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Abstract

The provenance of Type II hidden point symmetries of differential equations reduced
from nonlinear partial differential equations is analyzed. The hidden symmetries are
extra symmetries in addition to the inherited symmetries of the differential equations
when the number of independent and dependent variables is reduced by a Lie point
symmetry. These Type II hidden symmetries do not arise from contact symmetries or
nonlocal symmetries as in the case of ordinary differential equations. The Lie point
symmetries of a model equation and the two-dimensional Burgers’ equation and their
descendants are used to identify the hidden symmetries. The significant new result
is the provenance of the Type II Lie point hidden symmetries found for differential
equations reduced from partial differential equations. Two methods for determining
the source of the hidden symmetries are developed.

1 Introduction

Partial differential equations (PDEs) describe many scientific and engineering problems.
Nonlinear partial differential equations are difficult to solve analytically as initial-value
problems except for high-symmetry solitons by inverse scattering and two-dimensional,
nonlinear PDEs by a method of characteristics. However, symmetry methods are very
useful in solving PDEs of intermediate symmetry for which special solutions can be deter-
mined (See [12].).

The classic symmetry method for differential equations is based on Lie group symme-
tries [14, 29, 28, 10, 30, 22, 23]. The number of independent and dependent variables of
a partial differential equation can be reduced by one if the PDE is invariant under a Lie
group. Further reductions by Lie group symmetries depend on the structure of the asso-
ciated Lie algebra (See [17] for some initial developments in this regard.). With enough
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reductions of the number of variables the PDE is reduced to an ordinary differential equa-
tion (ODE). The order of this ODE can be reduced until quadratures is reached if there
is a solvable Lie group of sufficient dimension.

It is very desirable to predict how many reductions in the number of variables (order
in the case of an ODE) can be effected from the Lie symmetries of a PDE (ODE). This
number may be more than initially thought due to the presence of hidden symmetries
which were initially identified by Olver [28]. The hidden symmetries of ODEs have been
extensively studied over the past decade [5, 6, 7, 1, 2, 3, 8, 18, 19, 16, 9, 26, 27]. If
the ODE loses (gains) a symmetry in addition to the one used to reduce the order of
the ODE, the ODE possesses a Type I (Type II) hidden symmetry. The Type I hidden
symmetry of ODEs can be predicted from the structure of the Lie algebra at each stage
of the order reduction. These hidden symmetries are nonlocal symmetries. The origin of
the Type II hidden symmetries is less obvious. Some Type II hidden symmetries of ODEs
have been shown to arise from contact symmetries when a derivative transforms to be
part or all of a variable [9] while others arise from nonlocal symmetries [6]. The Type II
hidden symmetries may also arise from particular three-dimensional subalgebras [3]. A Lie
group point symmetry of the three-dimensional subalgebra ‘disappears’ in the first–order
reduction to become a nonlocal symmetry. In the appropriate second–order reduction the
nonlocal symmetry transforms to a Lie point symmetry.

Unlike the case of ODEs hidden symmetries of PDEs have not been studied extensively.
There are some interesting treatments of hidden symmetries of PDEs from nonlocal trans-
formations [25] and from conditional symmetries [31]. We confine our investigations here
to hidden symmetries of PDEs for which the number of independent and dependent vari-
ables is reduced by Lie point symmetries. If a PDE loses (gains) a Lie point symmetry
in addition to the Lie point symmetry used to reduce the numbers of independent and
dependent variables, the PDE possesses a Type I (Type II) Lie point hidden symmetry.
In this paper we assume that all hidden symmetries are Lie point hidden symmetries.

One of the earliest cases of Type I hidden symmetries was obtained by an analysis
of a two-dimensional linear heat conduction equation [13]. Several examples of Type II
hidden symmetries of PDEs have been reported although none was designated a ‘hidden’
symmetry [30, 15, 11]. An extra (not inherited) symmetry was reported in the ODE in
the final step of the reduction path of the three-dimensional linear wave equation [30]. An
extra (not inherited) symmetry was found in a reduction of the two-dimensional Burgers’
equation [15]. In a recent conference presentation [4] Type II hidden symmetries were
identified in the reduction path of the two-dimensional, linear wave equation as well as
more Type II hidden symmetries of the three-dimensional linear wave equation. None of
these reports suggested an origin for the Type II hidden symmetries found by reducing the
number of variables of PDEs; the origin has been a mystery. It has been noted [4] that these
Type II hidden symmetries do not arise from contact symmetries or nonlocal symmetries
since the transformations to reduce the number of variables involve only variables. Thus
the origin of these hidden symmetries must be in point symmetries.

