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Abstract

In this paper, a discrete version of the Eckhaus equation is introduced. The discretiza-
tion is obtained by considering a discrete analog of the transformation taking the con-
tinuous Eckhaus equation to the continuous linear, free Schrödinger equation. The
resulting discrete Eckhaus equation is a nonlinear system of two coupled second-order
difference evolution equations. This nonlinear (1+1)-dimensional system is reduced
to solving a first-order, ordinary, nonlinear, difference equation. In the real domain,
this nonlinear difference equation is effective in reducing the complexity of the discrete
Eckhaus equation. But, in the complex domain it is found that the nonlinear difference
equation has a nontrivial Julia set and can actually produce chaotic dynamics. Hence,
this discrete Eckhaus equation is considered to be “quasi” integrable. The chaotic
behavior is numerically demonstrated in the complex plane and it is shown that the
discrete Eckhaus equation retains many of the qualitative features of its continuous
counterpart.

1 Introduction

Discrete nonlinear models play an important role in physics and biology (see for example
[5, 13]). Some well known lattices are the Toda lattice [9] and the nonlinear ladder network
[10, 11]. This motivated several studies in which integrable discretizations of physically
significant PDE’s were obtained, such as the nonlinear Schrödinger equation [1, 3], the
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Korteweg-de Vries equation [4], and the Sine-Gordon equation [12]. All of the above
mentioned studies refer to nonlinear PDE’s integrable by the Inverse Scattering Transform
(IST); the corresponding discretizations are nonlinear, differential-difference equations,
still integrable by the IST method.

In the present contribution, we consider the discretization of a nonlinear Schrödinger-
type equation, the Eckhaus equation [7], which belongs to a different class of integrable
nonlinear PDE’s, often termed C-integrable equations [6]. In fact, the Eckhaus equation
is known to be exactly linearized, through a change of dependent variables, into the linear,
free Schrödinger equation [7].

The outline of this paper is as follows. First, we obtain a discretization of the Eckhaus
equation which is related, via a point transformation, to the (1+1)-dimensional, discrete
Schrödinger equation. We show that in the continuum limit the discretization reduces
to a system of nonlinear PDE’s which is equivalent to the Eckhaus equation. In the
large n limit, we can invert the point transformation to obtain an explicit, asymptotic
expression for the solution of the discrete model. In general, the point transformation
must be evaluated numerically. The results indicate solitonic behavior for the discrete
solutions, in analogy with the behavior of the solutions of the continuous model. The
novelty here is the following. The continuous Eckhaus equation can be linearized to
the linear, (1+1)-dimensional, free Schrödinger equation and both the direct and inverse
transformations are explicit. However, for the discrete Eckhaus equation we have only one
of the transformations being explicit; namely, the one which takes the nonlinear system
to the linear, free Schrödinger equation is explicit. The inverse transformation requires
one to solve a first-order, nonlinear, ordinary difference equation, for which no explicit
solution is known. Hence, we refer to this discretization as “quasi” integrable. In general,
one might even have chaotic dynamics, which we, in fact, find numerically in the complex
domain. This is a manifestation of Julia set dynamics. The transformation is found to be
effective in the real domain in the sense that numerically solving a first-order nonlinear
difference equation is almost immediate. Since the transformation, at a given time t, is
given by a first-order, ordinary, nonlinear, difference equation, the complexity of solving
the full (1+1)-dimensional nonlinear system (2.8) given below is greatly reduced.

2 The integrable discrete model

We begin this study with the Eckhaus equation,

iψt + ψxx + 2|ψ|2xψ + |ψ|4ψ = 0 (2.1)

and introduce the linearizing transformation [7]

φ(x, t) = ψ(x, t) exp

[
∫ x

−∞

|ψ(x′, t)|2dx′
]

(2.2a)

which is inverted according to

ψ(x, t) =
φ(x, t)

[

1 + 2
∫ x
−∞

|φ(x′, t)|2dx′
]1/2

. (2.2b)
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The transformation (2.2b) maps (2.1) into the linear, (1+1)-dimensional, free Schrödinger
equation:

iφt + φxx = 0. (2.3)

Formulas (2.2a) and (2.2b) imply that to every solution ψ of (2.1) there corresponds a
solution φ of (2.3), and vice versa. Moreover, the transformation is explicit. Hence the
problem is linearizable and therefore integrable.

