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Abstract

We present a novel method for the reduction of integrable two-dimensional discrete
systems to one-dimensional mappings. The procedure allows for the derivation of
nonautonomous systems, which are typically discrete (difference or q) Painlevé equa-
tions, or of autonomous ones. In the latter case we produce the discrete analogue of
an integrable subcase of the Hénon-Heiles system.

1 Introduction

The systematic construction of reductions of integrable evolution equations has con-
tributed significantly to the understanding of these integrable systems. The solution of the
reduced equation is, in principle, easier to obtain than that of the full partial differential
equation. Thus the reductions lead to solutions of the initial system which can furnish
useful insights into the behaviour of the general solution. Since one expects all the reduc-
tions of an integrable system to be also integrable, Ablowitz, Ramani and Segur [1] have
formulated the conjecture linking the integrability of a partial differential equation to the
Painlevé property [2] of its reductions. From a different perspective, the fact that many
similarity reductions of partial differential equations are just Painlevé equations furnished
a method for the integration of the latter [3] by adapting the spectral methods used for
the solution of the former.

The similarity reductions of two-dimensional evolution equations are easy to under-
stand. One seeks self-similar solutions by introducing a single independent variable which
combines the two variables of the initial equation in an adequate way (the general method
for the construction of such solutions relies on the study of the symmetries of the evolution
equation). The standard example of a similarity reduction leading to a Painlevé equation
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is that of the modified-KdV equation ut − 6u2ux + uxxx = 0. Introducing the appropriate
similarity variable z = x(3t)−1/3 and the ansatz u = w(z)(3t)−1/3 one finds, after one
integration, the equation w′′ = 2w3 + zw + c which is precisely PII.

With the discovery of integrable discrete equations, and in particular integrable multi-
dimensional systems, the question naturally arose as to the discrete equivalent of similarity
reductions. In particular one important question was whether discrete Painlevé equations
can be obtained through some “similarity reduction” of integrable difference equations in
two dimensions, i.e. integrable lattices. Clearly an approach directly analogous to that of
the continuous systems was out of question since the latter was based on manipulations
of the independent variable that have no discrete analogue. The question has already
been answered in a certain way. In [4] Nijhoff and Papageorgiou obtained a “similarity
constraint” to a given integrable lattice in the form of a nonautonomous nonlinear discrete
equation. The reduction to a discrete Painlevé equation was realised by a semicontinuous
limit applied to both equations, the lattice and the constraint, with elimination of deriva-
tives with respect to the now-continuous variable. In [5] three of the present authors have
implemented a bilinear formulation of the problem, obtaining a system of an autonomous
and a nonautonomous bilinear lattice equation and proceeding through semicontinuous
limits. A purely discrete approach was introduced in the works of Nijhoff and collabora-
tors [6], [7], [8], where the reduction was obtained from the equation and its constraint by
introducing an appropriate variable and choosing the proper path in the two-dimensional
lattice.

In this article we present a novel approach to the question of reduction of integrable
lattices. This approach allows us to treat the question of stationary and “similarity” re-
ductions of integrable lattices in the same way. At this point it must be made clear that
the term “similarity” is used here purely as an analogy. What we really mean is that
we present a way to construct discrete Painlevé equations starting from some integrable
lattice. In what follows we illustrate our method on some well-known integrable discrete
equations in two dimensions. In the case of similarity reductions we identify the resulting
mappings as discrete difference or q-Painlevé equations. In the case of stationary reduc-
tions we study the stationary flow of the (discrete) Sawada-Kotera equation and obtain
the discrete equivalent of one of the integrable cases of the Hénon-Heiles system.

