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Abstract

We first review regularization methods based on matrix geometry which provide an
ultraviolet cut-off for scalar fields respecting the symmetries. Sections of bundles over
the sphere can be quantized, too. This procedure even allows to regularize super-
symmetry without violating it. Recently, this work was extended to include quantum
group covariant regularizations.

In a second part recent attempts to renormalize four-dimensional deformed quan-
tum field theory models are reviewed. For scalar models the well-known UV/IR-mixing
does not allow to use standard techniques. The same applies to the Yang-Mills model
in four dimensions. Only additional symmetry, as it occurs in the Wess-Zumino model,
may allow to avoid this problem.

There was some hope that circumventing UV/IR-mixing by application of the
Seiberg-Witten map one can achieve renormalizability of noncommutative field the-
ories. Although the photon self-energy is renormalizable to all orders, θ-expanded
noncommutative QED was shown to be not renormalizable, thus ruling out this ap-
proach as well.

1 Introduction

More than ten years ago, John Madore introduced what he called the Fuzzy Sphere. If you
work within a geometry which does not have points, singularities of quantum field theory
models may be cured. We applied these ideas first to simple two-dimensional models [1].

Later on, together with Klimčik and Presnajder we treated all kind of models from
scalar fields to spinor and gauge fields, even supersymmetric models were successfully
treated. We also dealt with models defined on CP (2), on a cylinder and on a hyperboloid.
All this was within what is now called the Lie algebra deformation.
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Recently, together with John Madore and Harold Steinacker we went to q-deformed
models. We obtained a cut-off procedure based on a sequence of embedded Podles spheres
and were able to formulate a differential calculus which led to gauge models, too. In this
way we connected the Yang-Mills models and the Chern-Simons model to those obtained
from string theory.

Despite many attempts, four-dimensional quantum field theory on commutative space-
time is still in bad shape. For two-dimensional models constructive methods as well as new
algebraic methods led to enormous insights. Even three-dimensional models are quite well
understood. In four dimensions we have to rely on renormalized perturbation theory, and
attempts to cure the diseases go from unification ideas to adding additional dimensions,
strings, etc. It is natural therefore to ask for alternatives.

One idea is to change the geometry. The final goal would be to include full quantized
gravity, but on the way we may well study quantum field theoretic models on quantized
space-time. This led recently to some surprises and new problems have shown up.

There is an old and simple argument that a smooth space-time manifold contradicts
quantum physics. In order to localize an event within a region of extension l one has to
transfer an energy of the order hc/l. This energy generates a gravitational field. A strong
gravity field prevents on the other hand signals to reach an observer. If one inserts the
energy density to the rhs of Einstein’s equation and puts a length r characterizing the
curvature of space-time we get

1/r2 = (G/c4)(hc/l)(1/l3) . (1.1)

Next we put the two length scales to be equal, because it is certainly operational impossi-
ble to localize an event beyond this resulting Planck length. To the best of our knowledge,
the first time this argument was put to precise mathematics was in the work by Doplicher,
Fredenhagen and Roberts [2]. They obtained what is now called the canonical deformation
but averaged over two-spheres. We believe that this averaging will not improve the diver-
gence problems discussed below, although explicit calculations have not been performed
so far.

Our work is guided by noncommutative geometry, see [3, 4, 5] for books giving an
overview. We first replace the algebra of functions over a manifold by a deformed non-
commutative algebra. Three kinds of deformations are treated. If the commutator of
coordinates is put equal to a constant antisymmetric tensor, we call it the canonical de-
formation. If it is put to be a linear function of coordinates we call it a Lie algebra
deformation, and if it is put to be a quadratic expression we call it a quantum group
deformation. In the last case the Yang-Baxter equation has to be fulfilled.

Next step concerns the differential calculus. We replace vector fields by derivations
on the algebra, we define differential forms by duality. Although it is somewhat tricky
to do this for the q-deformed sphere, in all three cases one succeeds. Hodge duality, Lie
derivatives, the Laplace operator etc, in summary most of the steps of ordinary differential
geometry can be simulated.

An essential step concerns fields. Classically they are sections of bundles, but also
modules over the algebra. This last notion can be taken over to the noncommutative
situation. We study finitely generated projective modules over the deformed algebra and
are able to quantize scalar, spinor and gauge fields.
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Finally we write down actions and integrate over the algebra, so we use certain trace
functionals. Next steps concern cohomology problems, the formulation of the spectral
triples with the help of a Dirac operator and the use of cyclic cocyles. The final ver-
sion of Alain Connes’ program [3] concerns the spectral action which allows to unify all
interactions of the standard model and general relativity within one principle [6].