In order to obtain an interesting discretization of (2.1), in the following we derive a dis-
cretization of (2.3) in order to implement a discrete analogue of the direct transformation
(2.2a). To this end, we consider the first-order, (1+1)-dimensional, differential-difference
equation

i
dφn(t)

dt
+
φn+1 + φn−1 − 2φn

ǫ2
= 0, (2.4)

which is a finite-difference, spatial discretization of (2.3). Using the representation

φn ≡ ρne
iθn (2.5)

allows the discrete, linear, (1+1)-dimensional, free Schrödinger equation (2.4) to be written
in the equivalent form

ρn,t +
ρn+1 sin ∆θn − ρn−1 sin ∆θn−1

ǫ2
= 0 (2.6a)

−ρnθn,t +
ρn+1 cos ∆θn + ρn−1 cos ∆θn−1 − 2ρn

ǫ2
= 0, (2.6b)

where ∆θn ≡ θn+1 − θn and ρn,t ≡
dρn(t)

dt , etc. Next, motivated by the continuous trans-
formations (2.2a-b), we introduce the point transformation

ρn = Rne
Sn (2.7a)

Sn = ǫ
n

∑

−∞

R2
j , (2.7b)

with Rn ≡ |ψn|, and observe that under (2.7a) and (2.7b), the system (2.6) is transformed
into the system

Rn,t + Sn,tRn +
Rn+1e

ǫR2
n+1 sin∆θn −Rn−1e

−ǫR2
n sin∆θn−1

ǫ2
= 0 (2.8a)

−Rnθn,t +
Rn+1e

ǫR2
n+1 cos ∆θn +Rn−1e

−ǫR2
n cos ∆θn−1 − 2Rn

ǫ2
= 0. (2.8b)

Eqs. (2.8) are a system of first-order, nonlinear, differential-difference equations. In the
following we show that they provide a “quasi” integrable discretization of the Eckhaus
equation (2.1). To this end, we take the continuum limit of (2.8). In the limit as n→ ∞,
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ǫ→ 0 with nǫ = x finite, we obtain the following relations:

Rn → R (2.9a)

Rn±1 → R± ǫRx +
1

2
ǫ2Rxx + · · · (2.9b)

θn±1 → θ ± ǫθx +
1

2
ǫ2θxx + · · · (2.9c)

Sn = ǫ

n
∑

−∞

R2
j →

∫ x

−∞

R2(x′, t)dx′, (2.9d)

which, when substituted into (2.8), give at O(1) the following system of nonlinear coupled
equations:

Rt +R
d

dt

∫ x

−∞

R2(x′, t)dx′ +Rθxx + 2Rxθx + 2R3θx = 0 (2.10a)

−Rθt −Rθ2
x +Rxx +R5 + 4R2Rx = 0. (2.10b)

The system (2.10) is equivalent to the Eckhaus equation (2.1). To see this, in the linear
Schrödinger equation (2.3) we make the substitution

φ = ρeiθ, (2.11)

which is the continuous analogue of (2.5), and obtain the system

ρt + 2ρxθx + ρθxx = 0 (2.12a)

−ρθt + ρxx − ρθ2
x = 0. (2.12b)

The system (2.12) is equivalent to (2.3). Moreover, by using (2.9c) and φn±1 = φ± ǫφx +
1
2ǫ

2φxx + · · · , one can verify that (2.12) coincides with the continuum limit of (2.6). We
now observe that the direct transformation (2.2a) can be written in the form

ρ(x, t) = R(x, t) exp

[
∫ x

−∞

R2(x′, t)dx′
]

, (2.13)

where (2.11) has been used together with the corresponding relation

ψ(x, t) = Reiθ. (2.14)

