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Abstract

We consider spacetime to be a connected real 4-manifold equipped with a Lorentzian
metric and an affine connection. The 10 independent components of the (symmetric)
metric tensor and the 64 connection coefficients are the unknowns of our theory. We
introduce an action which is quadratic in curvature and study the resulting system
of Euler–Lagrange equations. In the first part of the paper we look for Riemannian
solutions, i.e. solutions whose connection is Levi-Civita. We find two classes of Rie-
mannian solutions: 1) Einstein spaces, and 2) spacetimes with metric of a pp-wave
and parallel Ricci curvature. We prove that for a generic quadratic action these are
the only Riemannian solutions. In the second part we look for non-Riemannian solu-
tions. We define the notion of a “Weyl pseudoinstanton” (metric compatible spacetime
whose curvature is purely Weyl) and prove that a Weyl pseudoinstanton is a solution
of our field equations. Using the pseudoinstanton approach we construct explicitly a
non-Riemannian solution which is a wave of torsion in Minkowski space.

1 Mathematical model

We consider spacetime to be a connected real 4-manifold M equipped with a Lorentzian
metric g and an affine connection Γ. The 10 independent components of the (symmetric)
metric tensor gµν and the 64 connection coefficients Γλ

µν are the unknowns of our theory.
We define our action as

S :=

∫

q(R) (1.1)

where q is an O(1, 3)-invariant quadratic form on curvature R . The coefficients of q are
assumed to be constant, i.e. the same at all points of the manifold M . The explicit formula
for q with 16 coefficients (coupling constants) is given in Appendix B.

Independent variation of the metric g and the connection Γ produces Euler–Lagrange
equations which we will write symbolically as

∂S/∂g = 0, (1.2)

∂S/∂Γ = 0. (1.3)

We will be looking for spacetimes {M,g,Γ} satisfying (1.2), (1.3).
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Definition 1. We call a spacetime Riemannian if its connection is Levi-Civita (metric
compatible and torsion-free) and non-Riemannian otherwise.

The aim of this paper is to study the field equations (1.2), (1.3), so as to find all
Riemannian solutions and some non-Riemannian solutions.

The paper has the following structure. In Section 3 we write down explicitly the field
equations (1.2), (1.3) for the Riemannian case. In Section 4 we construct three types
of Riemannian solutions. In Section 5 we prove a uniqueness theorem stating that for a
generic quadratic action solutions from Section 4 are the only Riemannian solutions; this
uniqueness theorem is the main result of our paper. In Section 6 we give a method for
finding non-Riemannian solutions, and in Section 7 we use this method for constructing
explicitly one particular non-Riemannian solution. Finally, Appendices A–D contain some
auxiliary mathematical facts.

2 Notation

Our notation follows [1, 2, 3]. In particular, we denote local coordinates by xµ, µ =
0, 1, 2, 3, and write ∂µ := ∂/∂xµ. We define the covariant derivative of a vector function
as ∇µvλ := ∂µvλ + Γλ

µνv
ν , torsion as T λ

µν := Γλ
µν − Γλ

νµ , curvature as Rκ
λµν :=

∂µΓκ
νλ − ∂νΓ

κ
µλ + Γκ

µηΓ
η
νλ − Γκ

νηΓ
η
µλ , Ricci curvature as Ricλν := Rκ

λκν , scalar
curvature as R := Ricλ

λ , and trace-free Ricci curvature as Ricλν := Ricλν − 1
4gλνR . We

denote Weyl curvature by W = R(10) (see also Appendix A). Given a scalar function

f : M → R we write for brevity

∫

f :=

∫

M

f
√

|det g| dx0dx1dx2dx3 where det g :=

det(gµν) . The totally antisymmetric quantity is denoted by εκλµν . The Christoffel symbol

is
{

λ
µν

}

:= 1
2gλκ(∂µgνκ + ∂νgµκ − ∂κgµν).

