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Abstract

On an arbitrary almost-Kähler manifold, starting from a natural affine connection
with nontrivial torsion which respects the almost-Kähler structure, in joint work with
A. Karabegov a Fedosov-type deformation quantization on this manifold was con-
structed. This contribution reports on the result and supplies an overview of the
essential steps in the construction. On this way Fedosov’s geometric method is ex-
plained.

1 Introduction

Nowadays we have complete results on the existence of a deformation quantization (also
called a star product) for symplectic manifolds and even for general Poisson manifolds.
Indeed the set of equivalence classes of star products are determined. In the symplectic
case the existence was shown by De Wilde and Lecomte [1], Omori, Maeda and Yoshioka
[2], and Fedosov [3]. The general Poisson case was resolved by Kontsevich [4]. In each of
these approaches, different techniques and ideas were used. In the symplectic case Fedosov
gave a very geometric construction procedure.

Beside the question of existence of a star product there is another important point.
If the symplectic manifold carries additional structures, then the question is: is there a
star product which “respect” this structure. For Kähler manifolds Alexander Karabegov
introduced the notion of “separation of variables” [5]. It is equivalent to the notion of
“being of Wick type” introduced by Bordemann and Waldmann [6]. Roughly speaking,
this says that if one restricts the star product (let ⋆ denote the deformed multiplication)
to any open subset then f ⋆ g = f · g, for every pair of local functions f and g, if either
f is holomorphic or g is antiholomorphic. He shows the existence and gives a complete
characterization of all star products with this property [7]. They are parameterized by
certain formal forms, the Karabegov forms.

The examples which were considered by Berezin [8], Cahen, Gutt, and Rawnsley, and
Moreno and Ortega-Navarro are of this type. Also the Berezin-Toeplitz deformation quan-
tization [9], [10] has the “separation of variables” property but with the role of the holo-
morphic and antiholomorphic variables switched [11]. The method used by Karabegov
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in the construction is quite different from Fedosov’s method. Recently, Neumaier [12]
obtained a way how to construct for every Karabegov form a corresponding deformation
quantization by using the technique of Fedosov. In the context of star products for Kähler
manifolds the work of Reshetikhin and Takhtajan, Englǐs, and Dolgushev, Lyakhovich and
Sharapov should also be mentioned.

In this contribution, I want to report on results for the case of almost-Kähler manifolds
[13], jointly obtained with Alexander Karabegov. We start from an almost-Kähler manifold
with a natural affine connection respecting the almost-Kähler structure. In general, this
connection will have nontrivial torsion. Fedosov’s original construction uses a connection
with vanishing torsion. But by a modification of the construction we obtain a Fedosov
type star product also in this case. The zero degree part of the characteristic class of the
star product is constructed. In addition to reporting on the results, it is my aim to give
an overview of Fedosov’s beautiful construction with this contribution.

2 Almost-Kähler manifolds

Let (M,J, ω) be an almost-Kähler manifold, i.e., a differentiable real manifold M endowed
with an almost-complex structure J and a symplectic form ω which are compatible in the
following sense: ω(JX, JY ) = ω(X,Y ) for any vector fields X,Y on M , and g(X,Y ) :=
ω(JX, Y ) is a Riemannian metric. Recall that an almost-complex structure J is a bundle
map for the tangent vector bundle, J : TM → TM , which satisfies J ◦ J = −id. A
symplectic form w is a closed 2-form (i.e. dw = 0) which is non-degenerate. It is known
that on any symplectic manifold (M,ω) one can choose a compatible almost-complex
structure J to make it to an almost-Kähler manifold.

Associated to an almost-complex structure is the Nijenhuis tensor N given by

N(X,Y ) := [X,Y ] + J [JX, Y ] + J [X,JY ] − [JX, JY ], (2.1)

where X,Y are vector fields on M . If N = 0 then the almost-complex structure is
integrable to a complex structure, i.e. there exists an atlas of coordinates such that M
becomes a complex manifold; which in our case is automatically a Kähler manifold.

Let ∇ be an affine connection, i.e. a connection defined in the tangent vector bundle
TM . For each such connection the curvature R and the torsion T is defined as

R(X,Y )Z := [∇X ,∇Y ]Z −∇[X,Y ]Z, T (X,Y ) := ∇XY −∇Y X − [X,Y ]. (2.2)

Here ∇X denotes as usual the covariant derivative in direction of the vector field X.

Fedosov had chosen an affine connection which respects the symplectic form and is
torsion free. Based on this connection he carried out his construction.

With our additional structure given, we want a connection which respect the metric g,
the symplectic form ω and the almost-complex structure J . In the general case requiring
additionally that the connection is torsion free leads to a contradiction. But

Proposition 1. Let ∇ be the unique affine connection which respects the metric g and has
torsion T = (−1/4)N , then ∇ also respects the symplectic form ω and the almost-complex
structure J .
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This is a result due to Yano [14]. A proof can also be found in [13]. Note that if the
almost-complex structure is integrable, i.e. M is indeed Kähler, the Nijenhuis tensor N
vanishes, hence the connection ∇ will become torsion free. It is the Kähler connection.