It is now straightforward to verify that under the transformation (2.13), the system (2.12)
is mapped into the system (2.10). Thus, we conclude that the system (2.10) is equivalent
to the Eckhaus equation (2.1): in fact, it can be obtained, via the direct transformation
(2.13), from the system (2.12) which is in turn equivalent to the linear, free Schrödinger
equation (2.3). As a consequence, the discrete system (2.8) provides a discretization of
the Eckhaus equation (2.1). The system (2.8) is special in the sense that it results from
the use of the point transformation (2.7) to the discrete, linear, (1+1)-dimensional, free
Schrödinger equation (2.4).
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We now show that the point transformation (2.7), in the continuum limit, reduces to
the direct transformation (2.2a). From (2.2a), we obtain the following relation for the
square modulus of φ and ψ:

|φ(x, t)|2 = |ψ(x, t)|2 exp

[

2

∫ x

−∞

|ψ(x′, t)|2dx′
]

, (2.15)

and we stipulate that Arg(φ) = Arg(ψ). On the other hand, from (2.7) we obtain

ρ2
n

ρ2
n−1

=
R2

n

R2
n−1

exp
(

2ǫR2
n

)

(2.16)

which, when relations (2.9) are used, gives the continuum limit

ρ2

ρ2
(

1 − ǫρ2
x

ρ2 + · · ·
) =

R2
(

1 + 2ǫR2 + · · ·
)

R2
(

1 − ǫR2
x

R2 + · · ·
) . (2.17)

We now use (2.17) together with (2.11) and (2.14) obtaining at O(ǫ)

|φ(x, t)|2x
|φ(x, t)|2

=
|ψ(x, t)|2x
|ψ(x, t)|2

+ 2|ψ(x, t)|2, (2.18)

which in turn implies

∂

∂x
ln

|φ(x, t)|2

|ψ(x, t)|2
= 2|ψ(x, t)|2. (2.19)

Finally, integrating (2.19) one obtains exactly (2.15).
Writing Xn ≡ R2

n, (2.16) can be written as

Xn−1 =
ρ2

n−1

ρ2
n

Xne
2ǫXn . (2.20)

This is an interesting first-order, nonlinear, ordinary, difference equation for Xn and pro-
vides the inverse transformation of (2.7). Thus at t = 0 we use (2.7) to map the initial
condition for the discrete Eckhaus equation ψn(t = 0) = Rn(t = 0)eiθn(t=0) to the initial
condition for the linear problem (2.4) from (2.5). Note that the phase of the Eckhaus
solution is the same as the phase of the linear, free Schrödinger solution. One then solves
the linear equation (2.4). However, inversion of the map requires solving a nonlinear,
first-order discrete equation, the solution to which, to our knowledge, has no explicit
representation. For this reason, we say the discrete Eckhaus equation (2.8) is “quasi”
integrable. In Sect. (4), we show that (2.20) yields chaotic-like dynamics (as an analog of
the Julia set phenomenon) in the complex plane.

2.1 General l2 solution

Here we calculate the general solution of (2.4) with initial data in l2. The initial data
ρn(t = 0), θn(t = 0) are obtained from ψn(t = 0) = Rn(t = 0)eiθn(t=0) where ρn is
obtained from (2.7). Then from the properties of the discrete Fourier transform, we see
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that the solution of the discrete Eckhaus equation is also in l2 for all time t. Using the
discrete Fourier transform, the general solution of (2.4) can be written as

φn(t) =
ǫ

2π

∫ π/ǫ

−π/ǫ
φ̂0(k)e

i[knǫ−ω(k)t]dk, (2.21)

with the transform pair φn = 1
2πi

∮

φ̂zn−1dz, φ̂(t) =
∑∞

−∞ φ(t)nz
−n, z = eikǫ and the

discrete dispersion relation ω(k) = 2
ǫ2

[1 − cos(kǫ)]. Then, using (2.5), (2.21) along with
the nonlinear equation (2.16) gives the l2 solution of the discrete Eckhaus equation (2.8).
In general, the first-order, nonlinear, ordinary difference equation (2.16) must be inverted
numerically. To our knowledge, no explicit expression for the solution is known.

