v))2 = ℘(u) + ℘(v) + ℘(u+ v). (11)

discovered by Frobenius and Stickelberger.

Example 4. Let us pass to the case g = 2. We have R6(x, y) = x2+h1y+h2x
2+h4x+h6.

Note that h3 = 0. The coefficient h1 is expressed as follows, cf. Example 2,

h1 = −2

∣

∣

∣

∣

℘2,1(v) − ℘2,1(u) ℘2,2(u)℘2,1(v) − ℘2,2(v)℘2,1(u)
℘2,2(v) − ℘2,2(u) ℘2,1(v) − ℘2,1(u)

∣

∣

∣

∣

∣

∣

∣

∣

℘2,1(v) − ℘2,1(u) ℘2,2,1(v) − ℘2,2,1(u)
℘2,2(v) − ℘2,2(u) ℘2,2,2(v) − ℘2,2,2(u)

∣

∣

∣

∣

.

And the coefficient h2, respectively,

h2 =

∣

∣

∣

∣

℘2,2(v)℘2,1(v) − ℘2,2(u)℘2,1(u) ℘2,2,1(v) − ℘2,2,1(u)
℘2,1(v) + ℘2,2(v)

2 − ℘2,1(u) − ℘2,2(u)
2 ℘2,2,2(v) − ℘2,2,2(u)

∣

∣

∣

∣

∣

∣

∣

∣

℘2,1(v) − ℘2,1(u) ℘2,2,1(v) − ℘2,2,1(u)
℘2,2(v) − ℘2,2(u) ℘2,2,2(v) − ℘2,2,2(u)

∣

∣

∣

∣

.

We come to the relations

ζ2(u) + ζ2(v) − ζ2(u+ v) = −h1,

℘2,2(u) + ℘2,2(v) + ℘2,2(u+ v) = h2
1 − 2h2,

ζ1(u) + ζ1(v) − ζ1(u+ v) −
1

2
(℘2,2,2(u) + ℘2,2,2(v) − ℘2,2,2(u+ v)) = −h3

1 + 3h1h2.

Hence, by eliminating h1 and h2, we obtain the identity

2z1 − p2,2,2 − 3p2,2z2 + z
3
2 = 0, (12)

where zi = ζi(u) + ζi(v) + ζi(w) and pi,j,... = ℘i,j,...(u) + ℘i,j,...(v) + ℘i,j,...(w), provided
u+ v + w = 0.
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5.3 Trilinear addition theorems for hyperelliptic σ-functions

Formula (12) leads to an important corollary.

Theorem 5.6. The genus 2 sigma-function respects the trilinear addition law
[

2D1 +D3
2

]

σ(u)σ(v)σ(w)
∣

∣

u+v+w=0
= 0,

where Dj = ∂uj
+ ∂vj

+ ∂wj
.

Proof. Let us multiply the left hand side of (12) by the product σ(u)σ(v)σ(w), then (12)
becomes the trilinear relation

[

2(∂u1
+ ∂v1

+ ∂w1
) + (∂u2

+ ∂v2
+ ∂w2

)3
]

σ(u)σ(v)σ(w)
∣

∣

u+v+w=0
= 0,

which is satisfied by the genus 2 sigma-function. �

It is important to notice that the elliptic identity (11) is equivalent to the trilinear
addition law

[

(∂u + ∂v + ∂w)2
]

σ(u)σ(v)σ(w)
∣

∣

u+v+w=0
= 0,

which is satisfied by Weierstrass sigma-function. Let us denote D = (∂u + ∂v + ∂w) and
ψ = σ(u)σ(v)σ(w). The functions

(D + h1)ψ, (D3 + 6h3)ψ, (D4 − 6λ4)ψ, (D5 + 18λ4D)ψ, (D6 − 63λ6)ψ,

where h1 and h2 are given in Example 3, vanish on the plane u + v + w = 0. Moreover,
one can show that for any k > 3 there exist unique polynomials q0, q1, q3 ∈ Q[λ4, λ6] such
that

(Dk + q3D
3 + q1D + q0)ψ

∣

∣

u+v+w=0
= 0,

and at least one of the polynomials q0, q1, q3 is nontrivial.
For hyperelliptic sigma-function of an arbitrary genus g we propose the following hy-

pothesis. Let P = Q[Λ]. Consider the ring Q = P[D1, . . . ,Dg] as a graded ring of linear
differential operators. We conjecture that there exists a collection of 3g linear operators
Qi ∈ Q, degQi = i, where i = 1, . . . , 3g, such that

{

3g
∑

i=0

Qiξ
3g−i +R3g(ξ

2, ξ2g+1)
}

σ(u)σ(v)σ(w)
∣

∣

u+v+w=0
= 0,

where Q0 = 1 and R3g(x, y) is the function (8) computed in the variables indicated in
Corollary 5.2. Thus, g operators Qg+2i−1, i = 1, . . . , g, define the trilinear relations

Qg+2i−1σ(u)σ(v)σ(w)
∣

∣

u+v+w=0
= 0, i = 1, . . . , g.

Note, that the assertions of Theorem 5.3, Lemma 5.5, and Theorem 5.4 imply the relations

(Dg + h1)σ(u)σ(v)σ(w)
∣

∣

u+v+w=0
= 0, (D2

g − 2h2)σ(u)σ(v)σ(w)
∣

∣

u+v+w=0
= 0,

(2Dg−1 +D3
g + 6h3)σ(u)σ(v)σ(w)

∣

∣

u+v+w=0
= 0.

We shall return to the problem of explicit description of the trilinear addition theorems
for hyperelliptic sigma-function in our future publications.
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