3 Field equations in the Riemannian case

When looking for Riemannian solutions we need to specialize our field equations (1.2),
(1.3) to the Levi-Civita connection. We will write the resulting equations symbolically as

∂S/∂g |L-C = 0, (3.1)

∂S/∂Γ |L-C = 0. (3.2)

It is important to understand the logical sequence involved in the derivation of equations
(3.1), (3.2): we set Γλ

µν =
{

λ
µν

}

after the variations of the metric and the connection
have been carried out.

Equations (3.1), (3.2) are equations for the unknown metric in the usual, Riemannian,
setting. In the Riemannian case curvature has only 3 irreducible pieces, so the LHS’s of
(3.1), (3.2) can be expressed via scalar curvature R, trace-free Ricci curvature Ric and
Weyl curvature W. Lengthy but straightforward calculations give the following explicit
representation for equations (3.1), (3.2):

d1W
κλµνRicκµ + d2 RRicλν + d3

(

RicλκRicκ
ν −

1

4
gλνRicκµRicκµ

)

= 0, (3.3)

d4gκµ∂λR− d5gλµ∂κR + d6∇λRicκµ − d7∇κRicλµ = 0, (3.4)
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where

d1 = b912 − b922 + b10, d2 = −b1 −
b911
4 + b912

6 + b922
12 , d3 = b922 − b911,

d4 = −b1 + b912−b922
4 + b10

12 , d5 = −b1 + b912−b911
4 + b10

12 ,
d6 = b912 − b911 + b10, d7 = b912 − b922 + b10,

the b’s being the coefficients from formula (B.3). Observe that the LHS of (3.3) is trace-
free. This is a consequence of the conformal invariance of our action (1.1).

Calculations leading to (3.3), (3.4) are outlined in [3].

4 Riemannian solutions

We have found 3 types of Riemannian solutions.
Type 1: Einstein spaces (Ric = Λg).
Type 2: pp-spaces with parallel Ricci curvature. See Appendix C for definition.
Type 3: spacetimes which have zero scalar curvature and are locally a product of

a pair of Einstein 2-manifolds. Note that if we change the sign of the metric of the
Lorentzian 2-manifold (that is, interchange the roles of the time and space coordinates)
then the spacetime in question becomes a 4-dimensional Einstein space. Hence, for all
practical purposes solutions of type 3 are a special case of solutions of type 1. We have to
distinguish them only for the sake of mathematical bookkeeping.

The fact that the above spacetimes are solutions is established by direct substitution
of the corresponding curvatures into (3.3), (3.4). See [3] for details.

5 Uniqueness of Riemannian solutions

Denote

c1 = −
1

2
(b911 − 2b912 + b922), c2 = −6b1, c3 = b10, (5.1)

where the b’s are the original coupling constants appearing in formula (B.3)
The following uniqueness theorem is the main result of this paper.

Theorem 1. Suppose that our coupling constants satisfy the inequalities

b911 6= b922, (5.2)

c1 + c2 6= 0, (5.3)

c1 + c3 6= 0, (5.4)

3c1 + c2 + 2c3 6= 0. (5.5)

Then solutions of types 1, 2 and 3 described in Section 4 are the only Riemannian solutions
of our field equations (1.2), (1.3).

Proof. The crucial observation is that under the conditions (5.2) and (5.4) equation (3.4)
is equivalent to (D.1). This fact is established by a sequence of elementary manipulations
with (3.4): separate (3.4) into equations symmetric and antisymmetric in the pair of
indices κ, λ , then contract κ with µ in the symmetric equation which gives ∂R = 0, etc.
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In performing these manipulations it is convenient to express the constants d4, . . . , d7 via
the constants c1, c2, c3 and b911 − b922 in accordance with

d1 = c1 + c3 + b911−b922
2 , d2 = c1+c2−b911+b922

6 , d3 = b922 − b911,

d4 = c1
4 + c2

6 + c3
12 + b911−b922

8 , d5 = c1
4 + c2

6 + c3
12 − b911−b922

8 ,

d6 = c1 + c3 −
b911−b922

2 , d7 = c1 + c3 + b911−b922
2 .