2.2 Soliton and asymptotic solutions

In analogy with the continuum case, we expect the discrete Eckhaus equation (2.8) to
admit kink-like solutions. In the continuum limit, soliton solutions are obtained from
special solutions of (2.3) of the form φ = ek(x−x0)−Ωt. We look for similar types of discrete
solutions. In fact, one can verify a solution of the discrete Schrödinger equation (2.4) is
given by,

φn = rne−Ωtei(kn−ωt), r > 1, (2.22a)

with

ω =
2 − (r + 1/r) cos(k)

ǫ2
, (2.22b)

Ω =
(r − 1/r) sin(k)

ǫ2
. (2.22c)

The above solution, when used in the transformation (2.20) and using (2.5), gives, at any
time t,

Xn−1 = λXne
2ǫXn , (2.23a)

where

λ =
ρ2

n−1

ρ2
n

= r−2. (2.23b)

Thus, solving (2.23a), using (2.23b), forXn(t) gives R2
n(t). With the phase θn(t) = kn−ωt,

one obtains the solution to the discrete Eckhaus equation (2.8): ψn(t) = Rn(t)eiθn(t). In
the continuous limit, (2.15) implies that as x → −∞, |ψ|2 ∼ |φ|2, which for a one-soliton
solution is of the form |ψ|2 ∼ e2(k(x−x0)−Ωt). In analogy with the continuum limit, we now
assume Xn, for n→ −∞, to have the following form:

Xn ≈
C

r2(n−Ωt)
, n→ −∞, (2.24)
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where C is an arbitrary, non-negative constant and, for convenience, we set k = 1. When
this is substituted into (2.23), one finds an explicit, asymptotic expression for Xn−1, which
is valid in the large n limit:

Xn−1 ≈ λ
C

r2(n−Ωt)
exp

(

2ǫC

r2(n−Ωt)

)

, n→ −∞. (2.25)

We remark that (2.23) can be viewed as a continuous family (indexed by time t) of a

discrete dynamical system, with stable fixed points X∗ = 0 and X∗ = ln
(

r2k

2ǫ

)

.

In the next section, we numerically evaluate the discrete inverse transform (2.20). The
results below show that Xn exhibits the expected solitonic (kink-like) behavior.

3 Numerical solutions

Here we discuss the numerical inversion of (2.20) and present numerical examples of
solitonic-like solutions to the discrete Eckhaus equation. We write (2.20) as

Xn−1 − λnXne
2ǫXn = 0, (3.1)

where λn ≡ (ρn−1/ρn)2 ≥ 0, Xn ≥ 0. Appealing to the Implicit Function theorem, we see
that given λn (at time t) and Xn−1, (3.1) is solvable for any Xn ≥ 0 and by monotonicity
the solution is unique. For fixed time t, λn is known from the solution of (2.4). Then,
given Xn−1, we use Newton’s method to solve for Xn and hence Rn = |ψn|. Below we
exhibit specific numerical solutions that exhibit solitonic behavior.

3.1 Kink-like solutions

Here we display a collision involving two kink-like solutions. First, we discuss the cor-
responding solution for the continuous Eckhaus equation. We take as a solution to the
continuous Schrödinger equation (2.3) the sum of two traveling waves: φ = φ1 + φ2, with

φi(x, t) = Ai exp
[

pi

(

x− x
(i)
0 − Ωit

)]

ei(kix−ωit), pi > 0, i = 1, 2 (3.2)

and the dispersion relations ωi =
Ω2

i

4 − p2
i , Ωi = 2ki. For ease of notation, we define the

following quantities:

ai ≡ x− x
(i)
0 − Ωit, i = 1, 2, (3.3)

b ≡ (k1 − k2)x− (ω1 − ω2)t. (3.4)

Then using (2.2b), the squared modulus of the solution to the continuous Eckhaus equation
(2.1) is given by

|ψ(x, t)|2 =
A2

1e
2p1a1 +A2

2e
2p2a2 + 2A1A2e

p1a1ep2a2 cos(b)

1 +
A2

1
p1
e2p1a1 +

A2
2

p2
e2p2a2 + 2A1A2ep1a1+p2a1

(p1+p2)2+(k1−k2)2
[(p1 + p2) cos(b) + (k1 − k2) sin(b)]

.