2 Regularization of Quantum Field Theory

2.1 Scalar Fields

The ideas of deforming or quantizing the commutative algebra of functions over a manifold
can best be explained for the simple example of the two-sphere, the deformation of which
leads to the Fuzzy Sphere. The Euclidean action of a scalar field is given by

S[Φ] =
1

4π

∫

S2

dΩ [(JiΦ)2 + µ2Φ2 + POL(Φ)] (2.1)

and is invariant under isometries or rotations of the sphere. The generators Ji are angular
momentum operators, they close under su(2). The field Φ can be expanded according to
the infinite set of irreducible representations of su(2).

Next we truncate this tower: Consider vector spaces transforming according to the first
N representations. They can be identified with mappings from the representation space
N/2 to itself. These mappings are (N+1)× (N+1)-dimensional matrices, the noncommu-
tative product of these is taken as the product within the algebra. In addition we have
to give a precise description of the embedding of these algebras for different N , which
gives a precise meaning also to the limit. For details see [7, 8, 9]. The Lie algebra of
the generators of this algebra is easy to describe. They form the su(2) Lie algebra with
suitable rescaling, such that the Casimir operator still fulfills the defining relation for the
two-sphere as an operator:

[X̂i, X̂j ] = iλεijkX̂k ,
3

∑

i=1

X̂2
i = R2 , (2.2)

Rλ−1 =

√

N

2

(

N

2
+ 1

)

. (2.3)

Since we work on a matrix algebra it is easy to introduce a differential calculus. All
derivations are inner, they are given by the adjoint action with the generators themselves.
For the two-sphere we take the generators introduced above and can develop a derivation-
based differential calculus. Our aim next is to make sense out of a functional integral of
the type

〈F [Φ]〉 =

∫

DΦ e−S[Φ]F [Φ]
∫

DΦ e−S[Φ]
. (2.4)

The action (2.1) will be replaced by

S[φ] = (1/N)Tr
(

[X̂i,Φ][X̂i,Φ] + POL(Φ)
)

, (2.5)
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where everything depends on N . As for the measure we take just the product measure for
the finite number of degrees of freedom. This makes the functional integral well-defined.

In the limit where N tends to infinity, the old divergences show up. Feynman rules can
be developed, a tadpole graph for the Φ4 model diverges logarithmically in the limit.

In the same spirit it is possible to quantize Kähler manifolds like CP (n). Models on
the cylinder and on hyperboloids have been treated, too.

In addition it is possible to quantize sections of line bundles over S2, which are charac-
terized by the Chern number. In this way we construct projective modules which lead in a
certain limit to the sections of the line bundles over S2. We start from the Hopf fibration
of S3 over S2 with fiber U(1). Let χ1 and χ2 be components of a spinor. Restrict the
sum of the squares of these two complex numbers to be R. This defines the sphere S3.
Next we study expansions in terms of these two complex coordinates and their complex
conjugates. Define Xi = χ†σiχ. The squares of Xi sum up to R2 and define therefore
S2. If in an expansion an equal number of χ’s and χ†’s occur, it becomes a well-defined
function on S2. Otherwise it is a section of a bundle.

Next we quantize this scheme: Replace the complex quantities by creation and annihi-
lation operators of two bosons:

[Ai, A
†
j ] = δij , i, j = 1, 2 . (2.6)

This means we use the Jordan-Schwinger representation of su(2). Next we define N -
dimensional subspaces FN of the Fock space given by a fixed number of N − 1 creation
operators. They form an irreducible representation of su(2). We study now maps from
one such subspace to another one. If they are of equal dimension, square matrices will map
one to the other and the sequence of them forms again the Fuzzy Sphere. If they are of
different dimensions and their difference equals twice the topological charge, we quantize
in a certain sense sections of the bundles. This way we obtain a sequence of embedded
modules formed from non-square matrices of special size.

The Dirac operator and spinors were obtained from a supersymmetric treatment. We
extended su(2) to the supergroup osp(2/1) and obtained a quantization of superfields
through an embedded sequence of graded matrix algebras.