3 Star product

For the convenience of the reader I recall here the definition of a star product.
Let (M,ω) be a symplectic manifold. Denote by C∞(M) the algebra of (arbitrary

often) differentiable functions. By pointwise multiplication it is an associative and com-
mutative algebra. Using the symplectic form ω one assigns to every f ∈ C∞(M) its
Hamiltonian vector field Xf by ω(Xf , ·) = df(·), and to every pair of functions f and
g the Poisson bracket: { f, g } := ω(Xf ,Xg). The Poisson bracket defines a Lie algebra
structure on C∞(M). With this structure (C∞(M), ·, {, }) becomes a Poisson algebra, i.e.
we have {f, g · h} = {f, g} · h + g · {f, h}, for all f, g, h ∈ C∞(M).

The star product ⋆ is a non-commutative deformation of the multiplication “in direction
of the Poisson bracket”. Associativity is still required. In detail: Let A := C∞(M)[[ν]] be
the algebra of formal power series in the variable ν over the algebra C∞(M). A product ⋆
on A is called a (formal) star product if it is an associative C[[ν]]-linear product such that

A/νA ∼= C∞(M) i.e. f ⋆g mod ν = f ·g,
1

ν
(f ⋆g− g ⋆f) mod ν = − i {f, g}, (3.1)

where f, g ∈ C∞(M). If we write f ⋆ g =
∞
∑

j=0
Cj(f, g)νj , with Cj(f, g) ∈ C∞(M), the Cj

are C-bilinear in f and g, and the conditions above can be reformulated as C0(f, g) = f ·g,
and C1(f, g) − C1(g, f) = − i {f, g}. A star product is called a differential star product if
the Cj are bidifferential operators.

Two differential star products ⋆ and ⋆′ (for the same Poisson algebra) are called equiv-
alent if there exists an isomorphism of algebras B : (C∞(M)[[ν]], ⋆) → (C∞(M)[[ν]], ⋆′),
where B = Id + νB1 + ν2B2 + . . . , and Bj , j ≥ 1, are differential operators on C∞(M).

The equivalence classes of differential star products of a symplectic manifold M are
classified by its characteristic (Fedosov-Deligne) class cl(⋆) ∈ 1

iλ
[ω] + H2

DR(M, C) [[λ]].
Here, H2

DR(M, C) [[λ]] denotes the space of formal power series in the formal variable λ
over the second de-Rham cohomology space of the manifold M .

4 An outline of the modified Fedosov construction

In this section I give an overview of the construction by pointing out the essential steps.
The details of the calculations can be found in [13].

For every point x ∈ M we take an open contractible coordinate chart U with coordinates
{xk, k = 1, . . . , n}. Here n is the dimension of the manifold M . Let TM be the tangent
bundle of M . Restricted to U we can write TM|U

∼= U × R
n. We denote the fiber

coordinates in the bundle by {yk, k = 1, . . . , n}.
The point-wise Wick algebra Wx consists of the formal series

a(ν, y) :=
∑

r≥0,|α|≥0

ar,ανryα, ar,α ∈ C, y = (y1, . . . , yn). (4.1)
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Here α = (α1, . . . , αn) is a multi-index, and we use the usual multi-index notation, e.g.
yα := (y1)α1 · · · (yn)αn . This space is equipped with the fiber-wise Wick product

a ◦ b (ν, y) :=



exp

(

i ν

2

∑

j,k=1,...,n

πjk ∂2

∂yj∂zk

)

a(ν, y)b(ν, z)





|z=y

. (4.2)

Here we used the following notation ∂j := ∂
∂xj , ωjk := ω(∂j , ∂k), (ωjk) := (ωjk)

−1, gjk :=

g(∂j , ∂k), (gjk) := (gjk)
−1, πjk := ωjk − i gjk. The principal idea in constructing f ⋆ g

is now: consider the bundle W of fiber-wise Wick algebras, find a map which maps the
functions on M to sections of the Wick algebra, take the multiplication there and map the
result down again to a (formal) function in such a way that all the necessary conditions are
fulfilled. It was an important idea of Fedosov to increase this infinite dimensional bundle
even more. This also works in the non-torsionfree setting.

Let W be the sheaf of smooth sections of the Wick algebra bundle W , i.e. its elements
are the local sections of type (4.1) where now the ar,α are smooth functions on U . Let
Λ be the bundle of differential forms on M . Denote by W ⊗ Λ the sheaf of W -valued
differential forms and extend the product ◦ to W ⊗ Λ in the natural way by

(a ⊗ α) ◦ (b ⊗ β) := (a ◦ b) ⊗ (α ∧ β). (4.3)

We introduce gradings in (W ⊗ Λ, ◦) by degν(ν) := 1 (the formal degree), degs(y
k) := 1

(the fiber degree), and dega(dxk) := 1 (the alternating degree), where in each case the
degree evaluated at the other generators is set to zero. The total degree is defined as
Deg := 2degν + degs. One easily shows that the algebra is bigraded with respect to Deg
and dega.