(3.5)
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In analogy, for the discrete Eckhaus equation, we take as a solution to (2.4) the sum of

two traveling waves: φn = φ
(1)
n + φ

(2)
n , with

φ(j)
n (t) = r

n−n
(j)
0

j e−Ωjtei(ǫkjn−ωjt) (3.6a)

and the discrete dispersion relations

ωj = ǫ−2 [2 − (rj + 1/rj) cos(ǫkj)] (3.6b)

Ωj = ǫ−2 (rj − 1/rj) sin(ǫkj). (3.6c)

To obtain the squared modulus of the discrete Eckhaus equation, we must numerically
solve (3.1), as described above. Figure (1) shows a graph of (3.5) for parameter values

A1 = 1, p1 = 1.2, k1 = 3/4, x
(1)
0 = −20 and A2 = 1, p2 = 1.5, k2 = 1/2, x

(2)
0 = 0. The

figure clearly shows two kink solitons moving to the right, the shorter soliton moving faster
than the taller soliton, with a single soliton emerging from the ensuing collision. As noted
in [7], the collision is inelastic. Figure (2) shows the corresponding discrete solution for

parameter values r1 = 1.1, n
(1)
0 = −115, k1 = π/2 and r2 = 1.3, n

(2)
0 = −50, k2 = 0.15π.

For convenience, we took the lattice spacing ǫ to be unity. For appropriate values of the
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discrete parameters, if we take ǫ → 0 (i.e. using numerically smaller values of ǫ), the
discrete solution is found to converge to the continuous solution. The figures clearly show
that the discrete solution is qualitatively similar to the continuous solution.

3.2 Boomeron

Here we consider a so-called boomeron [7]. This type of solution arises from a special
choice of parameter values in (3.2). Taking p1 = p2 ≡ p > 0 and Ω1 = −Ω2 ≡ Ω > 0, (3.5)
reduces to

|ψ(x, t)|2 =
A2

1e
2pa1 +A2

2e
2pa2 + 2A1A2e

pa1epa2 cos(2b)

1 + +1
p

[

A2
1e

2pa1 +A2
2e

2pa2
]

+ 2A1A2epa1epa2

p2+k2 [p cos(2b) + k sin(2b)]
, (3.7)

with b = kx − ωt. As shown in [7], as t → −∞ there is only one kink moving towards
increasing values of x and as t→ ∞ there is only one kink moving in the opposite direction,
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reminiscent of a boomerang. Here we note that in addition to this “boomeranging” feature,
the kink emits radiation at the point where it changes direction of travel (see Fig.(3)).
(This was previously not noted in [7].) Also, using (3.7) one can show that the radiation
persists as x→ ∞.

Figure (3) shows a plot of (3.7) for parameter values A1 = 1, k1 = 1, x
(1)
0 = −10, A2 = 1,

k2 = −1, x
(2)
0 = 10, p = 1.5 and Ω = 2, while Fig. (4) is the corresponding discrete solution
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Figure 3. A continuous boomeron
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with parameter values r = 1.5, n
(1)
0 = −10, k1 = π/2, n

(2)
0 = 10, k2 = π/2. Again, the

figures show that the discrete solution retains the qualitative features of the continuous
solution, even for ǫ = 1. When ǫ is sufficiently reduced, the discrete solution tends to its
continuous counterpart.