(5.6)

Condition (D.1) allows us to apply the powerful Lemma 2 from Appendix D. The proof
of Theorem 1 is therefore reduced to the analysis of the situation when our spacetime is
locally a nontrivial product of Einstein manifolds, with “nontrivial” meaning that the
spacetime itself is not Einstein. We have to examine which nontrivial products of Einstein
manifolds satisfy the field equation (3.3), and show that the only ones that do are solutions
of type 3 introduced in Section 4.

The possible decompositions into a nontrivial product are 3+1 and 2+2 where the
numbers are the dimensions of Einstein manifolds. Below we analyze each of these cases.
In doing this we use local coordinates which are a concatenation of local coordinates on our
Einstein manifolds; consequently, our metric and curvature have block diagonal structure.
As usual, Greek letters in tensor indices run through four possible values. Note also that
the 3+1 case actually splits into two subcases, depending on whether the metric of the 3-
manifold is Euclidean or Lorentzian; this distinction turns out to be unimportant because
the arguments presented below are insensitive to the signatures of the metrics.
Case 3+1. In this case

gµν = hµν + kµν (5.7)

where h and k are the metrics of the 3- and 1-manifolds respectively, and

Rκλµν =
1

6
(hκµ hλν − hλµ hκν) r

where r 6= 0 is the (constant) scalar curvature of the 3-manifold. Straightforward calcula-
tions show that in this case equation (3.3) takes the form

6d2 − d3

72
(hλν − 3kλν) r2 = 0.

(Note the absence of the coefficient d1 in this equation. This is because in the 3+1 case
Weyl curvature is zero.) In view of (5.6) we have 6d2−d3 = c1 +c2, so under the condition
(5.3) the above equation cannot be satisfied.
Case 2+2. In this case the metric is given by formula (5.7) where h and k are the metrics
of the two 2-manifolds, and

Rκλµν =
1

2
(hκµ hλν − hλµ hκν) r +

1

2
(kκµ kλν − kλµ kκν) s

where r 6= s are the two corresponding (constant) scalar curvatures. Straightforward
calculations show that in this case equation (3.3) takes the form

d1 + 3d2

12
(hλν − kλν) (r2 − s2) = 0.

In view of (5.6) we have d1 + 3d2 = 1
2(3c1 + c2 + 2c3), so under the condition (5.5) the

above equation is equivalent to r + s = 0 which means that we are looking at a solution
of type 3, see Section 4. �
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Note that conditions (5.3)–(5.5) appeared previously in [2]. Namely, conditions (5.3),
(5.4) coincide with condition (38) of [2], whereas condition (5.5) is equivalent to the con-
dition c 6= −1

3 mentioned in the very end of Section 11 of [2]. Thus, the new condition
which enables us to establish uniqueness is condition (5.2).

An example of a quadratic form satisfying the conditions of Theorem 1 is

q(R) = Ricλν Ricλν = (Ric,Ric) . (5.8)

In the representation (B.3) the nonzero b’s for this quadratic form are b1 = 1/4, b611 = 1,
b911 = 1, hence the c’s defined in accordance with formulae (5.1) are c1 = −1/2, c2 = −3/2,
c3 = 0. With these b’s and c’s all four conditions of Theorem 1 are satisfied.

Quadratic forms considered in [2] do not satisfy the conditions of Theorem 1 because
for such forms condition (5.2) fails. In particular, the Yang–Mills quadratic form

q(R) = Rκ
λµν Rλ

κ
µν = (R,R)YM (5.9)

does not satisfy the conditions of Theorem 1.
The case (5.8) was previously analyzed in [4]. The difference with [4] is that there

the action was varied under the assumption that the connection is symmetric. Also, the
authors of [4] did not have at their disposal Lemma 2 from Appendix D.

6 The pseudoinstanton construction

We now proceed to the study of non-Riemannian solutions of our field equations (1.2),
(1.3). The following construction provides a method for finding non-Riemannian solutions.

Definition 2. We call a spacetime {M,g,Γ} a pseudoinstanton if the connection is metric
compatible and curvature is irreducible and simple.