The connection ∇ defined by Proposition 1 can be extended to W⊗Λ by the following
description (we use the same symbol for the extended connection)

∇(a ⊗ λ) :=
∑

j



(
∂a

∂xj
−
∑

k,l

Γl
jky

k ∂a

∂yl
) ⊗ (dxj ∧ λ)



+ a ⊗ dλ. (4.4)

The Γl
jk are the Christoffel symbols of the connection ∇ defined by ∇∂j

(∂k) =
∑

l Γ
l
jk∂l.

Again by direct calculations one obtains that the extended ∇ is a dega-graded derivation
of (W ⊗ Λ, ◦).

The Fedosov operators δ and δ−1 on W ⊗ Λ are defined as follows. Let a a local
section of W⊗Λ which is homogeneous with respect to degs and dega and has the degrees
degs(a) = p, and dega(a) = q. We set

δ(a) =
∑

j

dxj ∧
∂a

∂yj
and δ−1a =

{

1
p+q

∑

j yji
(

∂
∂xj

)

a , p + q > 0,

0, , p = q = 0.
(4.5)

Here i( ∂
∂xj ) is the contraction which operates only on the differential part.

Let σ : a 7→ σ(a) be the projection on the (degs, dega)-bihomogeneous part of a of
bidegree zero (i.e. degs(σ(a)) = dega(σ(a)) = 0). The Hodge type decomposition a =
δδ−1a + δ−1δa + σ(a) can be verified. Again the operator δ is a dega-graded derivation of
the algebra (W ⊗ Λ, ◦).
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We need the following intermediate operators T and R which extend in some sense the
torsion and the curvature of our affine connection we started with; hence we use the same
symbols to denote them. If we write the torsion and the curvature with respect of the
basis ∂i of the vector fields as T (∂k, ∂l) =

∑

i T
i
kl∂i and R(∂k, ∂l)∂j =

∑

i R
i
jkl∂i, then they

can be expressed with the help of the Christoffel symbols as

T i
jk = Γi

jk − Γi
kj, Ri

jkl =

(

∂Γi
lj

∂xk
−

∂Γi
kj

∂xl

)

+
∑

m

(

Γm
lj Γi

km − Γm
kjΓ

i
lm

)

. (4.6)

Now the extended T and R are defined as

T :=
1

2

∑

s,j,k,l

ωsjT
j
kly

sdxk, and R :=
1

4

∑

s,j,t,k,l

ωsjR
j
tkly

sytdxk ∧ dxl. (4.7)

Our next goal is to make the extended connection flat, more precisely to add elements
to ∇ with the aim to obtain a D with D2 = 0.

Denote by a(k) for a ∈ W ⊗ Λ the Deg = 2degν + degs = k homogeneous part of a.
We showed in [13] that there is a unique element r ∈ W ⊗ Λ which satisfies dega(r) = 1,
δ−1r = 0, r(0) = r(1) = 0 such that δr = T + R + ∇r − i

ν
r ◦ r. Its components can be

calculated recursively, as

r(2) = δ−1T, r(3) = δ−1

(

R + ∇r(2) −
i

ν
r(2) ◦ r(2)

)

,

r(k+3) = δ−1

(

∇r(k+2) −
i

ν

k
∑

l=0

r(l+2) ◦ r(k−l+2)

)

, k ≥ 1.

By this description the element r is adjusted in such a way that we obtain the

Proposition 2. [13, Thm. 3.1] The operator (called the Fedosov connection)
D := −δ + ∇− i

ν
adWick(r) is a flat connection, i.e. we have D2 = 0.

Here adWick(a) is the operator [a, .] with respect to the fiber-wise Wick product ◦.
The map D is a dega-graded derivation. Hence, the subspace of the flat sections with
alternating degree zero part, WD := ker D ∩W, is a subalgebra of (W, ◦).

Proposition 3. [13, Thm. 3.2] Let σ : WD → C∞(M)[[ν]] be the projection on the part
with no tangent direction variables y, then σ is a bijection.

The inverse mapping τ evaluated for a given function f can be recursively calculated
as

τ(f)(0) = f, τ(f)(k+1) = δ−1

(

∇τ(f)(k) −
i

ν

k
∑

l=0

adWick

(

r(l+2)
)(

τ(f)(k−l)
)

)

, k ≥ 0.

As Fedosov did, we obtain in our case

Theorem 1. The product

f ⋆ g := σ(τ(f) ◦ τ(g)) (4.8)

defines a star product for the almost-Kähler manifold (M,ω).
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To give the leading parts of its characteristic class cl(⋆) we first have to recall the
definition of the canonical class of an almost-complex manifold (M,J). Let TCM be the
complexified tangent bundle and T′

C
M the subbundle of (1, 0) vectors. Let ǫ := c1(T

′
C
M)

be its first Chern class. Then we showed

cl(⋆) =
1

iλ
[ω] −

1

2i
ǫ + γ1λ + γ2λ

2 + · · · , γi ∈ H2
DR(M, C), i = 1, 2, . . . (4.9)
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