2.2 The Fuzzy q-Sphere

The above described Fuzzy Sphere is invariant under the action of SO(3), or equivalently
under the action of U(so(3)). Together with John Madore and Harold Steinacker we
defined a sequence of finite algebras, which have analogous properties, but which are
covariant under the quantized universal enveloping algebra Uq(su(2)) [10, 11]. This has
been done for real q as well as for q being a root of unity. In the latter case certain
restrictions have to be obeyed. Covariance of an algebra A under Uq(su(2)) means that
there exists an action

Uq(su(2)) ×A→ A , (u, a) 7→ u ⊲ a , (2.7)

such that u⊲ (ab) = (u(1) ⊲a)(u(2) ⊲ b) for a, b ∈ A. Here ∆(u) = u(1) ⊗u(2) is the Sweedler
notation for the coproduct.
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We may follow now the undeformed scheme and define q-deformed creation and anni-
hilation operators:

A†iAj = δi
j + qR̂ik

jlAkA
†l . (2.8)

Next one considers again N -dimensional subspaces of the Fock space which form irre-
ducible representations of Uq(su(2)). It is possible to define the q-deformed spheres in

terms of Zi = A†αǫαβσ
βγ
i Aγ by

ǫijk ZiZj = constant · Zk (2.9)

and to prove that the full matrix algebra is generated. After a study of the reality struc-
ture we introduced an invariant integral and studied a differential calculus. There exists
a unique three-dimensional module of one-forms. As opposed to the classical case, an
additional radial one-form shows up. This leads to the addition of a scalar field.

Next it is possible to write down actions for scalar fields as well as for gauge fields.
Three possible actions can be formed for the latter:

S1 =

∫

A ∗ A+ 2AΘ , (2.10)

S2 = 2

∫

A3 + 3(AdA +A(*A)) + 6AΘ + 2Θ3 , (2.11)

S3 =

∫

(dA+A2)(*(dA+A2)) , (2.12)

were * denotes the Hodge star operation and Θ a special one-form which plays the rôle
of the Maurer-Cartan form. The commutator of algebra elements with this special form
gives one-forms:

df = [Θ, f ] . (2.13)

As for the step from one-forms to two-forms one has to take the commutator but subtract
the Hodge star of the one form in order to get two-forms,

dα = [Θ, α]+ − *α , (2.14)

where the anticommutator enters. The step to three-forms is given again by the commu-
tator with this special form.

It is interesting to note that special linear combinations of Si’s correspond to the Yang-
Mills action and to the Chern-Simons action. A special combination of both resulted from
string theory after taking a particular limit [12].

Very recently we studied second quantization of a field theory on the q-deformed fuzzy
sphere for q real. For this case it was necessary to perform a path integral over modes,
which generate a quasi-associative algebra. This way we kept the symmetry and obtained
a smooth limit for q going to 1.
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3 Renormalization of deformed quantum field theory

3.1 UV/IR-mixing

Inspired to a large extent by the work of Seiberg and Witten [13], numerous investigations
of field theories on deformed space(-time) have appeared. The deformed space under
consideration—called noncommutative R

4—can be introduced in several ways. First, in
analogy to quantum mechanics one assumes that the four-dimensional coordinate operators
obey a commutator relation like

[xµ, xν ] = iθµν = −iθνµ . (3.1)

Thanks to the Baker-Campbell-Hausdorff formula, plane waves up = eipµxµ
obey the alge-

bra

upuq = e−
1

2
iθµνpµqνup+q , (3.2)

were p and q denote commutative d-dimensional momenta. Derivations on this algebra
are defined through the multiplication with these momenta, an integral on this algebra
is defined by mapping to the p = 0 part. In the form (3.2) we make contact to the
noncommutative torus, where p and q run over an integer lattice. The latter occurred
through compactification of M-theory on noncommutative 2-tori [14] and corresponds to
turning on a background three-form.

Superpositions of plane waves with smooth functions f(x) gives the Weyl operators
W [f ]. A standard question is which product of functions allows to encode this algebra.
The answer is given by the Moyal-Weyl product

W [f ]W [g] = W [f ⋆ g] , (f ⋆ g)(x) = e
1

2
iθµν∂

y
µ∂z

νf(y)g(z)
∣

∣

∣

x=y=z
. (3.3)

Unless the functions f, g are analytic, the derivatives are meant in a distributional sense.
For Schwartz class functions a useful formula is

(f ⋆ g)(x) =

∫

d4k

(2π)4

∫

d4y f(x+1
2θ·k) g(x+y) eik·y , (3.4)

where (θ·k)µ = θµνkν and k·y = kµy
µ.