Here irreducibility of curvature means that all irreducible pieces but one are identically
zero. Simplicity means that the given irreducible subspace is not isomorphic to any other
irreducible subspace. Metric compatibility means, as usual, that ∇g ≡ 0.

The irreducible decomposition of curvature is described in Appendix A. It is easy to
see that there are only three possible types of pseudoinstantons:

• scalar pseudoinstanton (all pieces of curvature apart from the scalar piece R(1) are
identically zero),

• pseudoscalar pseudoinstanton (all pieces of curvature apart from the pseudoscalar

piece R
(1)
∗ are identically zero), and

• Weyl pseudoinstanton (all pieces of curvature apart from the Weyl piece R(10) are
identically zero).

Theorem 2. A pseudoinstanton is a solution of the field equations (1.2), (1.3).

Proof. Put Rpseudo := R(1) or Rpseudo := R
(1)
∗ or Rpseudo := R(10), depending on the type

of our pseudoinstanton (see above). Then for any curvature R we have

q(R) = q(Rpseudo) + q(R −Rpseudo).
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Note that here we used the fact that the piece Rpseudo is simple: if not, then we would
have cross-over terms of the type Rpseudo × (R −Rpseudo).

When we start our variation from a spacetime with R −Rpseudo ≡ 0 the resulting
variation of

∫

q(R −Rpseudo) is zero. Thus, the proof of Theorem 2 reduces to proving
that our pseudoinstanton is a stationary point of the action Spseudo :=

∫

q(Rpseudo) . But,
according to Lemma 1 from Appendix B, q(Rpseudo) = c (Rpseudo , Rpseudo)YM where c is
some constant and ( · , · )YM is the Yang–Mills inner product (B.2), so the action Spseudo

is of the type studied in [2] and the result follows from Theorem 2.1 of that paper. �

Further on we will be dealing only with the Weyl pseudoinstanton as it is the most
interesting of the three possible types. It is useful to rewrite Definition 2 for this case.

Definition 3. A Weyl pseudoinstanton is a spacetime {M,g,Γ} whose connection is
metric compatible and curvature purely Weyl.

The advantage of Definition 3 is that it can be used without knowledge of the full
irreducible decomposition of curvature (material from Appendix A). In particular, as we
are dealing with a metric compatible connection we a priori have Rκλµν = −Rλκµν and
Weyl curvature can be understood as curvature satisfying

Rκλµν = Rµνκλ, Ric = 0, εκλµνRκλµν = 0

which is the traditional definition. It is equivalent to the definition given in Appendix A.

7 A non-Riemannian solution

We know only one non-Riemannian solution, and it is constructed as follows.
Let us define Minkowski space M

4 as a real 4-manifold equipped with global coordinates
(x0, x1, x2, x3) and metric gµν = diag(+1,−1,−1,−1). Let A(x) = a e−il·x be a plane
wave solution of the polarized Maxwell equation ∗dA = ±idA in M

4. Define torsion
T = 1

2 Re(A ⊗ dA), and let Γ be the corresponding metric compatible connection. Then,
as shown in [2], the spacetime {M4,Γ} is a Weyl pseudoinstanton, hence, by Theorem 2,
a solution of our field equations (1.2), (1.3).

For the Yang–Mills case (5.9) the “torsion wave” solution described above was first
obtained by Singh and Griffiths: see last paragraph of Section 5 in [5] and put k = 0,
N = e−il·x. Our contribution is the observation that this torsion wave remains a solution
for a general quadratic action (1.1) and that this fact can be established without having
to write down explicitly the field equations.

Suppose that l 6= 0 and a 6∈ span l, which are the necessary and sufficient conditions
for non-flatness. It is easy to check (see [3] for details) that our torsion wave solution has
holonomy B2. Comparing this result with Definition 6 from Appendix C we conclude that
this solution is a non-Riemannian analogue of a pp-space.