We have identified a common provenance for the Type II hidden symmetries of differ-
ential equations reduced from PDEs that covers the PDEs studied. The crucial point is
that the differential equation that is reduced from a PDE and possesses a Type II hidden
symmetry is also a reduced differential equation from one or more other PDEs. The in-
herited symmetries from these other PDEs are a larger class of Lie point symmetries that
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includes the Type II hidden symmetries. The Type II hidden symmetries are actually
inherited symmetries from one or more of the other PDEs. The other PDEs are assumed
to have the same independent and dependent variables and to be reduced by the same
symmetry as the original PDE. Of course for any given PDE the reduction in the number
of variables may produce the maximum number of inherited symmetries possible such that
all other reduced differential equations have the same or fewer inherited symmetries.

The crucial question is whether we can identify the PDEs from which the Type II
hidden symmetries are inherited. In most cases there appear to be an indefinite number
of these PDEs; we present some possibilities. Some PDEs may be identified by inspection;
others may be constructed by calculating the invariants by reverse transformations. Both
methods are developed in the next section.

2 Model equation

We begin by introducing a model equation to demonstrate the properties of Type II hidden
symmetries. The model equation is

uxxx + u (ut + cux) = 0, (2.1)

where c is a constant and the subscripts denote differentiation with respect to the variable
indicated. This nonlinear PDE is similar to but not the same as the KdV equation [24].
The reduced differential equation from the KdV equation does not possess a Type II
hidden symmetry for the traveling-wave transformation assumed below. The Lie point
symmetries of (2.1) are represented by the Lie group generators

U1 =
∂

∂t
(2.2a)

U2 =
∂

∂x
(2.2b)

U3 = 3t
∂

∂t
+ (x + 2ct)

∂

∂x
(2.2c)

U4 = t
∂

∂t
+ ct

∂

∂x
+ u

∂

∂u
. (2.2d)

These symmetries are determined by the classical method or more easily by a computer
program such as LIE [20, 21]. The symmetry cU2 + U1 is used to reduce the number of
variables of (2.1) via w = u, y = x − ct and w(y) is the traveling-wave solution sought.
The reduced differential equation is the ODE

wyyy = 0 (2.3)
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which has seven Lie point symmetries. The Lie group generators that represent its seven-
dimensional Lie algebra are

X1 =
∂

∂y
(2.4a)

X2 =
∂

∂w
(2.4b)

X3 = y2 ∂

∂w
(2.4c)

X4 = y
∂

∂y
(2.4d)

X5 = y
∂

∂w
(2.4e)

X6 = w
∂

∂w
(2.4f)

X7 = 1
2y2 ∂

∂y
+ yw

∂

∂w
. (2.4g)

The inherited symmetries are U1 → X1, U3 → X4, U4 → X6, all of which can be
inferred by looking at the Lie algebra of (2.2). The other symmetries are Type II hidden
symmetries.

Two possible methods have been identified for finding possible PDEs the symmetries
of which are inherited in the transformation w = u, y = x− ct in (2.4). The first method
is to guess possible PDEs, evaluate their Lie point symmetries by LIE and then check
if the group generators reduce to (2.4). That is the easiest method if it works. The
second method is to perform reverse transformations for each group generator in (2.4) and
determine the PDE from common invariants for the group generators.

Some other likely PDEs that reduce to (2.3) by using the variables y and w are

uxxx = 0, uttt = 0, uxxt = 0, uxtt = 0, (2.5)

where u = u(x, t) still. The Lie group generators for the first equation in (2.5) are

U1 = F1(t)
∂

∂x
(2.6a)

U2 = F2(t)
∂

∂u
(2.6b)

U3 = F3(t)
∂

∂t
(2.6c)

U4 = F4(t)x2 ∂

∂u
(2.6d)

U5 = F5(t)x
∂

∂x
(2.6e)

U6 = F6(t)x
∂

∂u
(2.6f)

U7 = F7(t)u
∂

∂u
(2.6g)

U8 = F8(t)
(

1
2x2 ∂

∂x
+ ux

∂

∂u

)
. (2.6h)
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The functions Fj(t), j = 1, . . . , 8, are arbitrary here. However, by appropriate choices of
polynomials in t for Fj(t) (and also taking combinations) the group generators become

V1 =
∂

∂x
(2.7a)

V2 =
∂

∂u
(2.7b)

V3 =
∂

∂t
(2.7c)

V4 = (x− ct)2
∂

∂u
(2.7d)

V5 = (x− ct)
∂

∂x
(2.7e)

V6 = (x− ct)
∂

∂u
(2.7f)

V7 = u
∂

∂u
(2.7g)

V8 = 1
2(x− ct)2

∂

∂x
+ (x− ct)u

∂

∂u
(2.7h)

and reduce to the seven group generators in (2.4). (The choice of polynomial is dictated
purely by the need to recover (2.4).) The symmetry X7 in (2.4) is not inherited for uxxt = 0
in (2.5) although the other six symmetries are inherited. By interchanging x and t we see
that the symmetries of uttt = 0 in (2.5) are inherited to give the symmetries in (2.4), but
the symmetry of X7 in (2.4) is not inherited for uxtt = 0. It is clear then that the ‘extra’
symmetries obtained for (2.4) do not have any connection with the original PDE (2.1),
but rather have come from the fact that (2.4) could be obtained from the reduction of
another PDE. Thus the origin of the reduced ODE itself is not a simple matter.