Since divergences come from singularities due to point like interactions, there was hope
that field theories on these deformed algebras may be better behaved. This is not the case.
Loop integrals in noncommutative field theories differ from their commutative counterpart
by phase factors e±

1

2
iθµνpµqν [15]. In planar diagrams the resulting phases of inner momenta

cancel, i.e. the same integral with the same divergences occurs as in undeformed models.
Next question concerns renormalizability: By direct evaluation of Feynman graphs it

was shown that Yang-Mills theory is one-loop renormalizable, i.e. the divergences can
be absorbed such that Ward-Slavnov identities are fulfilled [16, 17]. For higher loop
contributions the new phenomenon of UV/IR-mixing occurs, which was first discovered
for scalar fields [18] and shortly later for Yang-Mills theories as well [19]. Although non-
planar one-loop diagrams are convergent for generic external momenta, they diverge for
exceptional external momenta, where the regulating phase becomes inefficient. Inserted
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as subgraphs into a bigger graph, the external momenta of the subgraphs are internal
momenta for the bigger graph, and the exceptional momenta are realized by the loop
integration. The total graph thus becomes divergent. Due to the integrated phase factors
involving inner momenta of non-planar graphs, the resulting counterterms are of different
structure than the initial action was: the model is not renormalizable.

The problem was analyzed to all loop orders by Chepelev and Roiban [20, 21]. They
represented the integrals of noncommutative field theories by ribbon graphs drawn on a
genus-g Riemann surface with boundary and proved a power-counting theorem for such
a situation. The conclusion is that non-planar graphs are convergent except for two
dangerous cases. So called rings stacked on the came cycle lead (in four dimensions) to
singularities of arbitrarily high order. There are proposals to reorder the perturbation
series in order to sum up these divergences. Commutants occur if exceptional momenta
are forced by momentum conservation for subgraphs. They lead to non-local counterterms.

One possible way out concerns additional symmetries. We used a superfield formulation
and established a proof that the Wess-Zumino model does not have the above mentioned
disease [22]. Since only logarithmically divergent diagrams occur, and we showed earlier
that even iterated integrals of this type are integrable, the standard renormalizability proof
may be adapted.

3.2 Seiberg-Witten map

The phase factors e±
1

2
iθµνpµqν were kept intact in the previous treatment. There is also

the possibility of expanding the phases into a Taylor series in θ. Limiting the expansion
to some finite order in θ, we actually get a local (commutative) field theory involving
higher-order partial derivatives of the fields. For example, limiting the Taylor expansion
of the noncommutative Maxwell action

Γ = −
1

4g2

∫

F̂µν ⋆ F̂
µν , F̂µν = ∂µÂν − ∂νÂµ − iÂµ ⋆ Âν + iÂν ⋆ Âµ , (3.5)

to first order in θ, we get

Γ =

∫

d4x
(

−
1

4g2
F̃µν F̃

µν −
1

2g2
θαβF̃µν∂αÂµ∂βÂν + O(θ2)

)

,

F̃µν = ∂µÂν − ∂νÂµ . (3.6)

At higher order in θ the result of the Taylor expansion becomes extremely complicated.
Guided by an equivalence argument for regularization schemes (point-splitting versus

Pauli-Villars), Seiberg and Witten discovered for gauge theories a change of variables so
that the θ-expanded action becomes at each order in θ invariant under commutative gauge
transformations [13]. Denote by λ̂, Â and F̂ gauge parameter, gauge connection and field
strength for the deformed model, and by λ, A and F the appropriate quantities for the
undeformed case. For the Seiberg-Witten map one requires that

δ ˆλ[λ,A]
Â[A] = Â[δλA] , (3.7)

which means that the gauge transformed noncommutative field should be equal to the
noncommutative field of the gauge transformed commutative one. The requirement (3.7)
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can be reformulated as a differential equation
dÂµ

dθαβ = fµαβ[Â] for some functional fµαβ

(see below) and has at first order in θ the solution

Âµ = −
1

2
θαβAα(∂βAµ + Fβµ) + O(θ) , Fµν = ∂µAν − ∂νAµ . (3.8)

Inserting (3.8) into (3.6) one gets

Γ =

∫

d4x
(

−
1

4g2
FµνF

µν −
1

2g2
θαβ

(

FαµFβνF
µν −

1

4
FαβFµνF

µν
)

+ O(θ2)
)

.