A Irreducible decomposition of curvature

A curvature generated by a general affine connection has only one (anti)symmetry, namely,

Rκ
λµν = −Rκ

λνµ . (A.1)
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Table 1. List of irreducible subspaces
Dimension Number of subspaces Notation for subspaces

1 2 R(1), R
(1)
∗

6 3 R(6,l), l = 1, 2, 3

9 4 R(9,l), R
(9,l)
∗ , l = 1, 2

10 1 R(10)

30 1 R(30)

Table 2. Explicit description of irreducible subspaces of dimension < 10
Subspace Formula for curvature R

R(1) Rκλµν = a1(gκµgλν − gκνgλµ)R

R
(1)
∗ (R∗)κλµν = a∗1(gκµgλν − gκνgλµ)R∗

R(6,l) Rκλµν = a6l1(gκµA
(l)

λν − gκνA
(l)

λµ) + a6l2(gλµA
(l)

κν − gλνA
(l)

κµ)

+ a6l3gκλA
(l)

µν

R(9,l) Rκλµν = a9l1(gκµS
(l)

λν − gκνS
(l)

λµ) + a9l2(gλµS
(l)

κν − gλνS
(l)

κµ)

R
(9,l)
∗ (R∗)κλµν = a∗9l1(gκµS

(l)
∗ λν − gκνS

(l)
∗ λµ) + a∗9l2(gλµS

(l)
∗ κν − gλνS

(l)
∗ κµ)

For a fixed x ∈ M we denote by R the 96-dimensional vector space of real rank 4 tensors
Rκ

λµν satisfying condition (A.1).

Let g be the Lorentzian metric at the point x ∈ M and let O(1, 3) be the corresponding
full Lorentz group, i.e. the group of linear transformations of coordinates in the tangent
space TxM which preserve the metric. It is known, see Appendix B.4 from [6], that the
vector space R decomposes into a direct sum of 11 subspaces which are invariant and
irreducible under the action of O(1, 3). These subspaces are listed in Table A.1. Note
that our notation differs from that of [6]: we want to emphasize the fact that there are 3
groups of isomorphic subspaces, namely,

{R(6,l), l = 1, 2, 3}, {R(9,l), l = 1, 2}, {R
(9,l)
∗ , l = 1, 2}. (A.2)

Two subspaces are said to be isomorphic is there is a linear bijection between them which
commutes with the action of O(1, 3).

In order to give an explicit description of irreducible subspaces of curvature we introduce
the following conventions. We lower and raise tensor indices using the metric, and we also
denote (R∗)κλµν := 1

2

√

|det g| Rκλµ′ν′ εµ′ν′

µν . The map R → R∗ is an endomorphism in
R which we call the right Hodge star. Note that as we are working in the real Lorentzian
setting the Hodge star has no eigenvalues.

The explicit description of irreducible subspaces of dimension < 10 is given in Table A.2.
Here R, R∗ are arbitrary scalars, A(l) are arbitrary rank 2 antisymmetric tensors, and

S(l), S
(l)
∗ are arbitrary rank 2 symmetric trace-free tensors, with “arbitrary” meaning that

the quantity in question spans its vector space. The a’s in Table A.2 are some fixed
real constants, the only condition being that a1, a∗1, det (a6lm)3l,m=1 , det (a9lm)2l,m=1 and

det (a∗9lm)2l,m=1 are nonzero. The freedom in choosing irreducible subspaces of dimension
6 and 9 is due to the fact that we have groups of isomorphic subspaces (A.2).
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It is convenient to choose the following a’s:

a1 = a∗1 =
1

12
, (a6lm) =





5
12 − 1

12 −1
6

− 1
12

5
12 −1

6
− 1

12 − 1
12

1
3



 , (a9lm) = (a∗9lm) =

(

3
8 −1

8
−1

8
3
8

)

. (A.3)

Then the lower rank tensors R, R∗, A
(l), S(l), S

(l)
∗ appearing in Table A.2 are expressed

via the full (rank 4) curvature tensor R according to the following simple formulae:

R := Rκλ
κλ,

Ric(1)
λν := Rκ

λκν , Ric(2)
κν := Rκ

λ
λν ,

Ric(1) := Ric(1) −
1

4
Rg, Ric(2) := Ric(2) +

1

4
Rg,

S(l)
µν :=

Ric(l)
µν + Ric(l)

νµ

2
, A(l)

µν :=
Ric(l)

µν −Ric(l)
νµ

2
, l = 1, 2,

A(3)
µν := Rκ

κµν ,

R∗ := (R∗)κλ
κλ,

Ric
(1)
∗ λν := (R∗)κλκν , Ric

(2)
∗ κν := (R∗)κ

λ
λν ,

Ric
(1)
∗ := Ric

(1)
∗ −

1

4
R∗g, Ric

(2)
∗ := Ric

(2)
∗ +

1

4
R∗g,

S
(l)
∗ µν :=

Ric
(l)
∗ µν + Ric

(l)
∗ νµ

2
, A

(l)
∗ µν :=

Ric
(l)
∗ µν −Ric

(l)
∗ νµ

2
, l = 1, 2,

A
(3)
∗ µν := (R∗)κκµν .

Note that the tensors A
(l)
∗ are not used in Table A.2. This is because A(l) and A

(l)
∗ are not

independent: the A(l) are linear combinations of the Hodge duals of A
(l)
∗ and vice versa.

All calculations in the main text of the paper use the (A.3) choice of a’s.
Finally, let us give an explicit description of the 10- and 30-dimensional irreducible

subspaces. R(10) is the subspace of curvatures R such that

Rκ
λκν = (R∗)κλκν = 0, Rκ

λ
λν = (R∗)κ

λ
λν = 0, Rκ

κµν = 0 (A.4)

(all possible traces are zero) and Rκλµν = −Rλκµν . R(30) is the subspace of curvatures R
satisfying (A.4) and Rκλµν = Rλκµν .

Given the decomposition

R = R(1) ⊕ R
(1)
∗ ⊕3

l=1 R(6,l) ⊕2
l=1 R(9,l) ⊕2

l=1 R
(9,l)
∗ ⊕ R(10) ⊕ R(30)

any R ∈ R can be uniquely written as

R = R(1) + R
(1)
∗ +

3
∑

l=1

R(6,l) +
2

∑

l=1

R(9,l) +
2

∑

l=1

R
(9,l)
∗ + R(10) + R(30)

where the R’s in the RHS are from the corresponding irreducible subspaces. We will call

these R’s the irreducible pieces of curvature. We will call the irreducible pieces R(1), R
(1)
∗ ,

R(10), R(30) simple because their subspaces are not isomorphic to any other subspaces.
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B Quadratic forms on curvature

Let us define an inner product on rank 2 tensors

(K,L) := Kµν Lµν , (B.1)

and a Yang–Mills inner product on curvatures

(R,Q)YM := Rκ
λµν Qλ

κ
µν . (B.2)

Lemma 1. Let q : R → R be an O(1, 3)-invariant quadratic form on curvature. Then

q(R) = b1R
2 + b∗1R

2
∗

+

3
∑

l,m=1

b6lm(A(l),A(m)) +

2
∑

l,m=1

b9lm(S(l),S(m)) +

2
∑

l,m=1

b∗9lm(S
(l)
∗ ,S

(m)
∗ )

+ b10(R
(10), R(10))YM + b30(R

(30), R(30))YM (B.3)

with some real constants b1, b∗1, b6lm = b6ml, b9lm = b9ml, b∗9lm = b∗9ml, b10, b30. Here R,

R∗, A
(l), S(l), S

(l)
∗ , R(10), R(30) are tensors defined in Appendix A.

Proof. The proof is given in [3]. �

Formula (B.3) in different (anholonomic) notation was first established in [7, 8].

C pp-spaces

A metric of the form

gµνdxµdxν = 2 dx0dx3 − (dx1)2 − (dx2)2 + f(x1, x2, x3) (dx3)2 (C.1)

is called a metric of a pp-wave, see Section 21.5 in [9]. The remarkable property of the
metric (C.1) is that the corresponding curvature tensor R is linear in f .