Remark: In the above we have assumed that the PDEs (2.5) are all reduced by using
the same variables as the original PDE (2.1). This does not have to be the case. For
example one could envision a PDE of the form

wxxx + wxx (xwxx + twtx) = 0 (2.8)

or

wxxx + wxx

(
wx +

twt

x

)
= 0, (2.9)

both of which reduce to (2.3) when we use the new independent variable y = x/t with
the dependent variable unchanged. Indeed this approach could yield fruitful results by
relating new (or unknown) PDEs to known integrable PDEs via common reduced PDEs
(or ODEs). We shall explore this elsewhere.

The second method to determine possible partial differential equations other than (2.1)
involves reverse transformations. In this approach one starts with the Lie group generators
in (2.4) and calculates the Lie generators in the original variables of (2.1) that reduce to
the group generators in (2.4). Once the generators are computed, the common invariants
are calculated. The other possible PDEs are combinations of these invariants. To illustrate
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the procedure we find the group generator that reduces to X7 in (2.4). Let

Ua = ξx(x, t, u)
∂

∂x
+ ξt(x, t, u)

∂

∂t
+ η(x, t, u)

∂

∂u
. (2.10)

For Ua to reduce to X7 we require that

Ua(u) = η = yw = (x− ct)u (2.11a)

Ua(y) = ξx − cξt = 1
2y2 = 1

2(x− ct)2. (2.11b)

Then η is determined, but we need another condition to find ξt and ξx . The reduction of
the PDE is assumed to be via the traveling-wave symmetry,

Uc = c
∂

∂x
+

∂

∂t
, (2.12)

and the commutator

[Uc, Ua] = AaUc (2.13)

holds where Aa is a constant that may be zero. This condition yields

ξt = Aat + fa(x− ct) (2.14a)

ξx = 1
2(x− ct)2 + Aact + cfa(x− ct) (2.14b)

with fa an arbitrary function of its argument. Depending upon the choices for Aa and
fa, we obtain different group generators. The simplest choice with Aa and fa both zero
works here so that Ua = V8. The common invariants that reduce to uxxx = 0 are found
from (2.7). They are uxxx for V1, V2, V3, V4, V6 but u3

xuxxx for V5, uxxx/u for V7 and
u2uxxx for V8. (We note that the characteristic equations may be difficult to integrate for
some choices of group generators.) Since the invariants are set equal to zero, the PDE is
uxxx = 0.

3 Two-dimensional Burgers’ equation

The original one-dimensional Burgers’ equation in gas dynamics was simplified from the
Navier-Stokes equations and was a model equation for shock waves. Some applications
of the different Burgers’ equations have been discussed previously [15]. The existence
of an extra symmetry besides the inherited symmetries of the two-dimensional Burgers’
equation under one particular symmetry reduction was noted. We discuss the origin of
this Type II hidden symmetry.

The two-dimensional Burgers’ equation is

ut + uuz = uxx + uzz, u = u(x, z, t). (3.1)
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The Lie group generators of (3.1) are

U1 =
∂

∂x
(3.2a)

U2 =
∂

∂z
(3.2b)

U3 =
∂

∂t
(3.2c)

U4 = t
∂

∂z
+

∂

∂u
(3.2d)

U5 = 2t
∂

∂t
+ x

∂

∂x
+ z

∂

∂z
− u

∂

∂u
. (3.2e)

We reduce the number of variables of the two-dimensional Burgers’ equation by the trans-
formation

u = w(t, ρ), ρ = z − x

a
(3.3)

found from the symmetry Ua = aU1 + U2. The reduced PDE is the one-dimensional
Burgers’ equation

wt + wwρ =
1 + a2

a2
wρρ. (3.4)

The symmetries of (3.4) are

X1 =
∂

∂ρ
(3.5a)

X2 =
∂

∂t
(3.5b)

X3 = t
∂

∂ρ
+

∂

∂w
(3.5c)

X4 = 2t
∂

∂t
+ ρ

∂

∂ρ
− w

∂

∂w
(3.5d)

X5 = t2
∂

∂t
+ tρ

∂

∂ρ
+ (ρ− tw)

∂

∂w
. (3.5e)

The symmetries Xj , j = 1, . . . , 4, are inherited symmetries of the two-dimensional Burgers’
equation but X5 is a Type II hidden symmetry.