2 Reductions of nonautonomous lattices: the method and

some examples

As we explained in the introduction, the manipulations of the independent variable, leading
to the similarity reductions in the continuous case, are proscribed for discrete equations.
Our method for the reduction of integrable lattices starts from a given equation by seeking
its nonautonomous integrable extensions. Usually the autonomous integrable equation has
some parameter which is related to the lattice spacing. Making it nonautonomous means
that we are writing the equation on a lattice where the spacing varies from point to
point. The important requirement is that the nonautonomous equation be integrable.
Integrability is ensured by the application of a discrete integrability criterion such as
singularity confinement [9] or low-growth (algebraic entropy) [10]. To illustrate this point
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we can start from the discrete mKdV equation:

xm+1
n+1 = xm

n

xm
n+1 − qxm+1

n

qxm
n+1 − xm+1

n
(2.1)

and deautonomise it by letting q depend on n and m. The integrable deautonomi-
sation was presented in [11], where we have shown that q must satisfy the equation
qm+1
n+1

qm
n = qm

n+1q
m+1
n , with solution qm

n = f(n)g(m) in which f and g are free functions.
Next we restrict the evolution to one dimension by considering a periodic reduction of the
(nonautonomous) lattice, i.e. by demanding that xm

n+k = xm+l
n , where k and l are integers

(and the same equation for qm
n ). The first example we are going to present is precisely

based on the mKdV. Since the reduction xm+1
n = xm

n+1 is trivial (linear), we proceed to
xm+1

n = xm
n+2. Neglecting the (common) index m we find the mapping

xn+3 = xn
xn+1 − qnxn+2

qnxn+1 − xn+2

. (2.2)

Introducing the variable yn = xn+2/xn+1 we can rewrite (2.2) as

yn+1yn−1 =
1 − qnyn

yn(qn − yn)
, (2.3)

where qn satisfies the equation qn+3qn = qn+1qn+2 the solution of which is log qn = an +
b + c(−1)n. Equation (2.3) with c = 0 is precisely a form of the q-PII equation discovered
in [12]. The full freedom of (2.3), with c 6= 0, was first identified in [13], where it was
shown that the full equation is a q-discrete form of PIII. The above reduction is not the
only one to a q-Painlevé equation we can obtain from mKdV. Introducing xm+1

n = xm
n+3

we find

xn+4 = xn
xn+1 − qnxn+3

qnxn+1 − xn+3

(2.4)

and again we rewrite using yn = xn+2/xn+1 to

yn+2yn+1ynyn−1 =
1 − qnynyn+1

qn − ynyn+1

. (2.5)

The obvious substitution now is wn = ynyn+1 leading to

wn+1wn−1 =
1 − qnwn

qn − wn
, (2.6)

where now log qn = an + b + cjn + dj2n with j3 = 1. Equation (2.6) in the symmetric
case c = d = 0 is again a q-PII identified in [12] and was shown in [13] to be a q-PV

in the generic case. What is really interesting in the case of mKdV is the fact that the
reductions lead to q-discrete equations. Our second example is based on the KdV equation.
Its nonautonomous extension can be recovered from the results of [14] and has the form

xm+1
n+1 − xm

n =
zm+1
n

xm+1
n

−
zm
n+1

xm
n+1

. (2.7)
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Here z satisfies the equation zm+1
n+1 + zm

n = zm
n+1 + zm+1

n the solution of which is zm
n =

f(n) + g(m) with f and g two arbitrary functions. Again the reduction xm+1
n = xm

n+1 is
trivial (linear) and we proceed to xm+1

n = xm
n+2. We find the mapping

xn+3 − xn =
zn+2

xn+2

−
zn+1

xn+1

(2.8)

which can be easily shown to be the discrete derivative of the mapping

xn+1 + xn + xn−1 =
zn

xn
+ c. (2.9)

The equation for z is zn+2 − zn+1 − zn + zn−1 = 0 with solution zn = αn + β + γ(−1)n.
In the symmetric, γ = 0, case the mapping (2.9) is just the discrete Painlevé I equation.
The full asymmetry was shown in [15] to lead to a discrete form of PII. The reduction
xm+1

n = xm
n+3 can also be shown to lead to a discrete Painlevé equation. We start from

xn+4 − xn =
zn+3

xn+3

−
zn+1

xn+1

. (2.10)

Again one integration is possible leading to

xn+3 + xn+2 + xn+1 + xn =
zn+2

xn+2

+
zn+1

xn+1

+ 2c. (2.11)