Definition 4. A pp-space is a Riemannian spacetime whose metric can be written locally
in the form (C.1).

The advantage of Definition 4 is that it gives an explicit formula for the metric of a
pp-space. Its disadvantage is that it relies on a particular choice of local coordinates in
each coordinate patch. We give now an alternative definition of a pp-space which is much
more geometrical.

Definition 5. A pp-space is a Riemannian spacetime which admits a nonvanishing paral-
lel rank 1 spinor field.

We use the term “parallel” to describe the situation when the covariant derivative of
some tensor or spinor field is identically zero. It is known, see Section 4 in [10] or Section
3.2.2 in [11], that Definitions 4 and 5 are equivalent.

Yet another way of characterizing a pp-space is by its restricted holonomy group Hol0.
Elementary calculations show that Definition 5 is equivalent to



Quadratic non-Riemannian Gravity 213

Definition 6. A pp-space is a Riemannian spacetime whose holonomy Hol0 is, up to
conjugation, a subgroup of the group

B2 :=

{(

1 b
0 1

)∣

∣

∣

∣

b ∈ C

}

. (C.2)

Here we use the standard identification of the proper orthochroneous Lorentz group
with SL(2, C). Our notation for subgroups of the proper Lorentz group follows that of
Section 10.122 of [12].

It is interesting that the group (C.2) is, up to conjugation, the unique nontrivial
abelian Lie subgroup of SL(2, C). In this statement “nontrivial” is understood as “not
1-dimensional and weakly irreducible”, with dimension understood as real dimension.

Put fαβ := ∂2f
∂xαxβ where f is the function appearing in (C.1). It is easy to check that the

Ricci curvature of a pp-space is parallel if and only if f11+f22 = const, and identically zero
if and only if f11 + f22 = 0. Note that in the latter case the full (rank 4) curvature tensor
R is not necessarily zero because it is a linear function of the full Hessian (fαβ)2α,β=1 , and
not only its trace.

D Spacetimes with parallel Ricci curvature

Lemma 2. A Riemannian spacetime has parallel Ricci curvature if and only if

(a) it is locally a product of Einstein manifolds, or

(b) it is a pp-space with parallel Ricci curvature (see Appendix C).

Recall that throughout this paper our spacetime is assumed to be 4-dimensional, real,
connected and equipped with Lorentzian metric. All these assumptions are important in
Lemma 2.

The notion of an Einstein manifold is understood as in Definition 1.95 of [12]: a real
manifold of arbitrary dimension equipped with a pseudo-Euclidean metric and a Levi-
Civita connection, and such that the Ricci tensor is proportional to the metric with a
constant proportionality factor.

Note that Lemma 2 has a well-known Euclidean analogue. Namely, in the Euclidean
case Ricci curvature is parallel if and only if the manifold is locally a product of Einstein
manifolds; see Theorem 1.100 and Section 16.A in [12].

Proof. The fact that assertion (a) or (b) implies

∇Ric = 0 (D.1)

is obvious, so we only need to prove the converse statement.
It is known, see [10] or Section 10.119 in [12], that our spacetime (M,g) is, at least

locally, a product of pseudo-Euclidean manifolds (Mj , gj), j = 1, . . . , k, whose holonomies
are weakly irreducible. Here “weak irreducibility” means that the only non-degenerate
(with respect to the metric) invariant subspaces of the tangent space are {0} and the
tangent space itself. Condition (D.1) implies

∇Ricj = 0, (D.2)
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j = 1, . . . , k, where Ricj is the Ricci curvature of (Mj , gj).
Let us examine a given manifold (Mj , gj). If dimMj = 1 then (Mj , gj) is clearly

Einstein. If dimMj = 2 then (D.2) implies that (Mj , gj) is Einstein. If dimMj = 3 or
dim Mj = 4 then (Mj , gj) may not be Einstein, in which case, in view of (D.2), it admits
a nonvanishing parallel symmetric rank 2 trace-free tensor field. But all such manifolds
have been classified, see Table 2 in [10]. Analysis of the latter shows that if our spacetime
is not a product of Einstein manifolds then we have one of the following three cases:

Hol0 = A1 × {1}, (D.3)

Hol0 = B2, (D.4)

Hol0 = B3
i . (D.5)

Here

A1 :=

{(

1 b
0 1

)∣

∣

∣

∣

b ∈ R

}

, B3
i :=

{(

a b
0 a−1

)∣

∣

∣

∣

a, b ∈ C, |a| = 1

}

,

and B2 is defined in accordance with (C.2); note that we continue using the notation from
Section 10.122 of [12]. Cases (D.3) and (D.4) correspond to pp-spaces (see Definition 6),
whereas (D.5) does not. It remains to show that the case (D.5) cannot occur; note that
we have not yet used the fact that our nonvanishing parallel symmetric rank 2 trace-free
tensor field is actually the trace-free Ricci curvature.

In the remainder of the proof we assume that we have (D.5). We will show that this
leads to a contradiction.

Condition (D.5) implies the existence of a nonvanishing parallel real null vector field l.
This condition also restricts the possible structure of the full (rank 4) curvature tensor R.
To understand the latter let us fix an arbitrary point x ∈ M and choose a pair of real
vectors v1, v2 such that l · v1 = l · v2 = v1 · v2 = 0 and v1 · v1 = v2 · v2 = −1 where the dot
denotes the standard inner product on TxM . Put Aj := l ∧ vj , j = 1, 2, A3 := v1 ∧ v2. It
is easy to see that {A1, A2, A3} is a basis for b

3
i , the Lie algebra of the group B3

i . Also,
{A1, A2} is a basis for b

2, the Lie algebra of the group B2. Condition (D.5) implies that
at the point x the curvature tensor has the structure

R =

3
∑

j,k=1

cjk Aj ⊗ Ak (D.6)

where cjk = ckj are some real numbers.
Further on we denote by u2 := u ⊗ u the tensor square of a vector, and by u ∨ v :=

u ⊗ v + v ⊗ u the symmetric product of a pair of vectors.
We have (D.1) and, therefore, ∇Ric = 0. According to Table 2 in [10], under the

condition (D.5) the only (up to rescaling) nonvanishing parallel symmetric trace-free rank 2
tensor field is l2, hence Ric is a multiple of l2. But formula (D.6) implies

Ric = −(c11 + c22)l
2 + c13 l ∨ v2 − c23 l ∨ v1 − c33

(

1

2
g + v2

1 + v2
2

)

,

so Ric is a multiple of l2 if and only if c13 = c23 = c33 = 0. Formula (D.6) now becomes

R =
2

∑

j,k=1

cjk (l ∧ vj) ⊗ (l ∧ vk) . (D.7)
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Denote L := span l ⊂ TxM , L⊥ := {u| u ⊥ l} ⊂ TxM , and let Rµν : TxM → TxM be
the linear operator defined by (Rµν u)κ := Rκ

λµν uλ. Inspection of (D.7) shows that

Rµν(L⊥) ⊂ L. (D.8)

A convenient way of interpreting this result is to think of a connection on L⊥/L : then
(D.8) is the statement that the curvature of such a connection is zero. (The connection
on L⊥/L is, in fact, equivalent to a U(1)-connection.)

Let us now fix a point x0 ∈ M . Put l0 := l|x=x0
, L0 := L|x=x0

, L⊥

0 := L⊥
∣

∣

x=x0

. Let Λ
be an arbitrary loop based at x0 which is homotopic to the constant loop at x0. Denote
by hΛ : Tx0

M → Tx0
M the linear operator describing the result of parallel transport of a

vector along this loop. As the vector field l is parallel we have

(hΛ − id)(l0) = 0. (D.9)

In view of (D.8) we also have

(hΛ − id)(L⊥

0 ) ⊂ L0. (D.10)

It is easy to see that properties (D.9) and (D.10) imply Hol0 ≤ B2, which contradicts
(D.5). Thus, the case (D.5) cannot occur. �
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