4 Chaotic dynamics

The singularity structure in the complex plane of a solution to a difference equation is
intimately related to the integrability of the equation [2]. To investigate the map (3.1),
we extend (3.1) to the complex plane by allowing Xn to be complex valued, now denoted
by Zn. Because of the utility of Newton’s method in numerically solving (3.1), we first
consider the Newton map associated with (3.1), given by

Zn+1 = Zn −
f(Zn)

f ′(Zn)
, (4.1)

where f(Z) = α − λZe2ǫZ . We take λ to be independent of n, for simplicity. More
explicitly,

Zn+1 =
2ǫZ2

n

1 + 2ǫZn
+

αe−2ǫZn

λ(1 + 2ǫZn)
. (4.2)

Note that here n is an iteration index and not a spatial index as in (3.1). The idea is to now
vary α in the complex plane (which is analogous to varying Xn−1 in (3.1)) and determine
which values of α render (4.2) a convergent sequence and which do not. In this way, we
obtain the filled Julia-like set associated with the Newton map (4.2). Numerically, for a
fixed α, if the sequence (4.2) did not converge in 100 iterations, it was deemed divergent.
Figure (5) shows the resulting calculation. (See next page.)
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Black regions are divergent, while white regions are convergent. For simplicity, we took
ǫ and λ to be unity and used a starting iterate of Z0 = 1. Moving from left-to-right,
top-to-bottom, the figures are magnified by roughly a factor of ten. The figures clearly

Figure 5. Fractal-like structure generated by Newton map associated with f(z) = α−ze2z. Black

regions are divergent and white regions convergent.

show a self-similar structure, indicative of a fractal on the boundary of the filled Julia-like
set. This strongly suggests that there are regions in the complex α plane where (4.2) has
chaotic dynamics. This complicated structure indicates that the discrete Eckhaus equation
in not integrable because it is obtained by employing the chaotic map (2.20). Here we
have used the term quasi-integrable. We note that the filled Julia-like set obtains in the
limit as n → ∞. This relates to the behavior of the transformation (4.2) in the sense of
reference [2], which investigates the growth properties of the solution as |n| → ∞ with n
complex.
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We finally remark that the original map f(z) = λze2ǫz numerically demonstrates chaotic
dynamics as well. Figure (6) shows the filled Julia set for this map. For convenience, we
took ǫ = 1/2 and λ = 1. The figures were generated by sampling the complex z plane for a

Figure 6. Filled Julia set generated by f(z) = zez. Black regions correspond to numerically

unbounded orbits, while white regions correspond to numerically bounded orbits.

starting iterate z0; this point was then iterated 30 times according to zn+1 = f(zn) = zne
zn .

If for any n Re(zn) > 20, then the point z0 was considered to have an unbounded orbit, i.e.,
numerically |zn| → ∞. Also if |z30| > 10 the point was considered to have an unbounded
orbit, but if |z30| < 10 the point was considered to have a bounded orbit. The structure
in Fig. (6) was insensitive to the arbitrarily chosen bounds of 10 and 20. These dynamics
appear to be similar to those generated by f(z) = ez, which has been shown to have chaotic
dynamics [8]. We stress that on the real line neither the original map f(z) = λze2ǫz nor
the Newton’s-method map (4.2) exhibit chaotic dynamics; it is only when extended to the
complex plan that we numerically observe the chaotic behavior.

5 Conclusion

In this paper, we have introduced a discrete version of the Eckhaus equation by dis-
cretizing the transformation taking the continuous Eckhaus equation to the linear, (1+1)-
dimensional, free Schrödinger equation. We showed that in the continuum limit, the
discrete Eckhaus equation reduces to the continuous version. The discrete Eckhaus in-
troduced here is a coupled system of two, (1+1)-dimensional, second-order, ordinary, dif-
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ference, nonlinear evolution equations. However, the system is reduced to a nonlinear,
first-order, difference equation, greatly reducing the complexity of the problem. Since
this equation does not have a known explicit solution, we refer to this discrete Eckhaus
equation as “quasi” integrable, and moreover when the first-order difference equation is
extended to the complex plane, we numerically demonstrated that there are regions of
chaotic dynamics. Such lower dimensional reductions might be useful in understanding
and reducing the difficulty of a much wider variety of nonlinear equations.
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