Next we put y = xn+2+xn−zn+1/xn+1−c and obtain for y the equation yn+1+yn = 0 with
solution y = θ(−1)n. The equation for z, zn+3 − zn+2 − zn + zn−1 = 0, has the solution
zn = αn + β + γjn + δj2n where j is a cubic root of unity. The even-odd dependence
introduced by θ can always be gauged away and thus we find finally the mapping

xn+1 + xn−1 =
zn

xn
+ c (2.11)

which, when γ = δ = 0, is just another form of d-PI [12]. In the case γδ 6= 0 this mapping
was shown to be a discrete Painlevé IV equation [16]. We remind at this point that in
[5] using the semicontinuous limit approach we were able to obtain another similarity
reduction of the discrete KdV, namely a discrete P34 equation.

Another interesting example is that of the discrete sine-Gordon equation [17]. We have
given its nonautonomous extension in [14]:

xm+1
n+1 xm

n =
1 + qnxm

n+1x
m+1
n

qn + xm
n+1x

m+1
n

(2.12)

with the same q as in the mKdV case, i.e. qm
n = f(n)g(m). The first reduction of d-sG is

obtained for xm+1
n = xm

n+1. We find readily the mapping

xn+1xn−1 =
1 + qnx2

n

qn + x2
n

(2.13)

with qn+1qn−1 = q2
n the solution of which is log qn = an + b. This mapping is a special

(nongeneric) case of the q-PIII equation. An equivalent form can be obtained [18] if we
put yn = x2

n which results to

yn+1yn−1 =

(

1 + qnyn

qn + yn

)2

. (2.14)
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The next reduction, xm+1
n = xm

n+2, also leads to a q Painlevé equation. Starting from

xn+3xn =
1 + qnxn+2xn+1

qn + xn+1xn+2

(2.15)

and putting yn = xn+1xn+2 we find

yn+1yn−1 =
yn(1 + qnyn)

qn + yn
, (2.16)

where log qn = an + b + c(−1)n. The mapping (2.16) is equivalent to (2.3). It suffices to
invert the ys of even (or odd) index. The final example we present here is of a different
kind. While all the previous equations were S-integrable, in the Calogero terminology [19],
i.e. integrable through spectral methods, here we examine the reductions of a C-integrable,
i.e. linearisable, case, namely Burgers equation. The nonautonomous form introduced in
[14] can be easily shown to be equivalent to

xm+1
n = σm

n xm
n

1 + xm
n+1

1 + xm
n

, (2.17)

where σ is a free funtion of n and m. The reduction xm+1
n = xm

n+1 leads to a homographic
mapping and thus we proceed to xm+1

n = xm
n+2. Putting x = −y − 1 we obtain readily the

mapping
yn+1yn−1 + yn−1 − σnyn(yn−1 + 1) = 0, (2.18)

where σn is to be understood now as a free function of n only. The mapping (2.18) was
identified in [20] as a linearisable system, the linearisation being obtained by a Cole-Hopf
transformation. Next we examine the reduction xm+1

n = xm
n+3 which leads to

xn+3 = σnxn
1 + xn+1

1 + xn
. (2.19)

Putting σn = ρn+2/ρn+1 we can integrate (2.19) to

xn+1xn−1 = cρn
1 + xn−1

xn
. (2.20)

This mapping is a subcase of the generic projective second-order mapping identified in [20]
and can thus be reduced to a linear system. It goes without saying that the reductions
we presented above are just the first few of an infinite hierarchy of reductions all of which
are integrable. They have been chosen because they are the ones which can be reduced to
second-order mappings.