(3.9)

At higher order in θ the requirement (3.7) leaves a big amount of freedom open. Various
methods are available to get the mapping from A to Â, or better to get the expansion of
the latter in terms of A. This map is meant as a formal power expansion series in θµν .
The Munich group [23, 24, 25] used these ideas and argued that this is the way to obtain a
finite number of degrees of freedom in non-Abelian noncommutative Yang-Mills theories.

The Seiberg-Witten map of the noncommutative Yang-Mills action leads to a gauge field
theory with an infinite number of vertices and Feynman graphs with unbounded degree
of divergences, which seems to rule out a perturbative renormalization. The advantage is,
however, that there cannot be any UV/IR-mixing. An explicit quantum field theoretical
investigation [26] of the action (3.9) led to the surprising result that the divergent terms
of the one-loop photon self-energy are gauge-invariant, independent of the choice of a
linear or non-linear gauge and independent of the gauge parameter. These terms could
not be absorbed in a standard wave function renormalization. We have thus interpreted
our result as the need to extend the classical action by terms of order θ2.

Shortly later we found a possibility to absorb the divergences of the photon self-energy
to any loop order and any order in θ through a more general type of wave function
renormalization—a field redefinition [27]. This possibility is related to the freedom in the
Seiberg-Witten map. For noncommutative photons Âµ,

( dÂµ

dθρσ

)′

=
dÂµ

dθρσ
+ Ωρσµ , Ωρσµ covariant , (3.10)

is an admissible Seiberg-Witten differential equation if
dÂµ

dθρσ is. If Γ(n) is the order-n term
of the θ-expansion of the noncommutative Maxwell action (3.5), and if Ωρσµ contains
explicitly n−1 factors of θ, we have

(

Γ(n)
)′
− Γ(n) =

1

g2

∫

d4x θρσΩ(n−1)
ρσµ ∂νF

νµ . (3.11)

It is not difficult to show that any counterterm to the two-point function of θ-expanded
Maxwell theory has the form (3.11) so that by a suitable choice of Ω we can remove all
superficial divergences.

This tells us that field redefinitions are capable to absorb a considerable amount of
divergences in θ-expanded noncommutative field theories. There was even some hope
that θ-expanded field theories may be renormalisable. The crucial question for renor-
malisability is whether the freedom due to field redefinitions is big enough to absorb
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all divergences. A direct calculation of the 3-point function at lowest order θ3 leads to
∼ 200000 different contributions which are impossible to analyse. We have therefore tried
to find symmetries of the θ-expanded action which limit the structure of possible diver-
gences. The existence of such symmetries is already suggested by (3.9) where the relative
coefficient between the two possible gauge invariants of dimension 4 linear in θ, which
are θαβFαµFβνF

µν and θαβFαβFµνF
µν , is −1

4 . This particular combination seems to be
related to the energy-momentum tensor so that one could expect that the θ-expansion of
noncommutative Lorentz transformations provides the symmetries looked for.

We have proved in [28] that the θ-expansion reduces the noncommutative Lorentz
transformations to a combination of commutative gauge transformations and commuta-
tive Lorentz transformations and thus gives no hints at all for new symmetries. As a
by-product, however, we have found a new interpretation of the Seiberg-Witten map. We
achieved a different kind of θ-expansion which unless Taylor expansion and change of vari-
ables which pass through (3.6) allow us to derive (3.9) in a single stroke from (3.5). This
derivation is closely related to a deeper discussion of noncommutative Lorentz transfor-
mations.

One has to distinguish between two kinds of Lorentz (or more general, conformal)
transformations. Lorentz transformations in special relativity relate physical observations
made in two inertial reference frames characterised by different velocities and orienta-
tions. These transformations can be implemented as coordinate changes, known as ob-

server Lorentz transformations. Alternatively one considers transformations which relate
physical properties of two particles with different helicities or momenta within one specific
inertial frame. These are known as particle Lorentz transformations. Usually (without
background) these two approaches are equivalent. However, in the presence of a back-
ground tensor field this equivalence fails, because the background field will transform as a
tensor under observer Lorentz transformation and as a set of scalars under particle Lorentz
transformations. We demand

1. that the physical action is invariant under observer Lorentz transformations,

2. that the particle Lorentz transformation (which is not a symmetry) of the action is
gauge invariant (thus observable).

From these requirements we derive in [28] that the particle Lorentz transformation of a
field is the sum of its näıve observer Lorentz transformation and an additional part given
by the Seiberg-Witten differential equation (which is very conveniently derived in this
manner).