In order to determine the other possible PDEs the inherited symmetries of which include
all the symmetries in (3.5) we need to make an educated guess. The results of §2 suggest
that a good candidate is

ut + uuz =
1 + a2

a2
uzz, u = u(x, z, t). (3.6)
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Using LIE we find the Lie group generators are

U1 = F1(x)
∂

∂x
(3.7a)

U2 = F2(x)
∂

∂z
(3.7b)

U3 = F3(x)
∂

∂t
(3.7c)

U4 = F4(x)
(

t
∂

∂z
+

∂

∂u

)
(3.7d)

U5 = F5(x)
(

2t
∂

∂t
+ z

∂

∂z
− u

∂

∂u

)
(3.7e)

U6 = F6(x)
(

t2
∂

∂t
+ zt

∂

∂z
+ (z − tu)

∂

∂u

)
. (3.7f)

The Fj(x), j = 1, . . . , 6, are arbitrary functions of x in general but here we find the
symmetries that reduce to those in (3.5) via (3.3). In this case F2 and F4 both form part
of two group generators. For F2 one of the generators becomes V2 and the other combines
with U5 to become V5. Similarly for F4 one of the generators becomes V4 and the other
combines with U6 to form V6. The group generators are then

V1 =
∂

∂x
(3.8a)

V2 =
∂

∂z
(3.8b)

V3 =
∂

∂t
(3.8c)

V4 = t
∂

∂z
+

∂

∂u
(3.8d)

V5 = 2t
∂

∂t
+

(
z − x

a

) ∂

∂z
− u

∂

∂u
(3.8e)

V6 = t2
∂

∂t
+

(
z − x

a

)
t

∂

∂z
+

(
z − x

a
− tu

) ∂

∂u
. (3.8f)

The method of reverse transformations can also be applied to determine the group
generators. Here

UJ = ξj
t (x, z, t, u)

∂

∂t
+ξj

x(x, z, t, u)
∂

∂x
+ξj

z(x, z, t, u)
∂

∂z
+ηj(x, z, t, u)

∂

∂u
, j = 1, . . . , 5,

(3.9)

and the sixth generator arises from aU1 + U2. We find in general, that

ξj
x = Ajx + f j

(
z − x

a

)
, ξj

z = Uj(ρ) + Aj
x

a
+

f j
(
z − x

a

)
a

. (3.10)

Again we take Aj = f j = 0. The resultant group generators are the same as in (3.8).
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Invariants that are common to all six generators in (3.8) give the PDE by taking a
linear combination:

ut + uuz = Cuzz + D
(
uxz +

uzz

a

) (
uxx +

2uxz

a
+

uzz

a2

)
, (3.11)

where C =
(
1 + a2

)
/a2 and D is a constant. There are factors of t3/2 and t3 multiplying

each of the invariants of V5 and V6 respectively, but they cancel in the PDE. Now (3.11)
reduces to (3.6) if D is zero. With D nonzero the Lie symmetries of (3.11), as determined
by LIE, simplify to (3.8) without imposing conditions on the Fj(x) in (3.7).

There is an alternate set of group generators with V5 in (3.8) replaced by U5, F5(x) = 1
in (3.7). We require that the commutator for these generators

[U5, V6] = 2V6 or [V5, V6] = 2V6 (3.12)

holds so that the relation reduces to

[X4, X5] = 2X5 (3.13)

for the group generators in (3.5). The resultant invariants for the alternate set of group
generators excludes one invariant such that D = 0 in (3.11).

4 Conclusion

The provenance of Lie point Type II hidden symmetries has been illustrated for two non-
linear partial differential equations: a model equation and the two-dimensional Burgers’
equation. These Type II hidden symmetries are extra symmetries that appear when the
number of variables of a PDE is reduced by a variable transformation found from a Lie
group symmetry of the PDE. The Type II hidden symmetries are inherited symmetries
of other PDEs in the same independent and dependent variables. The reduction of the
number of variables of these other PDEs is by the same Lie point symmetry used to reduce
the original PDE. Two methods are presented for finding one or more other PDEs from
which the Type II hidden symmetries are inherited.

The first method starts with a guess of the form of the other PDEs. For both examples
the other PDEs are similar to the reduced PDE, but retain the original variables. The
other PDEs are reduced by the same symmetry as the original PDE. Then the Lie group
symmetries of these other PDEs are computed and their reduced form calculated to find
the inherited symmetries.

The second method by reverse transformations starts from the symmetries of the re-
duced differential equation. Then the possible symmetries from which the reduced sym-
metries arose are computed. More symmetries may be found by this method than by
the first method, but the second method is computationally more intensive. Also it may
be difficult to compute the invariants for some choices of group generators. Finally we
observe that there may be other possible PDEs for the two examples shown here.
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