3 A reduction of the discrete Sawada-Kotera equation

In the previous section we have presented the general method for the construction of
reductions of an integrable lattice, focusing on second-order nonautonomous systems, in
particular Painlevé equations. In this section we use our approach in a different direction.
Our starting point is the well-known result of Fordy [21] on the Hénon-Heiles system:

x′′ = −λx2 − y2 (3.1a)
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y′′ = −2xy. (3.1b)

Three subcase of this system are integrable [22], corresponding to λ = 1, 6, 16. Fordy has
shown that these subcases of this system, when (3.1) is recast in the form of a fourth-order
equation

x′′′′ − (8 + 2λ)xx′′ − 2(λ − 1)x′2 +
20

3
λx3 − 4E = 0 (3.2)

(where E is the total energy), are precisely the stationary flows of (respectively) the
Sawada-Kotera, Lax5-KdV and Kaup-Kuperschmidt equations, once integrated. (Of course,
the integration of these stationary flows introduces a constant which is not a prori related
to the energy of the Hénon-Heiles system. This means simply that the general solution of
the equations of the stationary flows is richer than that of the Hénon-Heiles system which
is recovered only when the integration constant is precisely 4E).

It is thus interesting to perform the analogue of the stationary reduction for the discrete
equivalent of these PDEs and thus recover the discrete counterparts of the integrable
Hénon-Heiles systems. The only difficulty in this enterprise is that the discrete analogues
to the Lax5-KdV and Kaup-Kuperschmidt equations are not yet known (at least to the
present authors). Thus in what follows we restrict ourselves to the analysis of the discrete
Sawada-Kotera equation.

In [23] Hirota and Tsujimoto have presented the discrete Sawada-Kotera equation. Its
nonlinear form is

um+1
n (1 + αum+1

n+1 )

1 + βum+1
n um+1

n+1 um+1
n+2

=
um

n (1 + αum
n−1)

1 + βum
n um

n−1u
m
n−2

. (3.3)

The simplest reduction one can implement on (3.3) is um+1
n = um

n , which amounts to
ignoring the m-dependence. Omitting the common index m we can rewrite (3.3) as

un(1 + αun+1)

1 + βunun+1un+2

=
un(1 + αun−1)

1 + βunun−1un−2

. (3.4)

This is a fourth-order mapping which can be readily integrated. Putting

wn =
1 + αun

1 + βun+1unun−1

(3.5)

we have from (3.4) wn+1 − wn−1 = 0 with solution wn = γ + δ(−1)n. Neglecting the
(−1)n dependence we obtain a mapping of the form un+1un−1 = a + b/un which is just a
special case of the QRT mapping [24]. If we keep the (−1)n term, we must distinguish the
evolution of the even and odd index terms, which leads to a mapping of an “asymmetric”
QRT form. Still it turns out that one can obtain a single, “symmetric”, QRT mapping
even in this case, the form of which is (un+1un − 1)(unun−1 − 1) = aun/(un + b).

The reduction um+1
n = um

n+1 is more interesting. We obtain

un+1(1 + αun+2)

1 + βun+1un+2un+3

=
un(1 + αun−1)

1 + βunun−1un−2

(3.6)

which is a fifth-order mapping. Its integration is again based on the use of the variable wn

defined by (3.5). Using it in (3.6) we find un+1wn+2 = unwn−1. It suffices now to introduce
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vn = unwn+1wnwn−1 and we can show that v satisfies the equation vn+1 − vn = 0. Thus
v is constant and we obtain finally the fourth-order mapping:

un
1 + αun+1

1 + βun+2un+1un

1 + αun

1 + βun+1unun−1

1 + αun−1

1 + βunun−1un−2

= c (3.7)

We claim that this mapping is the discrete analogue of (3.2) for λ=1, and is thus the
discrete analogue of the case where the Hénon-Heiles system is integrable through sepa-
ration of coordinates. Before proceeding to the continuous limit we can exhibit one more
reduction which can be written as a fourth-order system, namely um+1

n = um
n+2. We obtain

now the sixth-order equation

un+2(1 + αun+3)

1 + βun+2un+3un+4

=
un(1 + αun−1)

1 + βunun−1un−2

. (3.8)