Since the search for symmetries of the θ-expanded action was not successful, we con-
tinued with the direct computation of one-loop divergent graphs. The simplest model
to study other Green’s functions than the self-energy is θ-deformed QED. For massless
electrons there are 9 independent gauge and Lorentz invariant field polynomials of first
order in θ. There are 5 independent field redefinitions so that one should expect 4 types
of divergences linear in θ which cannot be removed. The actual one-loop computation
of these Green’s function in [29] showed that there is only a single independent one-loop
divergent Green’s functions at first order in θ. In the massive case (where the mass term
is inserted directly into the Dirac action) there are 15 invariant terms, 8 field redefinitions
and 3 divergences. The computation was very complicated due to the big number of dif-
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ferent graphs involving and the (compared with standard QFT computations) high degree
of divergence, which results in contributions from the entire Clifford algebra of γ matrices.

Thus, although these computations made clear that θ-expanded field theories can not
be expected to be renormalisable, there is evidence now that additional symmetries for the
θ-expanded action exist indeed. It is natural to assume that these symmetries are already
present in the original noncommutative action before θ-expansion. One possible source is
the spectral origin of the action [6] which might admit a bigger symmetry group than just
Lorentz and gauge transformations.

The loop calculations of [26, 29] were performed for the θ-expanded action after appli-
cation of the Seiberg-Witten map such as (3.9). As we have shown in [30], very similar
computations are possible when starting directly from the Taylor expansion of the action
functional such as (3.6). The only difference is that now the gauge symmetry is non-linearly
realised so that the whole machinery of external fields and Slavnov-Taylor identities must
be used. In other words, one has to extend the gauge-fixed noncommutative QED action
by

Γext =

∫

d4x
(

ˆ̄ρ
(

ŝψ̂
)

+
(

ŝ ˆ̄ψ
)

ρ̂+ σ̂µ
(

ŝÂµ

)

+ κ̂
(

ŝĉ
)

)

, (3.12)

where we define the non-commutative BRST-transformations by

ŝÂµ = D̂adj
µ ĉ , ŝĉ = iĉ ⋆ ĉ ,

ŝψ̂ = iĉ ⋆ ψ̂ , ŝ ˆ̄ψ = −i ˆ̄ψ ⋆ ĉ ,

ŝˆ̄c = B̂ , ŝB̂ = 0 . (3.13)

We denote by Â, ψ̂, ĉ the noncommutative photon, electron and ghost, respectively, and
ρ̂, σ̂, κ̂ are the external fields. Loop calculations do not preserve the θ-expansion of (3.13).
The Slavnov-Taylor identity

S (Γ) =

∫

d4x

(

δΓ

δσ̂µ

δΓ

δÂµ

+
δΓ

δκ̂

δΓ

δĉ
+
δΓ

δρ̂

δΓ

δ ˆ̄ψ
+
δΓ

δψ̂

δΓ

δ ˆ̄ρ
+ B̂

δΓ

δˆ̄c

)

= 0 (3.14)

is preserved, though. The identity (3.14) contains several individual identities when dif-
ferentiating which respect to the fields. To our great surprise we found in [30] that up
to first order in θ and first loop order the Taylor expansion of the noncommutative QED
leads up to field redefinition to the same result when using the Seiberg-Witten map or
not: There is for massless electrons only a single resulting divergence

∫

d4x iθαβ ˆ̄ψ ⋆ γµν
αD̂

adj
β F̂µν ⋆ ψ̂ , D̂adj

β F̂µν = ∂βF̂µν − i[Âβ , F̂µν ]⋆ , (3.15)

with the numerical coefficient of the divergent term being independent of the application
or omission of the Seiberg-Witten map. This seems to indicate that the Seiberg-Witten
map is an unphysical change of variables also on quantum level.

This is true to some extent, but there is a subtlety. One can perform the change of
variables before or after quantisation. Changing the variables Φ′ = Φ′[Φ] after quantisa-
tion, i.e. performing a change of the dummy integration variables in the path integral, one
obtains exactly the same Green’s functions. The changes in the Feynman rules from Φ′
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to Φ are compensated by graphs involving the modified source term 〈J,Φ′[Φ]〉 in the path
integral. In principle one would also expect contributions from field redefinition ghosts,
but here the propagator equals 1 so that there is no contribution at least for certain reg-
ularisation schemes. On the other hand, changing the variables in the action functional
before inserting it into the path integral, the outcome is expected to be different. However,
at first order in θ only, the difference to the other method is a field redefinition.
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