Using the auxiliary quantity w we find, proceeding exactly as in the case of the previous
reduction, that unun+1wn−1wnwn+1wn+2 = c2 where c is a constant. Moreover in this
case one more integration is possible. Putting zn = unwn+1wn−1 we rewrite the previous
equality as znzn+1 = c2 and, neglecting a possible even-odd degree of freedom, we have
zn = c. The final result is a fourth-order mapping

un
1 + αun+1

1 + βun+2un+1un

1 + αun−1

1 + βunun−1un−2

= c (3.9)

which, we claim, is also a discrete form of the stationary flow (3.2) for λ=1.
In order to prove the relation of (3.7) and (3.9) to (3.2) it suffices to compute the

continuous limit of these mappings. We start with (3.7) and, in order to simplify the
calculations, we introduce c = γ3. Moreover we put u = 1−ǫ2x, α = −2/5−2ǫ2φ/5−ǫ4(ρ−
φ2)/15, β = −1/10−3ǫ2φ/10− ǫ4(σ+ρ)/20 and γ = 2/3−2ǫ2φ/9+ ǫ4(σ−ρ)/27. We find
thus at the limit ǫ → 0 the equation x′′′′−10xx′′+ 20

3
λx3−20φx′2+10φx′′+5(σ−φ2)x+φρ =

0. This is precisely equation (3.2) for λ = 1. The extra terms present are related to
the fact that the Hénon-Heiles potential can be augmented by the addition of quadratic
and linear terms and still retain its integrability (provided these terms are chosen in an
adequate way) [22]. The canonical form of the Hénon-Heiles Hamiltonian is obtained
after a translation of the dependent variable which makes the linear terms vanish, but
it is equally possible to introduce a different translation and put the quadratic term to
zero. The same transformation can be performed on the Sawada-Kotera equation above,
eliminating the x′′ and x′2 terms whereupon a choice of σ leads to the canonical form
(3.2). Still it is interesting to remark that the discrete equation (3.7) corresponds to
the most general, λ = 1, Hénon-Heiles case. We turn now to the mapping (3.9). We
introduce c = γ2 and put u = 1 − 4ǫ2x/3, α = −5/9 − 10ǫ2φ/27 − ǫ4(5ρ + σ − 2φ2)/27,
β = −1/5− 2ǫ2φ/5− ǫ4(ρ + σ)/5 and γ = 5/9− 5ǫ2φ/27 + 5ǫ4(σ − ρ)/54. We find thus at
the limit ǫ → 0 the equation x′′′′− 10xx′′ + 20

3
λx3 − 10φx′2 +5φx′′ +2(3σ−φ2)x+φρ = 0.

Again we find, as expected, the stationary (integrated) Sawada-Kotera equation.

4 Conclusions

In this paper we have presented a novel method to obtain reductions of integrable lattices.
The method is based on the existing integrable deautonomizations of partial difference
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equations. We have shown that following our reduction procedure it is possible to obtain
mappings which are discrete Painlevé equations. A remarkable result is that some of the
latter are of multiplicative, q, type while all the previously known lattice similarity reduc-
tions led to difference equations (at this point we must mention the approach of Kajiwara,
Noumi and Yamada [25] on the reductions of the q-KP hierarchy who also obtained q-
discrete analogues of Painlevé equations). The examples presented here were limited to
second-order systems. However, since all reductions of an integrable lattice are integrable
in their own right, our approach furnishes a method for the derivation of higher order
integrable systems, in particular discrete analogues of higher-order Painlevé equations (a
domain which is far from having been thoroughly explored even in the continuous case).
In the case of linearisable lattices the method introduced in this paper leads to linearisable
mappings, which can in principle be obtained at every order.

One point that has to be investigated concerning these higher-order systems is whether
they are independent of the ones obtained at lower order. We believe, in the light of the
low-order results where we have shown for instance that two consecutive reductions lead
to different Painlevé equations, that the higher order systems are not mere differential
consequences of the lower ones, but stand in their own right. (This is not a rigourous
statement of course and a more thorough analysis is needed for the study of the higher-
order systems.)

The stationary reductions of the Sawada-Kotera equation and its relation to the Hénon-
Heiles system offer another interesting perspective: that of the construction of the discrete
analogue of integrable Hamiltonian systems. It goes without saying that this study can be
undertaken, following our method, only after one has solved a highly nontrivial problem,
that of the construction of discrete analogues of integrable evolution equations of higher
order.
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